

FCC TEST REPORT

According to

FCC Rules and Regulations

Part 15 Subpart C

Applicant	:	KRC Technology Company
Address	:	7F., No.298, Ruiguang Rd., Neihu Dist., Taipei City 11491, Taiwan(R.O.C)
Equipment	:	2.4G Zigbee Window/Door Detect
Model No.	:	WD201
FCC ID.	:	2AAGV-KRC002
Trade Name	:	krc

- The test result refers exclusively to the test presented test model / sample.,
- Without written approval of **Cerpass Technology Corp.**, the test report shall not be reproduced except in full.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Contents

1. Report of Measurements and Examinations	6
1.1 List of Measurements and Examinations	6
2. Test Configuration of Equipment under Test.....	7
2.1 Feature of Equipment under Test.....	7
2.2 Carrier Frequency of Channels	7
2.3 Test Mode and Test Software.....	7
2.4 Description of Test System.....	7
2.5 General Information of Test.....	8
2.6 Measurement Uncertainty	8
3. Antenna Requirements.....	9
3.1 Standard Applicable	9
3.2 Antenna Construction and Directional Gain.....	9
4. Test of Conducted Emission.....	10
4.1 Test Limit	10
4.2 Test Procedures	10
4.3 Typical Test Setup	11
4.4 Test Result and Data.....	11
5. Test of Radiated Emission	12
5.1 Test Limit	12
5.2 Test Procedures	12
5.3 Typical Test Setup	13
5.4 Measurement Equipment.....	13
5.5 Test Result and Data (9kHz ~ 30MHz).....	13
5.6 Test Result and Data (30MHz ~ 1GHz).....	14
5.7 Test Result and Data (1GHz ~ 25GHz).....	14
5.8 Test Photographs (30MHz ~ 1GHz)	24
5.9 Test Photographs (1GHz ~ 25GHz)	25
6. 6dB Bandwidth Measurement Data	26
6.1 Test Limit	26
6.2 Test Procedures	26
6.3 Test Setup Layout	26
6.4 Measurement Equipment.....	26
6.5 Test Result and Data.....	26
7. Maximum Peak Output Power	29
7.1 Test Limit	29
7.2 Test Procedures	29
7.3 Test Setup Layout	29
7.4 Measurement Equipment.....	29
7.5 Test Result and Data.....	29
8. Power Spectral Density	30
8.1 Test Limit	30
8.2 Test Procedures	30

8.3	Test Setup Layout	30
8.4	Measurement Equipment.....	30
8.5	Test Result and Data.....	30
9.	Band Edges Measurement.....	33
9.1	Test Limit	33
9.2	Test Procedure	33
9.3	Test Setup Layout	33
9.4	Measurement Equipment.....	33
9.5	Test Result and Data.....	33
10.	Restrict Band Emission Measurement Data	36
11.	Restricted Bands of Operation	37
11.1	Labeling Requirement.....	37
Appendix A. Photographs of EUT.....		A1 ~ A4

History of this test report

■ ORIGINAL.

Additional attachment as following record:

CERTIFICATE OF COMPLIANCE

According to

FCC Rules and Regulations

Part 15 Subpart C

Applicant	:	KRC Technology Company
Address	:	7F., No.298, Ruiguang Rd., Neihu Dist., Taipei City 11491, Taiwan(R.O.C)
Equipment	:	2.4G Zigbee Window/Door Detect
Model No.	:	WD201
FCC ID.	:	2AAGV-KRC002

I HEREBY CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4** The equipment was **passed** the test performed according to **FCC Rules and Regulations Part 15 Subpart C (2010)**.

The test was carried out on May 09, 2013 at Cerpass Technology Corp.

Approved by:

Hill Chen

Hill Chen
EMC/RF B.U. Assistant Manager

Tested by:

Tom Tai

Tom Tai
Engineer

1. Report of Measurements and Examinations

1.1 List of Measurements and Examinations

FCC Rule	Description of Test	Result
15.203	. Antenna Requirement	Pass
15.207	. Conducted Emission	Pass
15.209 15.247(d)	. Radiated Emission	Pass
15.247(a)(2)	. 6dB Bandwidth	Pass
15.247(b)	. Maximum Peak Output Power	Pass
15.247(d)	. 100kHz Bandwidth of Frequency Band Edges	Pass
15.247(e)	. Power Spectral Density	Pass
1.1307 1.1310 2.1091 2.1093	. RF Exposure Compliance	Pass

2. Test Configuration of Equipment under Test

2.1 Feature of Equipment under Test

Power : CR2450 battery
Working current : 38mA
Detection type : Passive
Operating temperature : 0~40
Humidity : 95%RH
Antenna Type: PCB Antenna
Antenna Gain: 0 dBi
Frequency Range: 2425 ~ 2480MHz

2.2 Carrier Frequency of Channels

Channel	Frequency(MHz)
01	2425
02	2450
03	2475
04	2480

2.3 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.
- b. The complete test system included EUT for the RF test.
- c. An executive program, "ZNET Sniffer" which transmits and receives data through Wireless.
- d. The following test modes was performed for RF test:
CH01: 2425MHz, CH02: 2450MHz, CH04: 2480MHz

2.4 Description of Test System

The EUT was tested alone. No support devices is needed for testing.

2.5 General Information of Test

Test Site :	Cerpass Technology Corp. 2F-11, No. 3, Yuan Qu St., (Nankang Software Park), Taipei, Taiwan 115, R.O.C.
Test Site Location (OATS2-SD) :	No.68-1, Shihbachongsi, Shihding Township, Taipei City 223, Taiwan, R.O.C.
FCC Registration Number:	TW1049, TW1061, 390316, 488071
IC Registration Number :	4934B-1, 4934D-1
VCCI Registration Number:	T-1173 for Telecommunication Test C-4139 for Conducted emission test R-3428 for Radiated emission test G-97 for Radiated emission test above 1GHz
Frequency Range Investigated:	Conducted: from 150kHz to 30MHz Radiation: from 30MHz to 25,000MHz
Test Distance:	The test distance of radiated emission from antenna to EUT is 3 M.
Laboratory Accreditation	

2.6 Measurement Uncertainty

Measurement Item	Uncertainty
Radiated emission	±4.11dB
Peak Output Power(conducted)	±1.38dB
Peak Output Power(Radiated)	±1.70dB
Power Spectral Density	±1.39dB
Radiated emission(3m)	±4.11dB
Radiated emission(10m)	±3.89dB

3. Antenna Requirements

3.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

3.2 Antenna Construction and Directional Gain

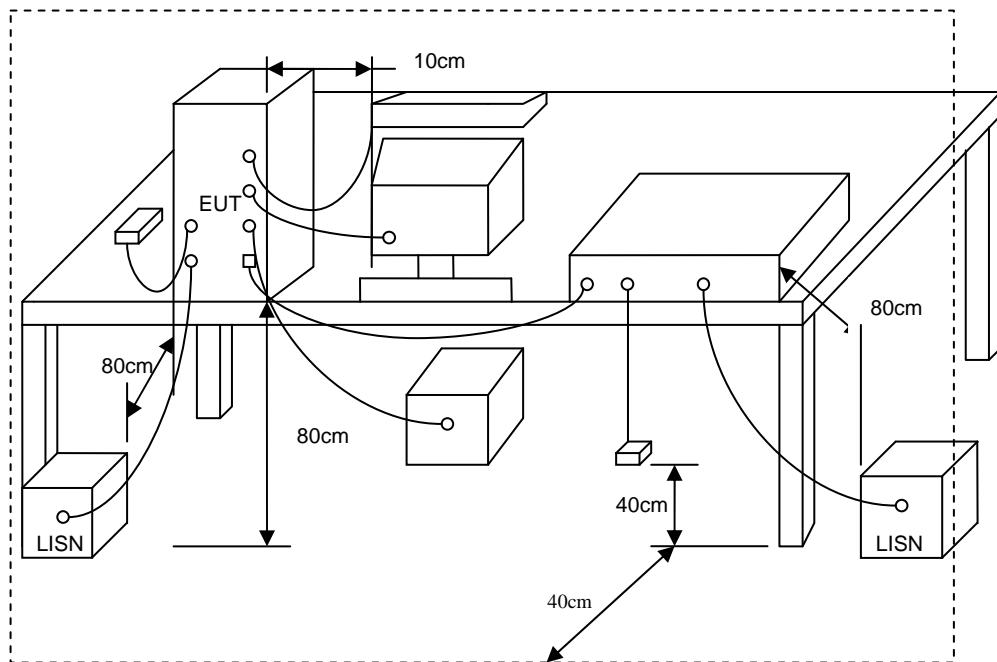
Antenna Type: PCB Antenna

Antenna Gain: 0 dBi

4. Test of Conducted Emission

4.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2009 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.


