

TEST REPORT

According to

CFR 47 Part 15 Subpart C-15.247

Test Report No: CSTS-A13-FCC0029

EQUIPMENT NAME

WiFi Data Monitor

MODEL NO.

S-checker

APPLICANT

CYCLOGIC. Inc.

MANUFACTURER

CYCLOGIC. Inc

TEST STANDARD

FCC CFR 47, Part 15. Subpart C-15.247

TEST METHOD

ANSI C63.4(2003)

FCC ID 2AAHE-S- checker

This report applies only to the product named in the title of this report manufactured at the location indicated. Test results apply only to the particular equipment and functionality described in this test report.

This is the result of test that was carried out from the submitted type-samples of a product in conformity with the specification of the respective standards.

Date: June 10, 2013

Date: June 10, 2013

Tested by

Young Goo, Kim

Approved by Ik Seon, Jeong

CERTIFICATION SERVICE TECHNOLOGY INC.

181, Manhaero, Danwan-gu, Ansan-city, Kyeonggi-do, 425-839, Korea

Tel: +82 31 493 2001

Fax: +82 31 493 2055

Table of Contents

1. General Information	
1.1 General Description of EUT	3
1.2 Basic Description of EUT	4
2. Summary of test results	5
2.1 Measurement uncertainty	6
2.2 Testing Facility	7
3. TEST Instruments	8
4. Configuration of system under test	10
4.1 Conducted Test Setup	10
4.2 Radiated Test Setup	11
4.3 Description of support units	13
5.Test mode applicability and tested channel detail	13
6. Measurement results	14
6.1 Max. Conducted peak output power	14
6.2 Band-edge Compliance of RF Radiated emissions	16
6.3 Spurious RF Radiated emissions	18
6.4 Antenna requirement	26
6.5 AC Power Conducted emissions	27

Test Report No: CSTS-A13-FCC0029

1. General Information

1.1 General Description of EUT

Applicant's Information			
Company Name	CYCLOGIC. Inc		
Address	L07, KETI, 68, Yatap, Bundang, Seongnam, Gyeonggi, Korea,		
	463-816		
Name For Contact Purposes	Hyunhee Lee		
E-mail	ray.lee@cyclogic.net		
Telephone no.	+82-10-5390-9898		
Fax no.	+82-31-789-89032		

Manufacturer Information		
Company Name Address	CYCLOGIC. Inc L07, KETI, 68, Yatap, Bundang, Seongnam, Gyeonggi, Korea, 463-816	

1.2 Basic Description of EUT

Basic Description of EUT

Equipment Name : WiFi Data Monitor

Model NO. : S-checker
Serial NO. : Proto Type
Power Source : AC 110V

Adaptor (Input: AC 100V~240V, Output: DC +12V 2A)

Dimension : 123 mm x 95 mm x 36 mm

CPU : STM32F103ZC (ARM 32-bit CortexTM-M3)

Flash : 256Kbytes LCD : 16 X 2 Dot LCD

Micro SD Card : SD 4GB / SDHC 16GB support

RF Output Power : 20.02 dBm (802.11b)

Antenna type : Chip Antenna (Peak Gain : 1.99 dBi)

******* Wireless LAN Module **********

This equipment has a built-in modules are certified.

(Please refer to the attached FCC certificate)

Name of Grantee : WIZNET Co., LTD. FCC IDENTIFIER : XR2WIZFI220

Equipment Class : Digital Transmission System

Notes : Wireless LAN Module

Modular Type : Single Modular Date : June 27, 2011

FCC Rule Parts : 15C

Frequency Range : 2412 MHz ~ 2462 MHz

RF Output Power : 0.101 W

ADVICE :

Test Report No: CSTS-A13-FCC0029

Where is the RF exposure warning statement to keep at least 20cm

2. Summary of test results

The EUT has been tested according to the follow specification:

Description of Test	FCC Rule	Reference Clause	Pass/Fail	Test Result
6dB Spectrum Bandwidth	15.247(a)(2)	Clause 5.1	-	N/A
Max. Conducted peak output power	15.247(b)(1)	Clause 5.4	Pass	Compliance
Conducted peak output power spectrum density	15.247(e)	Clause 5.5	-	N/A
Band edge compliance of RF conducted emissions	15.247(d)	Clause 5.6	-	N/A
Band edge compliance of RF radiated emissions	15.247(d) 15.205 & 15.209	Clause 5.7	Pass	Compliance
Spurious RF conducted emissions	15.247(d)	Clause 5.8	-	N/A
Spurious RF radiated emissions	15.247(d), 15.209	Clause 5.9	Pass	Compliance
Antenna requirement	15.203, 15.247	Clause 5.10	Pass	Compliance
AC Power line Conducted emission	15.207	Clause 5.10	Pass	Compliance

Compliance: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

- The measurement report and tested in accordance with measurement procedures specified in ANSI C 63.4-2003.
- This equipment is a built-in modules are certified, I have omitted the test items below.
 - 6dB Spectrum Bandwidth
 - Conducted peak output power spectrum density
 - Band edge compliance of RF conducted emissions
 - Spurious RF conducted emissions

I hereby declare that I am entitled to sign on behalf of the applicant and that the information supplied is correct and complete.

Name Young Goo, Kim
Position held Engineer / EMC Team
Date June 10, 2013

Begin Test: May 29, 2013 End Test: June 05, 2013

2.1 Measurement uncertainty

Conducted Emissions

ТҮРЕ	Contribution	Probability Distribution	Uncertainty	Remark	
	LISN				
	Impedance	normal(k=2)	±1.3	CAL.	
	Voltage Division Factor	normal(k=2)	±0.12	CAL.	
	cable	normal (k=2)	±0.2	NONCAL.	
	Receiver				
В	Input Impedance	normal(k=1.64)	±0.0070	CAL.	
В	QP Sine-Wave Voltage Accuracy	normal(k=2)	±0.20 dB		
	QP-Pulse Amplitude Sensibility	normal(k=2)	±0.40 dB		
	QP-Pulse Frequency Response	normal(k=2)	±0.57 dB		
	Random Noise	normal(k=2)	±0.35 dB		
	Mismatch	11 Chd	+0.7/-0.8	CISPR	
	AMN to Receiver	U-Shaped	+0.//-0.8	Theory	
A	System Repeatability	Std deviation	±0.0721		
Combined	Standard Uncertainty	normal	± 1.1155 [dB]		
Expanded	Uncertainty U	normal(k=2)	± 2.23	95.45 %	

Radiated Emission

ТҮРЕ	Contribution	Probability Distribution	Uncertainty 3/10m	Remark
	Antenna			
	factor	1/1 2)	±0.5 dB	
	frequency interpolation	normal(k=2)	±0.5 dB	
	height variation	rectangular	±0.1039 dB	NPL
	direcvalupsy difference	rectangular	+1.5/-2.6 dB	NAMAS
	phase center location	rectangular	+0/-1.0 dB ±1.0 dB	NAMAS
	Cable loss	normal(k=2)	±0.5 dB	
В	Receiver			
	Input Impedance	normal(k=1.64)	± 0.0070	
	QP Sine-Wave Voltage Accuracy	normal(k=2)	±0.20 dB	
	QP-Pulse Amplitude Sensibility	normal(k=2)	±0.40 dB	
	QP-Pulse Frequency Response	normal(k=2)	±0.57 dB	
	Random Noise	normal(k=2)	±0.35 dB	
	Mismatch : AMN – receiver $ \begin{vmatrix} \Gamma_{\text{antenna}} \\ \Gamma_{\text{receiver}} \end{vmatrix} = 0.33$ $ \begin{vmatrix} -0.33 \\ \Gamma_{\text{receiver}} \end{vmatrix} = 0.33$	U-Shaped	+0.9/-1.0 dB	CISPR
A	System repeatibility	Std deviation	±0.1149 dB	
Combine	ed standard Uncertainty	normal	±1.3193 [dB]	
Expande	d Uncertainty U	normal(k=2)	± 2.63	95.45 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k = 2.

2.2 Testing Facility

We, Certification Service Technology Inc. are an independent EMC and RF consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025:

Test laboratory and	Certification Service Technology Inc. (CSTech)	
address	1055, Singil-dong ,Danwon-gu ,Ansan-si, Gyeonggi-do,	
	Korea 425-839	
FCC registration number	289252	
IC registration number	10024A	
KCC registration number	KR0074	
(Korea Communication Commission)		
Contact Person	Ik Seon Jeong Testing Manager	
e-mail	isjeong@cstlab.co.kr	
Tel	82-31-493-2001	
Fax	82-31-493-2055	