Frequency (MHz)	Quasi Peak (dB μ V)	Average (dB μ V)
0.15 – 0.5	66-56*	56-46*
0.5 – 5.0	56	46
5.0 – 30.0	60	50

*Decreases with the logarithm of the frequency.

4.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

4.3 Typical Test Setup

4.4 Test Result and Data

The test item is not applicable because the EUT is powered from DC.

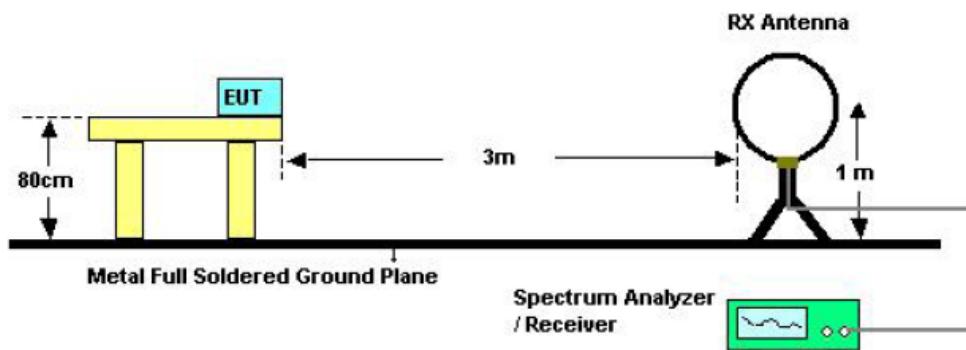
5. Test of Radiated Emission

5.1 Test Limit

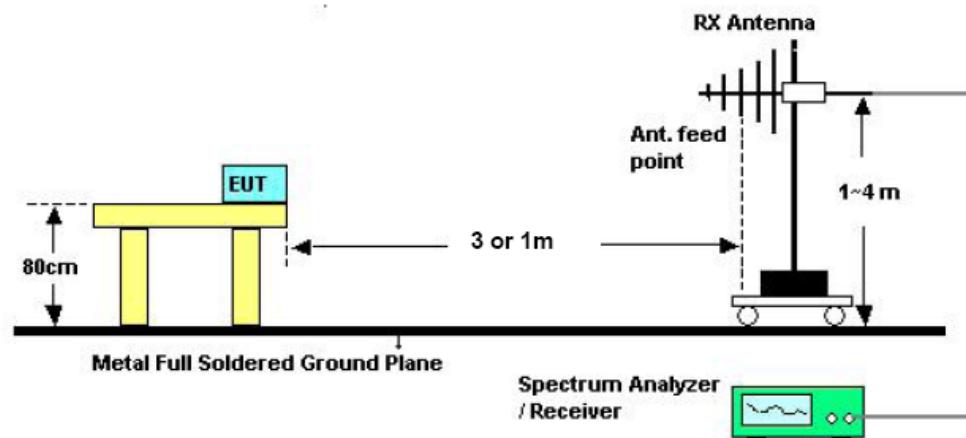
Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.4-2009. The EUT was placed, 0.8 meter above the ground plane, as shown in section 5.6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions for unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance Meters	Radiated (μ V / M)	Radiated (dB μ V / M)
30-88	3	100	40.0
88-216	3	150	43.5
216-960	3	200	46.0
Above 960	3	500	54.0

For unintentional device, according to CISPR PUB.22, for Class B digital devices, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 10 meters shall not exceed the below table.


Frequency (MHz)	Distance Meters	Radiated (dB μ V/ M)
30-230	10	30
230-1000	10	37

5.2 Test Procedures


- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- i. "Cone of radiation" has been considered to be 3dB bandwidth of the measurement antenna.

5.3 Typical Test Setup

For radiated emissions below 30MHz

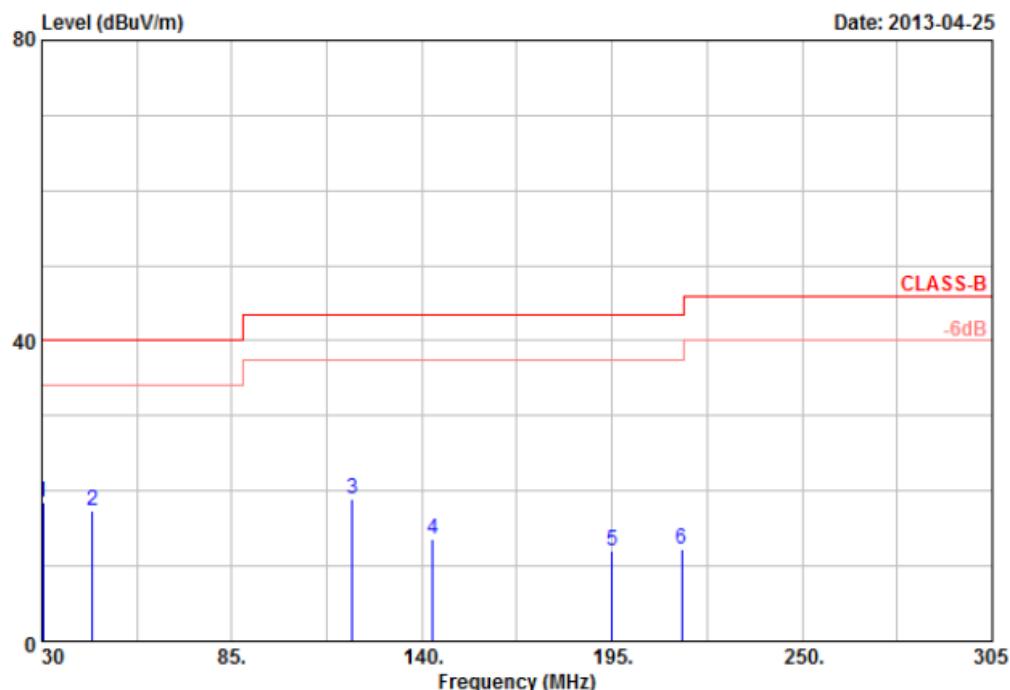
For radiated emissions above 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

Distance extrapolation factor = $20 \log (\text{specific distance [3m]} / \text{test distance [1m]})$ (dB);
Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