3. TEST Instruments

No	Description	Model	Manufacturer	S/N	Next Calibration
1	Receiver	ER-265	LIG Nex 1	L0804B002	2013.07.05
2	Receiver	ER-30	LIG Nex 1	861743/024	2013.09.04
3	Bi-Log	3142	EMCO	9701-1128	2014.02.14
4	Biconical ANT.	3104C	EMCO	9012-4380	2014.03.13
5	Log Periodic ANT.	3146	EMCO	9008-2863	2014.03.13
6	LOOP ANT.	HFH2-Z2	Schwarz beck	100187	2013.07.21
7	DC Power Supply	6674A	Agilent	US36372373	2014.01.03
8	Dual Directional Coupler	778D	H.P	18592	2014.01.03
9	Signal Generator	E8257D	Agilent	MY47461024	2014.01.03
10	Signal Generator	E4432B	Agilent	US38441383	2014.01.03
11	Pulse/Pattern Generator	81110A	Agilent	DE41B02781	2014.01.03
12	Universal Radio Communication Tester	CMU200	Rohde &Schwarz	110665	2014.05.16
13	Modulation Analyzer	8901B	H.P	3438A05141	2014.05.16
14	Audio Analyzer	8903B	H.P	3514A16134	2014.05.16
15	Spectrum Analyzer	R3273	Advantest	121100554	2014.05.16
16	Spectrum Analyzer	E7405A	Agilent	US41110271	2014.01.03
17	Attenuator	8498A	H.P	1801A07058	2014.01.03
18	Horn Antenna	BBHA9120D	SCHWARZBECK	0501	2014.10.19
19	Horn Antenna	BBHA9170	SCHWARZBECK	BBHA9170152	2014.10.19
20	Digital Multimeter	45	FLUKE	76669036	2013.07.05
21	Digital Power Meter	ML2495A	Anritsu	824015	2014.01.03
22	High Accuracy Sensor	MA2445D	Anritsu	738191	2014.01.03
23	Highpass Filter	WHKX3.0/18G-10SS	WAINWRIGHT	84	2013.07.05
24	Highpass Filter	WHKX1.0/15G-10SS	WAINWRIGHT	2	2013.07.05
25	Band Reject Filter	WRCG824/849-814/859- 80/16SS	WAINWRIGHT	1	2013.07.05
26	Band Reject Filter	WRCG890/915-880/925- 80/16SS	WAINWRIGHT	2	2013.07.05
27	Band Reject Filter	WRCG1749.9/1784.9- 1730/1805-90/14SS	WAINWRIGHT	6	2013.07.05

28	Band Reject Filter	WRCG1920/1980- 1900/2000-80/14SS	WAINWRIGHT	42	2013.07.05
29	Band Reject Filter	WRCJ5125/5825- 4950/6000-80/16SS	WAINWRIGHT	1	2013.07.05
30	TURN TABLE	Dail EMC	D-TT 06	N/A	N/A
31	ANT. MASTER	Dail EMC	D-AM 06	N/A	N/A
32	Controller	Dail EMC	D-CTR	N/A	N/A
33	TEMP&HUMID CHAMBER	KR-3001C	GOREAENG.	20080204-01	2014.02.28
34	TEMP&HUMID CHAMBER	SE-CT-02	SukSan Tech.	CST-RF-078	2014.01.03
35	Signal Generator	Agilent	E4438C	MY45093719	2013.12.03
36	POWER DIVIDER	KRYTAR	6010265	111194	2013.07.05
37	POWER DIVIDER	KRYTAR	6010265	111195	2013.07.05
38	POWER DIVIDER	KRYTAR	6010265	111196	2013.07.05

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to RRA, KRISS, KTL and HCT.

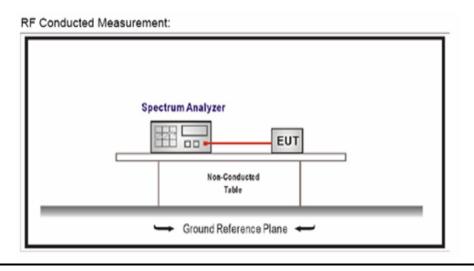
2. The calibration interval of Horn ant. and Loop, Dipol ant. is 24 months

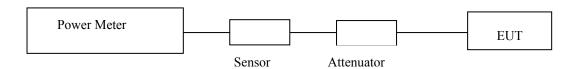
4. Configuration of system under test

4.1 Conducted Test Setup

AC Power Conducted Test

Limit Of Conducted Emission:

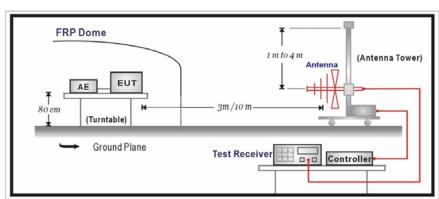

Test Specification


: According to FCC CFR Title 47 Part 15 Subpart C Section 15.207

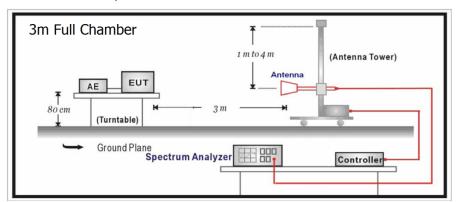
FREQUENCY	Limit	
(MHz)	Quasi-peak	Average
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5.0	56	46
5.0 to 30.0	60	50

^{*}Decreases with the logarithm of the frequency.

RF Conducted Test



Power Meter : ML2495A (Anritsu)Power Sensor : MA2445D (Anritsu)


• Detector mode : peak

4.2 Radiated Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

Limit Of Radiated Emission :

Test Specification

: According to FCC CFR Title 47 Part 15 Subpart C Section 15.209, 15.247

Limits				
Frequency	Field Strength	Measurement Distance	dD. W/mastan	
(MHz)	(µV/meter)	(meters)	dBμV/meter	
0.009 - 0.490	2400/F (kHz)	300	88.52 - 53.80	
0.490 - 1.705	24000/F (kHz)	30	53.80 - 42.97	
1.705 - 30.0	30	30	49.54 – 49.54	
30 - 88	100	3	40.00	
88 – 216	150	3	43.52	
216 – 960	200	3	46.02	
Above 960	500	3	53.98	

Remarks:

- 1. RF Voltage(dBuv)=20log RF Voltage(uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring

4.3 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO	PRODUCT	MODEL NO.	SERIAL NO.	Mnufacture
1	Note Book PC	NT-Q46C	BA68-04095A 10	SAMSUNG
2	USB Cable	LL200212	-	-

5. Test mode applicability and tested channel detail

Test Items	Mode	Channel NO.	Operated Condition
Conducted peak output power	802.11b	1, 7, 11	Continuous modulation setting mode
Band-edge Compliance	802.11b	1, 11	Continuous modulation setting mode
Spurious radiated emissions	802.11b	1, 7, 11	Continuous modulation setting mode

*Note: Channel number is selected lowest, middle, highest channel modulation mode operation

Test Report No: CSTS-A13-FCC0029

6. Measurement Results

6.1 Max. Conducted peak output power

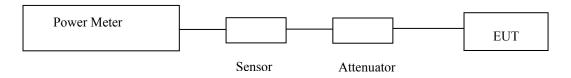
6.1.1 Standard Applicable [FCC §15.247(b)(1)]

For systems using digital modulation in the 2400 MHz ~ 2 483.5 MHz bands : 1 Watt.

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

6.1.2 Test Environment conditions

• Ambient temperature : 22 ℃,


• Relative Humidity : $(54 \sim 55)$ % R.H.

The maximum peak conducted output power can be measured using a broadband peak RF power meter. The power meter must have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast, average-responding diode type sensor.

6.1.3 Measurement Procedure

- ① Reference frequency generated from the signal generator is supply to power meter input port via RF cable and attenuator, and then, it's apply to offset value on power meter as follows;
- ② Remove the antenna from the EUT and then connected to power meter via a suitable low loss RF cable and attenuator.
- ③ Place the EUT on the table and set it function disable at the lowest, middle and the highest available channels.
- Power meter was used to directly measure the output power from RF output port on the EUT in continuously transmitting modulation
- ⑤ The indicated level is the peak output power.
- Please refer to the detailed procedure method FCC Public Notice(KDB 558074 D01)

6.1.4 Test Setup Configuration

Power Meter : ML2495A (Anritsu)Power Sensor : MA2445D (Anritsu)

• Detector mode : peak

Test Report No: CSTS-A13-FCC0029

6.1.5 Measurement Result

IEEE 802.11b

		Test Results					
Channel No.	Frequency [MHz]	Measured power [dBm] *	Limit [W]	Result			
1	2 412	19.53		Pass			
7	2 442	19.42	≤ 1	Pass			
11	2 462	20.02		Pass			

^{*} it is conducted power

6.2 Band-edge Compliance of RF Radiated emissions

6.2.1 Standard Applicable [FCC §15.247]

The band-edge emissions outside these bands 2400 MHz \sim 2 483.5 MHz in which operating the hopping modulated intentional radiator is required comply with the provisions in above Required standard with respect to emission falling within restricted frequency bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) Above limitation value is refer to Table [1] & [2] of Clause 5.9.1

6.2.2 Test Environment conditions

• Ambient temperature : 21 °C,

• Relative Humidity : $(55 \sim 56)$ % R.H.