5.4 Measurement Equipment

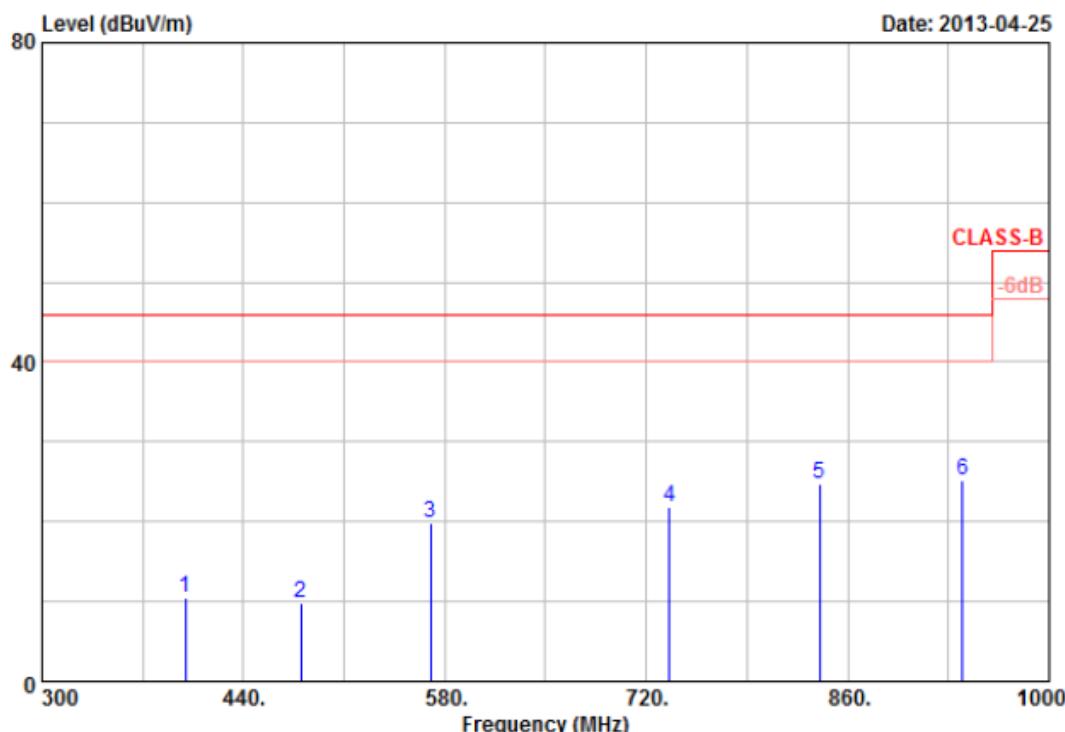
Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Amplifier	Agilent	8447D	2944A10531	2012/10/17	2013/10/16
Bilog Antenna	Schaffner	CBL6112B	2840	2013/03/27	2014/03/26
Spectrum Analyzer	R&S	FSP 3	100800	2013/03/14	2014/03/13
EMI Receiver	Schaffner	SCR3501	437	2013/03/15	2014/03/14
Spectrum Analyzer	R&S	FSP40	100219	2012/09/13	2013/09/12
Horn Antenna	EMCO	3115	31601	2012/09/13	2013/09/12
Preamplifier	EMC	EMC012635	980029	2012/09/12	2013/09/11


5.5 Test Result and Data (9kHz ~ 30MHz)

The 9kHz - 30MHz spurious emission is under limit 20dB more.

5.6 Test Result and Data (30MHz ~ 1GHz)

Power	DC 3V	Pol/Phase	VERTICAL
Test Mode 1	O-QPSK, CH1	Temperature	22 °C
Memo		Humidity	61 %
Test Date	Apr. 25, 2013	Atmospheric Pressure	1019 hPa

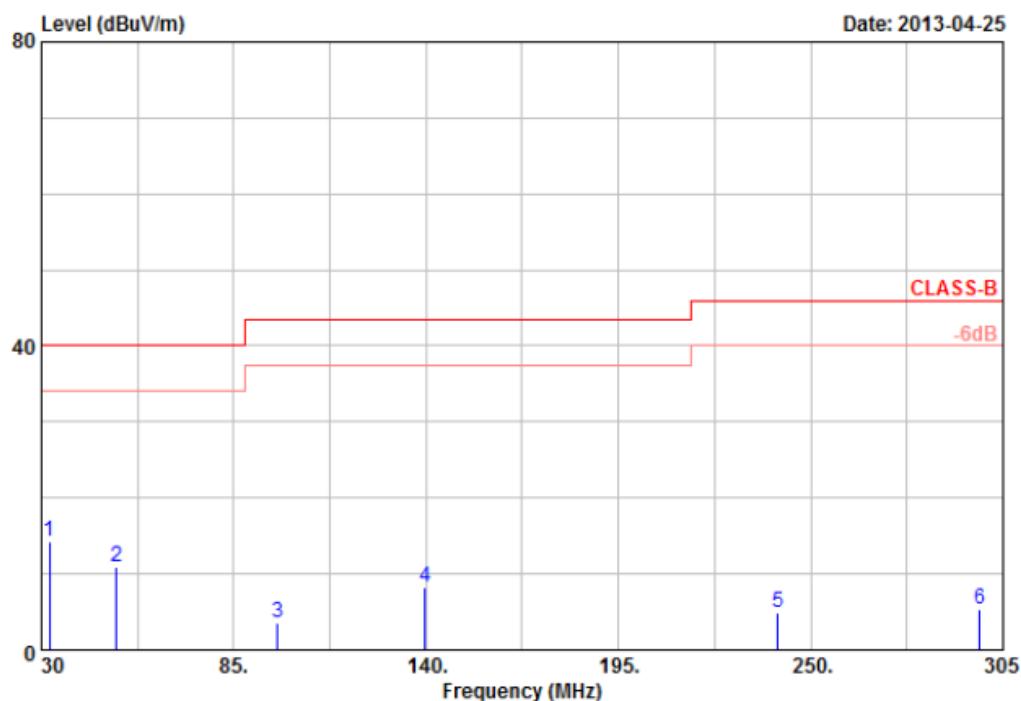

Item	Freq	Read			Limit	Margin	Remark	Ant	Tab
		Value	Factor	Result					

	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	Deg
1	30.28	33.47	-15.03	18.44	40.00	-21.56	Peak	100	360
2	44.58	33.90	-16.61	17.29	40.00	-22.71	Peak	100	360
3	119.93	31.01	-12.16	18.85	43.50	-24.65	Peak	100	360
4	143.03	31.45	-17.92	13.53	43.50	-29.97	Peak	100	360
5	195.00	31.52	-19.56	11.96	43.50	-31.54	Peak	100	360
6	215.08	34.44	-22.13	12.31	43.50	-31.19	Peak	100	360

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

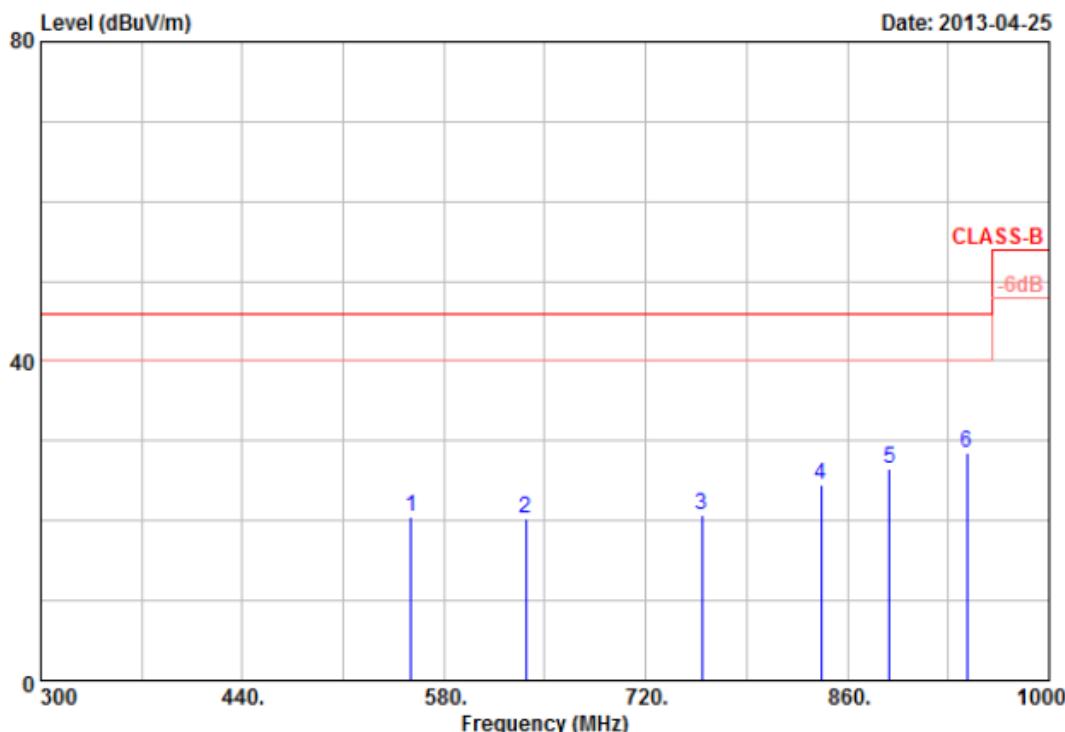
Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode 1	: O-QPSK, CH1	Temperature	: 22 °C
Memo	:	Humidity	: 61 %
Test Date	: Apr. 25, 2013	Atmospheric Pressure	: 1019 hPa


Item	Freq	Read		Result	Limit	Margin	Remark	Ant	Tab
		Value	Factor					Pos	Pos
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	Deg
1	399.40	30.09	-19.65	10.44	46.00	-35.56	Peak	100	0
2	479.90	30.16	-20.36	9.80	46.00	-36.20	Peak	100	0
3	570.20	30.14	-10.38	19.76	46.00	-26.24	Peak	100	0
4	736.10	30.64	-8.82	21.82	46.00	-24.18	Peak	100	0
5	840.40	29.07	-4.42	24.65	46.00	-21.35	Peak	100	0
6	939.80	29.90	-4.72	25.18	46.00	-20.82	Peak	100	0

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode 1	: O-QPSK, CH1	Temperature	: 22 °C
Memo		Humidity	: 61 %
Test Date	: Apr. 25, 2013	Atmospheric Pressure	: 1019 hPa

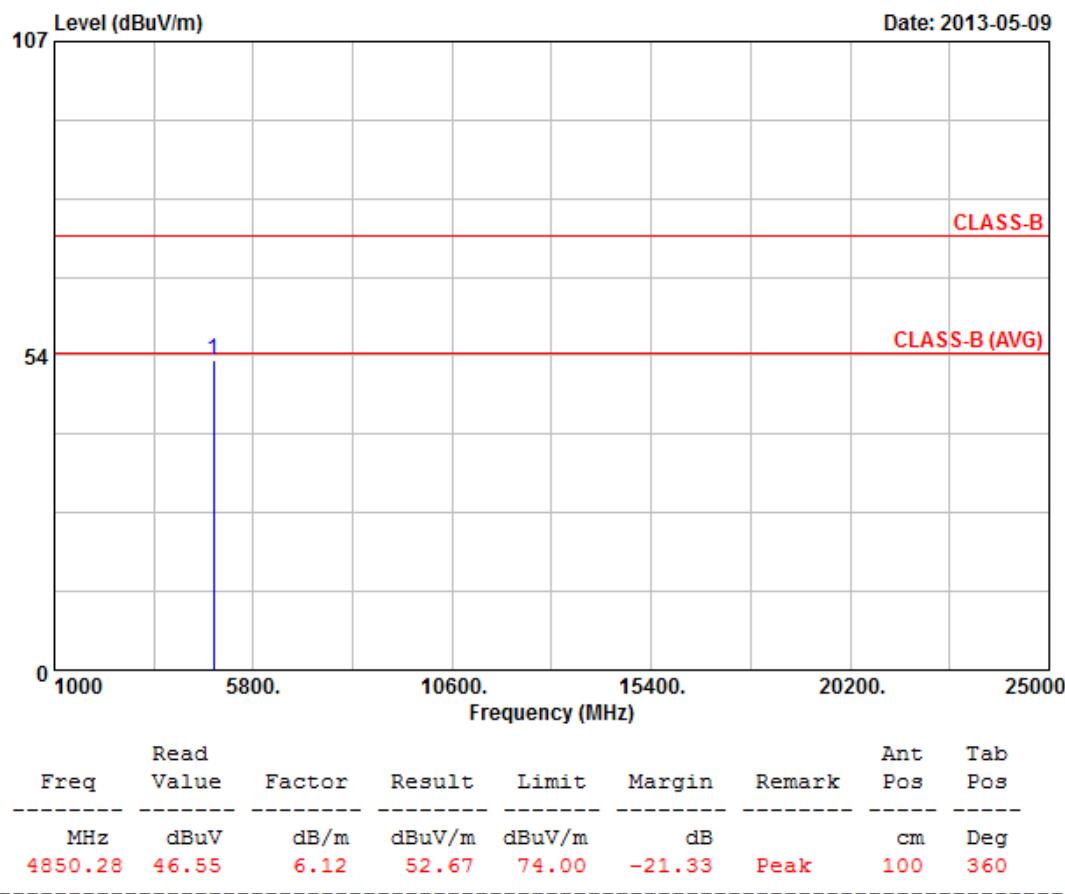

Item	Freq	Read		Result	Limit	Margin	Remark	Ant	Tab
		Value	Factor					Pos	Pos
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	cm	Deg
1	32.20	35.45	-21.13	14.32	40.00	-25.68	Peak	100	360
2	51.45	33.31	-22.33	10.98	40.00	-29.02	Peak	100	360
3	97.65	38.14	-34.65	3.49	43.50	-40.01	Peak	100	360
4	139.73	31.67	-23.37	8.30	43.50	-35.20	Peak	100	360
5	240.65	31.28	-26.49	4.79	46.00	-41.21	Peak	100	360
6	298.40	30.74	-25.37	5.37	46.00	-40.63	Peak	100	360

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

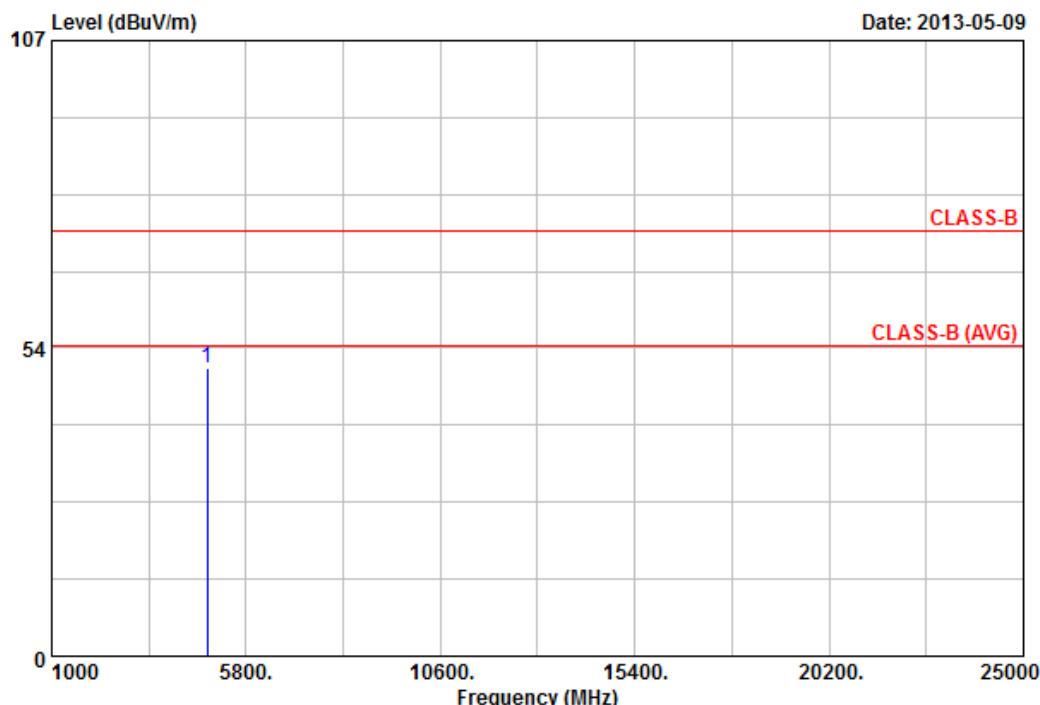
Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode 1	: O-QPSK, CH1	Temperature	: 22 °C
Memo	:	Humidity	: 61 %
Test Date	: Apr. 25, 2013	Atmospheric Pressure	: 1019 hPa