6.2.3 Measurement Procedure please refer to the clause 5.9.3

6.2.4 Test Setup Configuration please refer to the clause 5.9.5

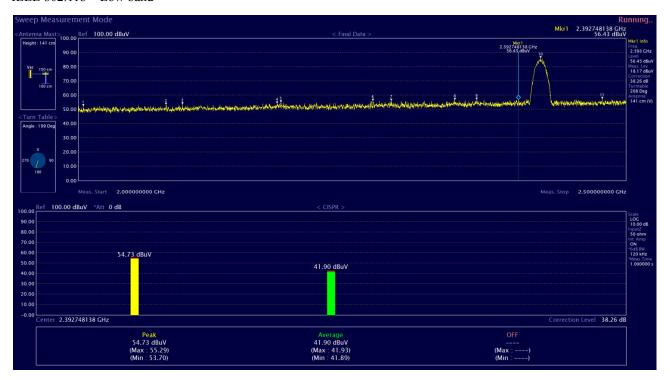
6.2.5 Measurement Result

IEEE 802.11b

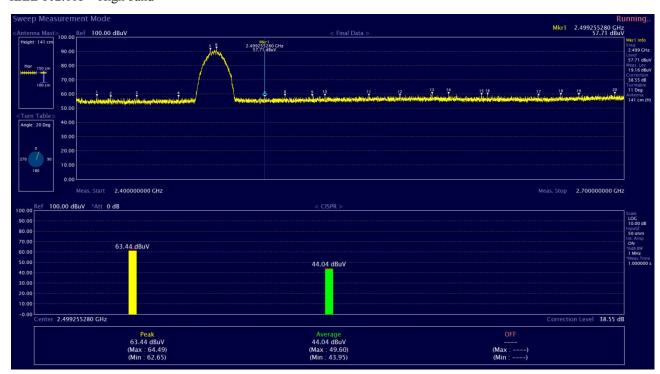
■ Low band (2310 MHz ~ 2400 MHz)

Frequency	Reading	Factor(dB)	Limits	Result	D a g 14	Mode
(MHz)	(dBuV/m)	CL+AF	(dBuV/m)	(dBuV/m)	Result	
2392.748	24.86	30.43	74	55.29	Pass	Peak
2392.748	11.50	30.43	54	41.93	Pass	Average

■ High band (2483.5 MHz ~ 2500 MHz)


Frequency	Reading	Factor(dB)	Limits	Result	Result	Mode
(MHz)	(dBuV/m)	CL+AF	(dBuV/m)	(dBuV/m)	Result	
2499.255	33.75	30.74	74	64.49	Pass	Peak
2499.255	18.86	30.74	54	49.60	Pass	Average

Emission Level (dBuV/m) = Reading Level + Correct Factor.


Note: Correct Factor = AF + CL

AF: Antenna Factor
CL: Cable Loss

IEEE 802.11b Low band

IEEE 802.11b High band

6.3 Spurious RF Radiated emissions

6.3.1 Standard Applicable [FCC §15.247(d)]

All other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10 GHz, the frequency Range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, Whichever is lower. In addition, radiated emissions which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a)

§15.209. [Table 1] limits for radiated emissions measurements (distance at 3m)

Frequency Band [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector
30 - 88	100 **	40.00	Quasi peak
88 - 216	150 **	43.52	Quasi peak
216 - 960	200 **	46.02	Quasi peak
Above 960	500	54.00	Average

^{**} fundamental emissions from intentional radiators operation under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz, or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part Section 15.231 and 15.241

§15.205. [Table 2] Restrict Band of Operation

Only spurious emissions ar	e permitted in any of the frequency	bands listed below;	
[MHz]	[MHz]	[MHz]	[GHz]
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505**	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.
4.177 25 - 4.177 75	37.5 -38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 -1 722.2	13.25 - 13.
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.38 6 75	156.7 - 156.9	2 690 – 2 900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3 260 – 3 267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 332 – 3 339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6

^{**} Until February 1, 1999, this restricted band shall be 0.490-0.510

6.3.2 Test Environment conditions

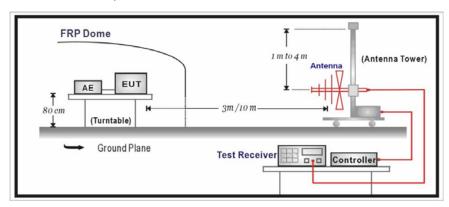
• Ambient temperature : 21 $^{\circ}$ C,

• Relative Humidity: $(54 \sim 55)$ % R.H.

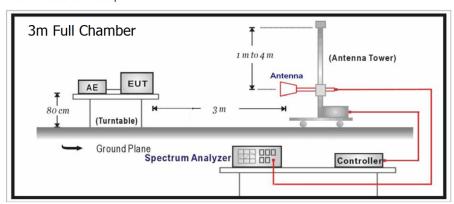
6.3.3 Measurement Procedure

Test Report No: CSTS-A13-FCC0029

The measurements procedure of the transmitter radiated E-field is as following describe method.