Item	Freq	Read			Margin	Remark	Ant	Tab
		Value	Factor	Result				
1	556.90	31.05	-10.61	20.44	46.00	-25.56	Peak	100 360
2	636.70	30.71	-10.39	20.32	46.00	-25.68	Peak	100 360
3	759.20	30.49	-9.72	20.77	46.00	-25.23	Peak	100 360
4	841.80	29.98	-5.36	24.62	46.00	-21.38	Peak	100 360
5	889.40	31.39	-4.77	26.62	46.00	-19.38	Peak	100 360
6	942.60	34.27	-5.82	28.45	46.00	-17.55	Peak	100 360


Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

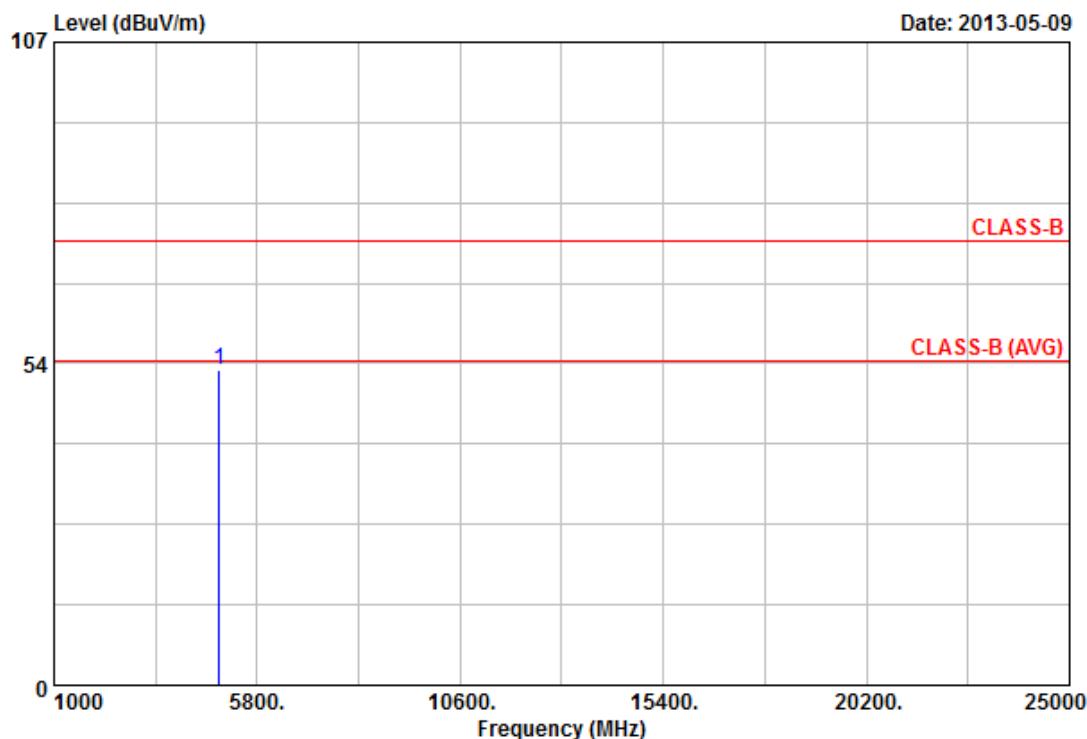
5.7 Test Result and Data (1GHz ~ 25GHz)


Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode 1	: O-QPSK, CH1	Temperature	: 23 °C
Memo		Humidity	: 60 %
Test Date	: May 09, 2013	Atmospheric Pressure	: 1018 hPa

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

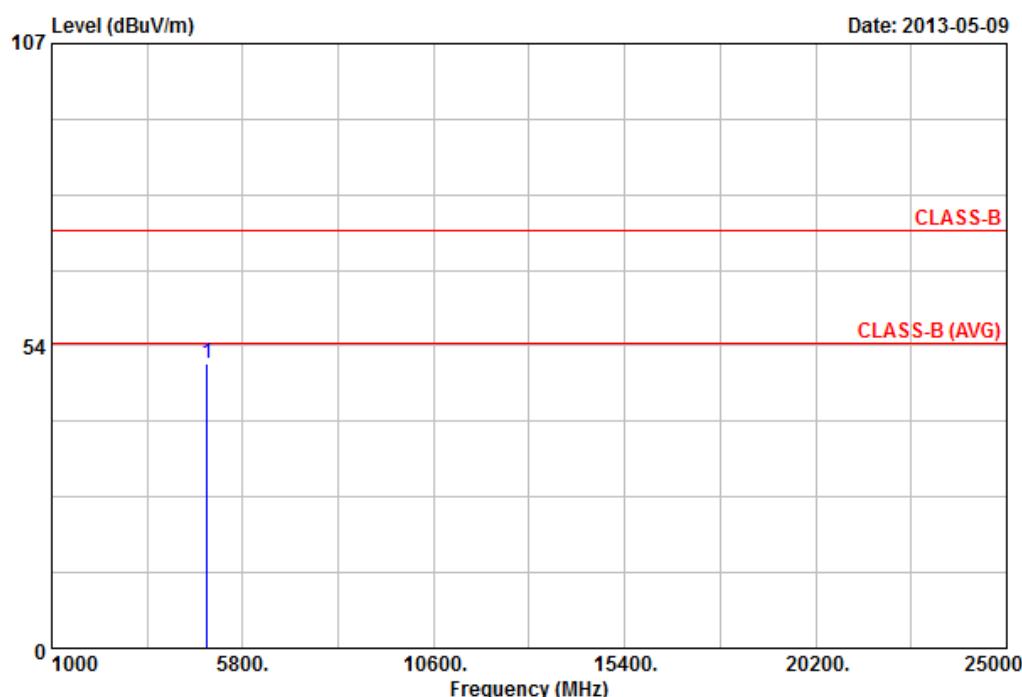
Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode 1	: O-QPSK, CH1	Temperature	: 23 °C
Memo	:	Humidity	: 60 %
Test Date	: May 09, 2013	Atmospheric Pressure	: 1018 hPa


Item	Read			Result	Limit	Margin	Remark	Ant	Tab
	Freq	Value	Factor					Pos	Pos
1	4850.18	45.65	4.36	50.01	74.00	-23.99	Peak	100	0

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

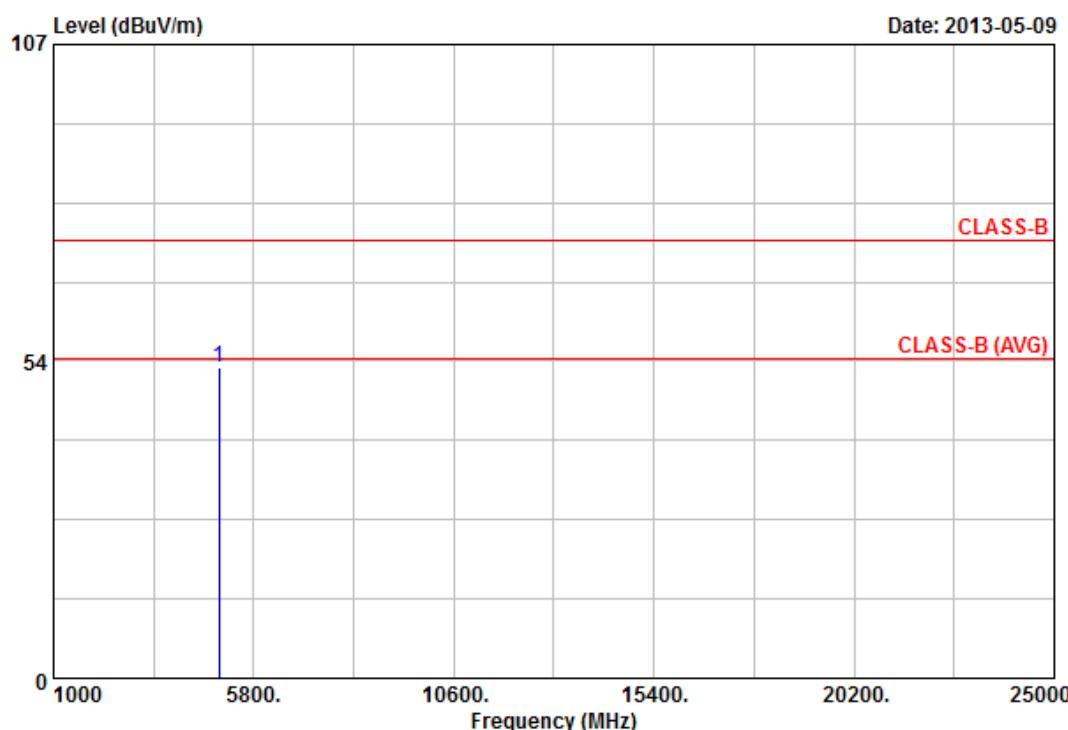
Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode 1	: O-QPSK, CH2	Temperature	: 23 °C
Memo	:	Humidity	: 60 %
Test Date	: May 09, 2013	Atmospheric Pressure	: 1018 hPa


Item	Freq	Read			Result	Limit	Margin	Remark	Ant	Tab
		Value	Factor	Unit					Pos	Pos
1	4900.15	45.40	7.10	dB/m	52.50	74.00	-21.50	Peak	100	360

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

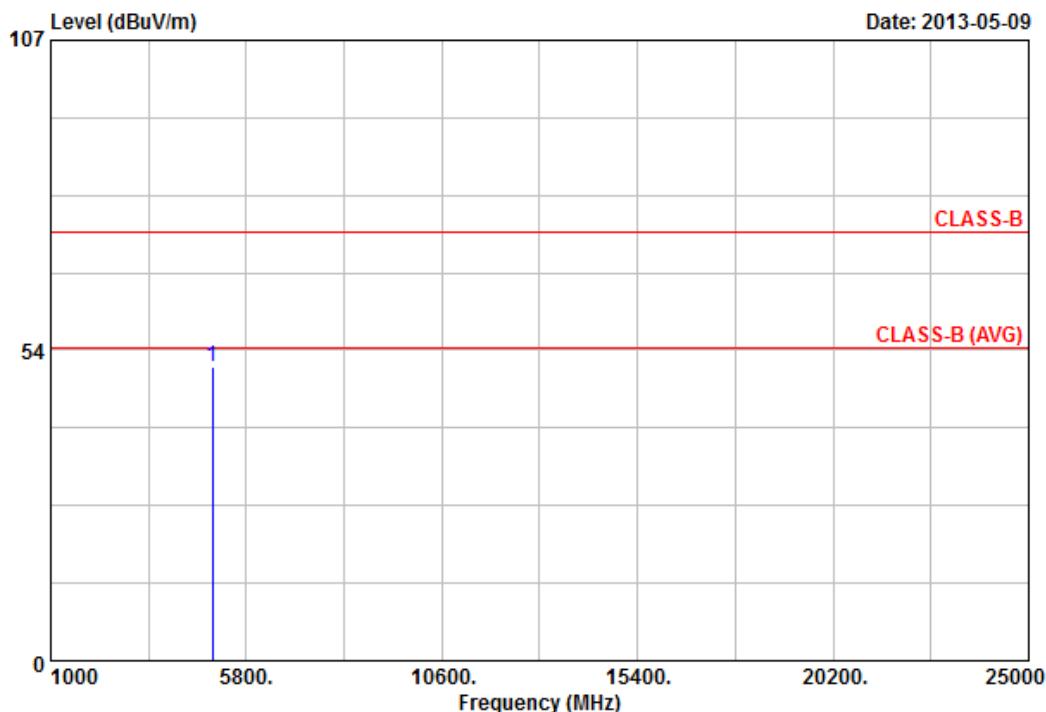
Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode 1	: O-QPSK, CH2	Temperature	: 23 °C
Memo	:	Humidity	: 60 %
Test Date	: May 09, 2013	Atmospheric Pressure	: 1018 hPa


Item	Freq	Read		Result	Limit	Margin	Remark	Ant	Tab
		Value	Factor					Pos	Pos
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	Deg
1	4900.13	45.35	5.14	50.49	74.00	-23.51	Peak	100	0

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

Power	: DC 3V	Pol/Phase	: VERTICAL
Test Mode 1	: O-QPSK, CH4	Temperature	: 23 °C
Memo	:	Humidity	: 60 %
Test Date	: May 09, 2013	Atmospheric Pressure	: 1018 hPa


Item	Read			Result	Limit	Margin	Remark	Ant	Tab
	Freq	Value	Factor					Pos	Pos
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	Deg
1	4960.28	45.13	7.26	52.39	74.00	-21.61	Peak	100	360

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

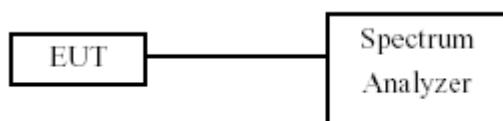
Power	: DC 3V	Pol/Phase	: HORIZONTAL
Test Mode 1	: O-QPSK, CH4	Temperature	: 23 °C
Memo	:	Humidity	: 60 %
Test Date	: May 09, 2013	Atmospheric Pressure	: 1018 hPa

Item	Freq	Read Value	Factor	Result	Limit	Margin	Remark	Ant Pos	Tab Pos
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	Deg
1	4960.25	45.52	5.16	50.68	74.00	-23.32	Peak	100	0

Notes:

1. Result = Read Value + Factor
2. Factor = Antenna Factor + Cable Loss - Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 120KHz and video bandwidth is 300kHz for Peak detection and Quasi-peak detection at frequency below 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
5. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average detection at frequency above 1GHz.
6. The other emissions is too low to be measured.
7. The data is worse case.

6. 6dB Bandwidth Measurement Data


6.1 Test Limit

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

6.2 Test Procedures

- a. The transmitter output was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to 100 KHz and VBW to 100 KHz.
- c. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB.