A pre-scan is performed in a Shield chamber to determine the accurate frequencies before final test, after maximum emissions level will be checked on a open test site and measuring distance is 3 m from EUT to test antenna.(O.A.T.S is ensured that comply with at least 6 dB above the ambient noise level)

- ① The EUT was powered ON with normal operating mode and placed on a 0.8 meter high non-conductive table on the reference ground plane. If EUT is connected to cables, that were fixed to cause maximum emission.
- ② For above 1 GHz, the test antenna is used on Horn antenna, and if the below 1 GHz, loop and broad-band antenna were used. It made with the antenna positioned in both the horizontal and vertical plane of polarization.
- The output of the test antenna will be connected to a measuring receiver, and it is set to tuned over the frequency range according to required standard
- For emission frequencies measured below 1 GHz, The measuring bandwidth and detector type of the
 measurement receiver is set on using measurement instrumentation employing a CISPR Quasi Peak detector,
 and for above 1GHz, set the spectrum analyzer on a 1 MHz resolution bandwidth with average and peak detector
 for each frequency.
- ⑤ The frequencies at which a relevant radiated signal component is detected, the test antenna will be raised and lowered through the specified heights range(from 1 to 4 meters) in horizontal polarized orientation, until an maximum signal level is detected on the measuring receiver(or spectrum analyzer).
- 6 Repeat step 5 with antennal in vertical polarized orientations.
- The transmitter is position x, y, z axis on turn table rotating through 360 degrees, until the maximum signal level is detected by the measuring receiver.
- The receiver is scanned from requested measuring frequency band and then the maximum meter reading is recorded. The radiated emissions were record the test result.
- The measurement results are obtained as described below:
 Result(dBμA/m) = Reading(dBμA) + Antenna factor(dB/m)+ CL(dB) + other applicable factor (dB)
 if necessary, additionally receiver is adopted high-pass filter and preamp because lower radiated signal



6.3.4 Test Configuration

Below 1GHz Test Setup:

Above 1GHz Test Setup:

6.3.5 Measurement Result

IEEE 802.11b

■ Lowest Channel 1 (2412 MHz)

Below 1 GHz

Frequency	Reading	Factor(dB)	Limits	Meas Result	P	D a a 14
(MHz)	(dBuV/m)	CL+AF	(dBuV/m)	(dBuV/m)	(V/H)	Result
32.43	19.76	14.45	40.00	34.21	Н	Pass
359.80	19.36	18.49	46.02	37.85	Н	Pass
599.98	15.09	25.50	46.02	40.59	Н	Pass

Above 1 GHz

Frequency	Reading	Factor(dB)	Limits	Meas Result	P	Dagult
(MHz)	(dBuV/m)	CL+AF+AMP	(dBuV/m)	(dBuV/m)	(V/H)	Result
1816.00	43.31	1.20	74	44.51	V	Pass
1816.00	32.77	1.20	54	33.97	V	Pass
8004.00	32.95	21.61	74	54.56	V	Pass
8004.00	22.38	21.61	54	43.99	V	Pass

■ Middle Channel 7 (2442 MHz)

Below 1 GHz

Frequency	Reading	Factor(dB)	Limits	Meas Result	P	Result
(MHz)	(dBuV/m)	CL+AF	(dBuV/m)	(dBuV/m)	(V/H)	Resuit
32.11	19.28	14.58	40.00	33.86	Н	Pass
540.89	15.05	24.16	46.02	39.31	Н	Pass
719.70	10.35	27.51	46.02	37.86	Н	Pass

Frequency	Reading	Factor(dB)	Limits	Meas Result	P	Dogult
(MHz)	(dBuV/m)	CL+AF+AMP	(dBuV/m)	(dBuV/m)	(V/H)	Result
1816.00	44.47	1.20	74	45.67	Н	Pass
1816.00	33.83	1.20	54	35.03	Н	Pass
9636.00	33.90	20.51	74	54.41	Н	Pass
9636.00	24.80	20.51	54	45.31	Н	Pass

■ Highest Channel 11 (2462 MHz)

Below 1 GHz

Frequency	Reading	Factor(dB)	Limits	Meas Result	P	D 14
(MHz)	(dBuV/m)	CL+AF	(dBuV/m)	(dBuV/m)	(V/H)	Result
35.53	19.47	13.16	40.00	32.63	Н	Pass
215.97	24.61	13.48	43.52	38.09	Н	Pass
599.99	15.51	25.50	46.02	41.01	Н	Pass