6.3 Test Setup Layout

6.4 Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Spectrum Analyzer	R&S	FSP40	100219	2012/09/13	2013/09/12

6.5 Test Result and Data

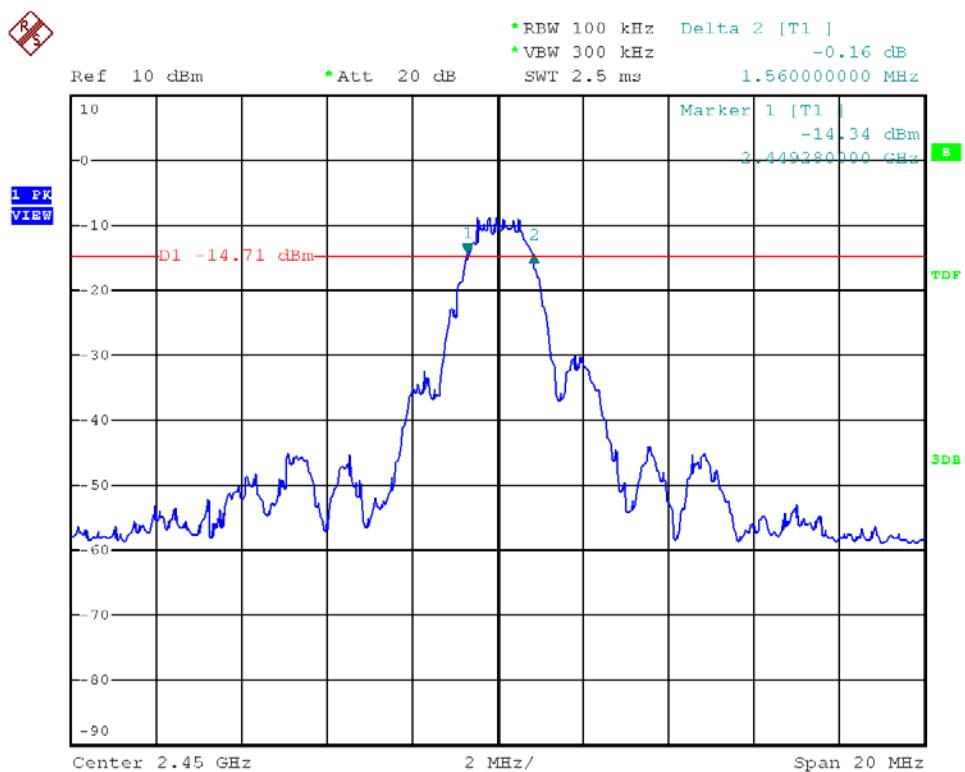
Test Date: May 02, 2013

Temperature: 24

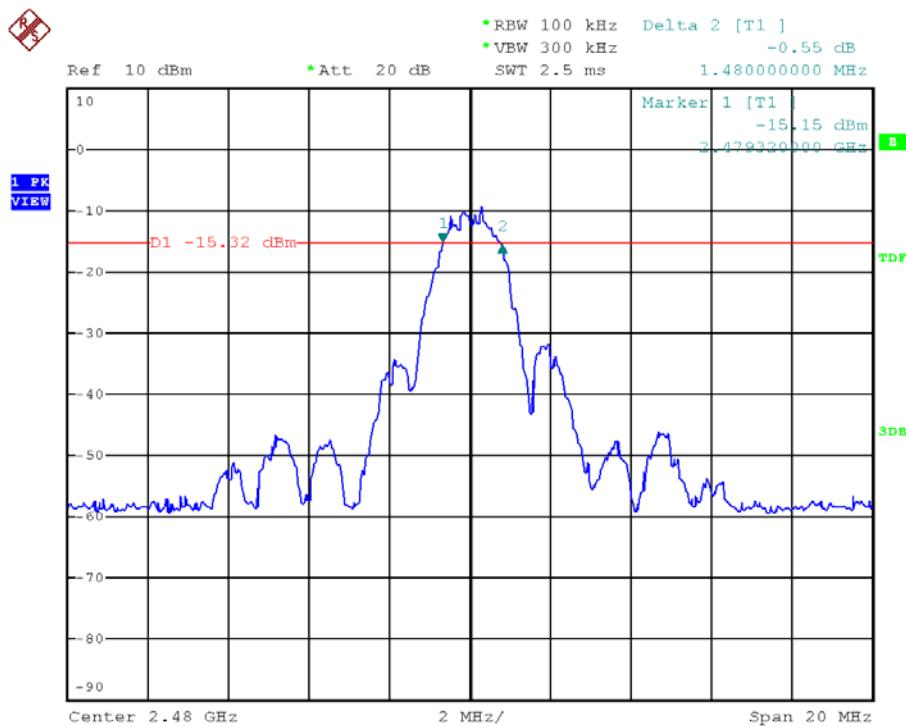
Atmospheric pressure: 1020 hPa

Humidity: 57%

Modulation Standard	Channel	Frequency (MHz)	6dB Bandwidth (MHz)
O-QPSK	01	2425	1.64
	02	2450	1.56
	04	2480	1.48


Modulation Standard: O-QPSK

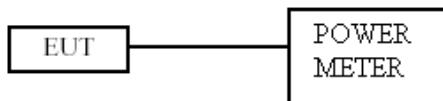
Channel: 01


Modulation Standard: O-QPSK

Channel: 02

Modulation Standard: O-QPSK
Channel: 04

7. Maximum Peak Output Power


7.1 Test Limit

The Maximum Peak Output Power Measurement is 30dBm.

7.2 Test Procedures

The antenna port (RF output) of the EUT was connected to the input (RF input) of a power meter. Power was read directly from the meter and cable loss connection was added to the reading to obtain power at the EUT antenna terminal. The EUT Output Power was set to maximum to produce the worse case test result.

7.3 Test Setup Layout

7.4 Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Series Power Meter	ANRITSU	ML2495A	1224005	2013/03/21	2014/03/20
Power Sensor	ANRITSU	MA2411B	1207295	2013/03/21	2014/03/20

7.5 Test Result and Data

Test Date: May 02, 2013

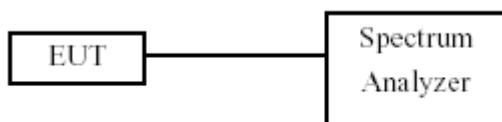
Temperature: 24

Atmospheric pressure: 1020 hPa

Humidity: 57%

Modulation Standard	Channel	Frequency (MHz)	Peak Power Output (dBm)		Peak Power Output (mW)	
			Peak	Average	Peak	Average
O-QPSK	01	2425	-9.58	-16.79	0.11	0.02
	02	2450	-9.39	-16.42	0.12	0.02
	04	2480	-9.24	-16.17	0.12	0.02

8. Power Spectral Density


8.1 Test Limit

The Maximum of Power Spectral Density Measurement is 8dBm.