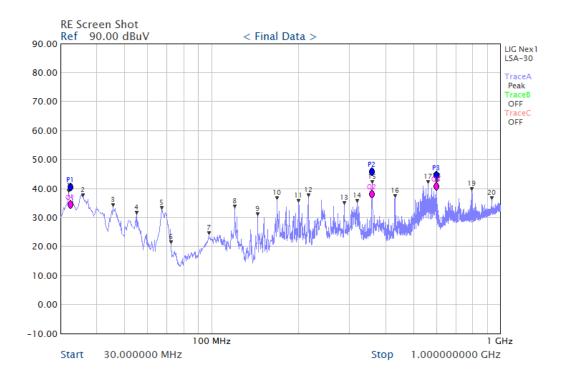
Above 1 GHz

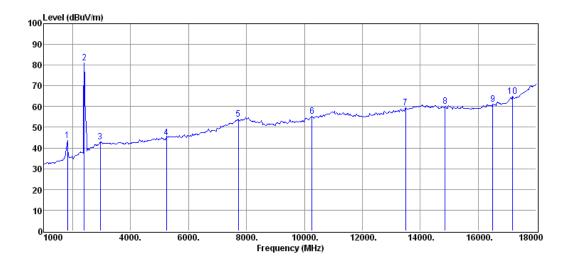
Test Report No: CSTS-A13-FCC0029

Frequency	Reading	Factor(dB)	Limits	Meas Result	P	D a sult
(MHz)	(dBuV/m)	CL+AF+AMP	(dBuV/m)	(dBuV/m)	(V/H)	Result
1816.00	43.32	1.20	74	44.52	Н	Pass
1816.00	33.96	1.20	54	35.16	Н	Pass
4944.00	34.94	12.55	74	47.49	Н	Pass
4944.00	25.33	12.55	54	37.88	Н	Pass

Note: 1. Measurement level = reading level + correct factor (Antenna Factor + Cable loss+AMP)

- 2. X axis plane was the worst test result than Y axis plane and Z axis plane.
- 3. Above 1 GHz is measured average and peak detector mode in accordance with FCC Rule15.35
- 4. Limit: 54 dBµV/m(Average), 74 dBµV/m(Peak)

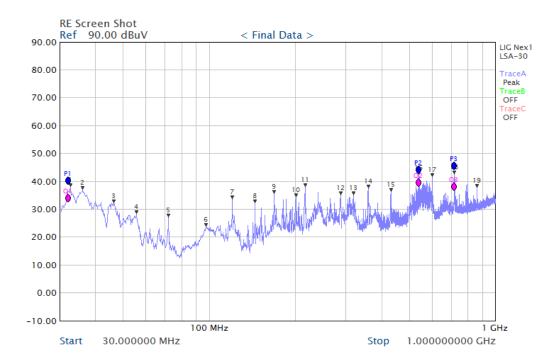


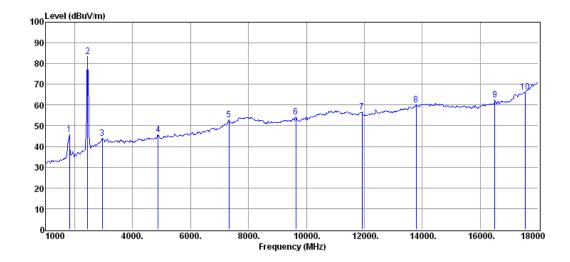

6.3.6 Test Plot

IEEE 802.11b

CH 1

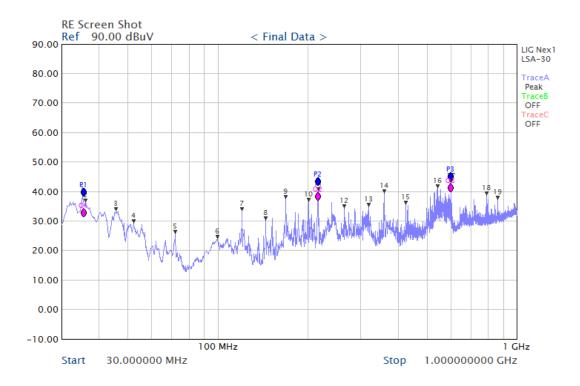
Below 1 GHz

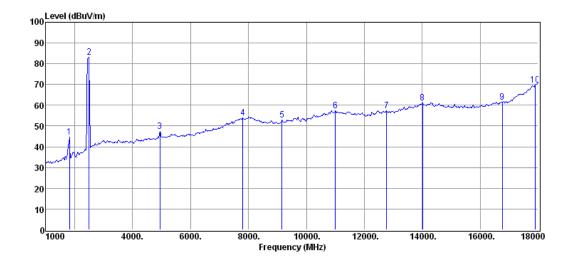




CH 7

Below 1 GHz





CH 11

Below 1 GHz

6.4 Antenna requirement

6.4.1 Standard applicable [FCC §15.203, §15.247(4)(1)]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit So that broken antenna can be replaced by the user, but the Use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(4)(1), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6dBi.

According to above requirement standard's This product's antenna type is an chip type and it's gain is 1.99 dBi, So radiated emission field strength from EUT is below requirement standard limit

6.4.2 Antenna gain

Frequency Range	Frequency Range Gain [dBi]		Results	
2400 MHz ~ 2483.5 MHz	1.99	≤ 6	Pass	

6.5 AC Power Conducted emissions

6.5.1 Standard Applicable [FCC §15.207(a)]

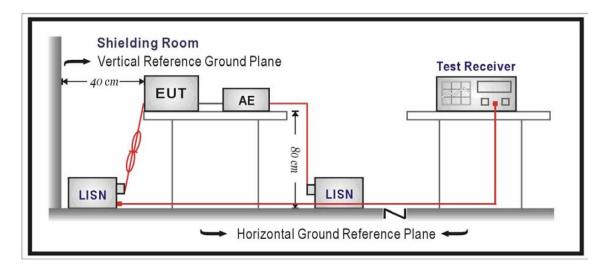
For intentional radiator that is designed to be connected to the public utility(AC)power line, the radio frequency Voltage that is conducted back onto the AC power line on any frequencies hopping mode within the band 150kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50uH/50 ohms line Impedance stabilization network(LISN). Compliance with the provisions of this paragraph shall be based on The measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

§15.207 limits for AC line conducted emissions;

Engage of Emission (MIL-)	Conducted Limit (dBµV)			
Frequency of Emission(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5~30	60	50		

^{*} Decreases with the logarithm of the frequency

6.5.2 EUT used cable


Cable Type	Shield	Length (m)	Ferrite	Connector	Connection	Connection	
			renne		Point 1	Point 2	
USB Cable	No	1.0	No	No	E.U.T.	Note book PC	

6.5.3 Used Peripherals

NO	PRODUCT	MODEL NO.	SERIAL NO.	Mnufacture	
1	Note Book PC	NT-Q46C	BA68-04095A 10	SAMSUNG	
2	USB Cable	LL200212	-	-	

6.5.4 E.U.T Test Configuration

6.5.5 Measurement Procedure

EUT was placed on a non-metallic table height of 0.8 m above the reference ground plane.

Cables connected to EUT were fixed to cause maximum emission.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization.

The measurement antenna was varied in height above the conducting ground plane to obtain the Maximum signal strength.

6.5.6 Test environment conditions

 \bullet Normal temperature : 22 $^\circ\!\mathbb{C}$

• Relative humidity : $(44 \sim 45)$ % R.H.

• Pressure : 98 k Pa

6.5.7 Measurement Result

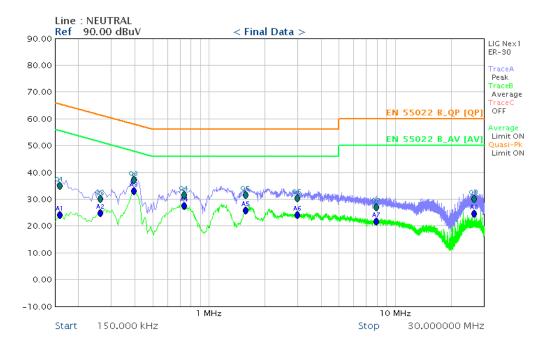
Live

Freq.	Reading [dBµV]		Limit [dBµV]		Factor [dB]	Meas Result [dBμV]		Result
[MHz]	Q-peak	Average	Q-peak	Average	[CL+LISN]	Q-peak	Average	
0.172	23.22	14.54	64.84	54.84	9.87	33.09	24.41	Pass
0.258	20.69	15.37	61.50	51.50	9.87	30.56	25.24	Pass
0.402	27.08	22.87	57.81	47.81	9.90	36.98	32.77	Pass
1.270	21.31	15.64	56.00	46.00	9.99	31.30	25.63	Pass
2.755	19.34	13.66	56.00	46.00	10.12	29.46	23.78	Pass
26.488	21.33	16.53	60.00	50.00	10.56	31.89	27.09	Pass

Neutral

Freq.	Reading [dBμV]		Limit [dBµV]		Factor [dB]	Meas Result [dBμV]		Result
[MHz]	Q-peak	Average	Q-peak	Average	[CL+LISN]	Q-peak	Average	
0.159	24.96	14.08	65.52	55.52	9.86	34.82	23.94	Pass
0.262	20.06	14.84	61.35	51.35	9.88	29.94	24.72	Pass
0.397	27.03	23.00	57.91	47.91	9.89	36.92	32.89	Pass
1.581	21.51	15.50	56.00	46.00	10.01	31.52	25.51	Pass
2.985	20.01	13.87	56.00	46.00	10.14	30.15	24.01	Pass
26.488	19.34	13.89	60.00	50.00	10.56	29.90	24.45	Pass

^{*} Meas Result = Reading level + Factor (LISN Insertion Loss + Cable Loss)



6.5.8 Test Plot

Line: Live

Line: Neutral