8.2 Test Procedures

- a. The transmitter output was connected to spectrum analyzer.
- b. The spectrum analyzer's resolution bandwidth were set at 3KHz RBW and 30KHz VBW as that of the fundamental frequency. Set the sweep time=span/3KHz.
- c. The power spectral density was measured and recorded.
- d. The Sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

8.3 Test Setup Layout

8.4 Measurement Equipment

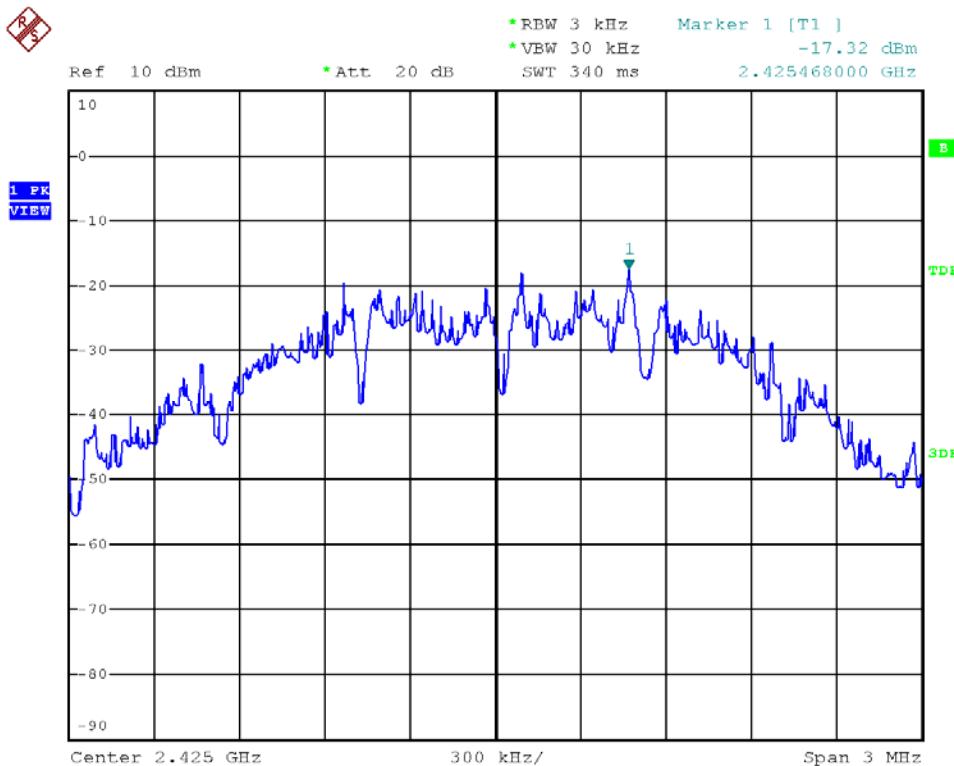
Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Spectrum Analyzer	R&S	FSP40	100219	2012/09/13	2013/09/12

8.5 Test Result and Data

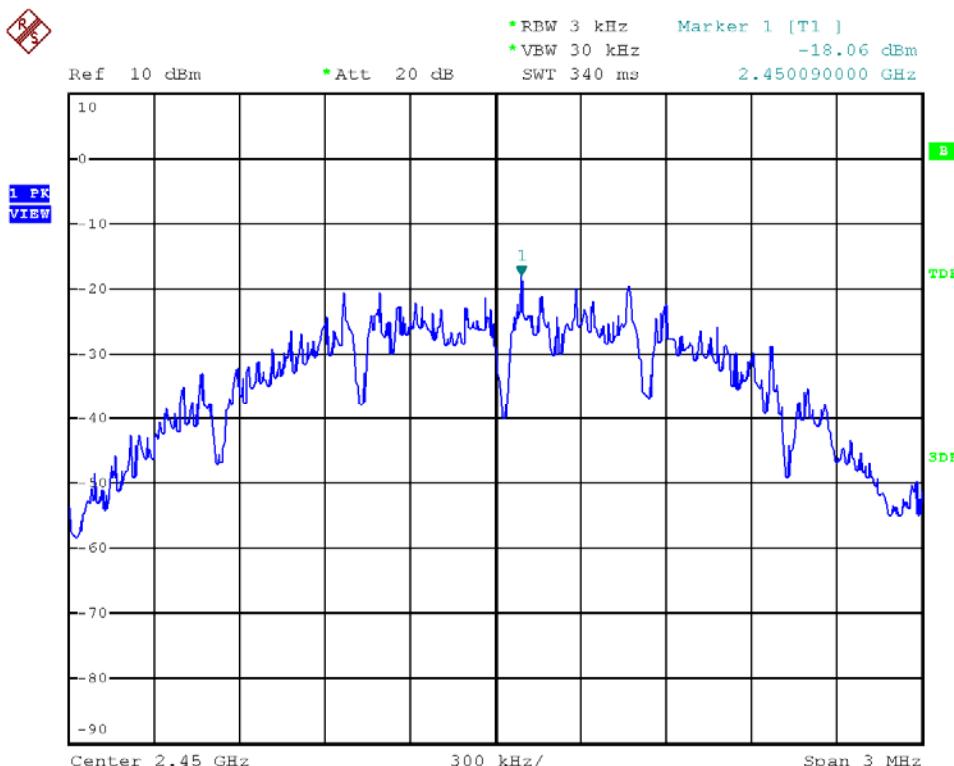
Test Date: May 02, 2013

Temperature: 24

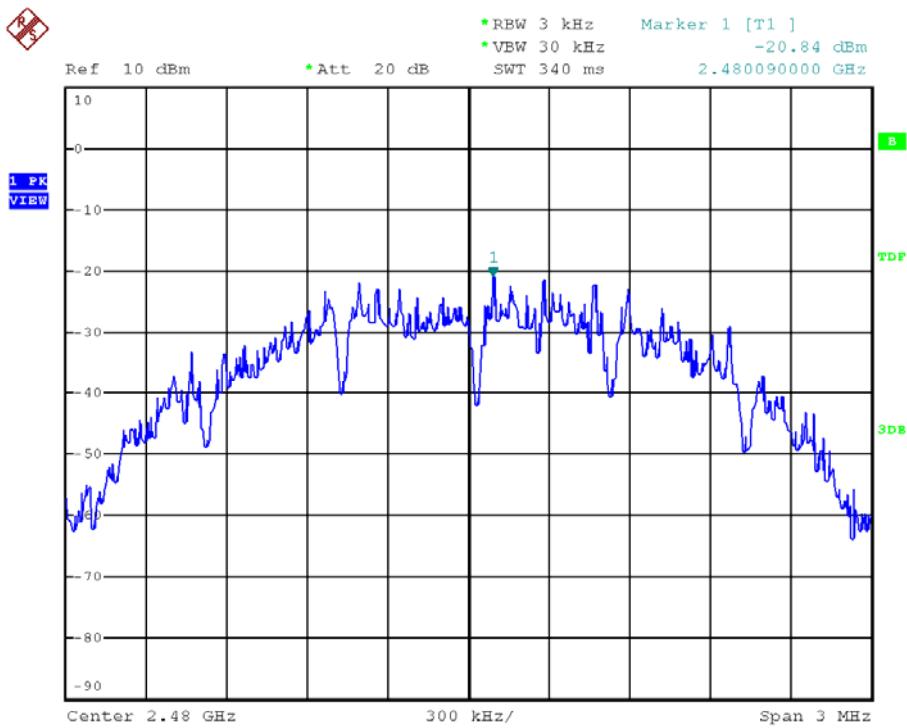
Atmospheric pressure: 1020 hPa


Humidity: 57%

Modulation Standard	Channel	Frequency (MHz)	Maximum Power Density of 3 kHz Bandwidth (dBm)
O-QPSK	01	2425	-17.32
	02	2450	-18.06
	04	2480	-20.84


Modulation Standard: O-QPSK

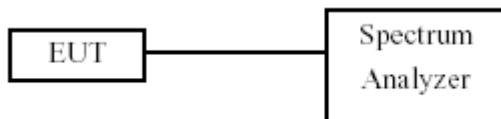
Channel: 01


Modulation Standard: O-QPSK

Channel: 02

Modulation Standard: O-QPSK
Channel: 04

9. Band Edges Measurement


9.1 Test Limit

Below –20dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

9.2 Test Procedure

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set both RBW and VBW of spectrum analyzer to 100 KHz with convenient frequency span including 100 KHz bandwidth from band edge.
- c. The band edges was measured and recorded.

9.3 Test Setup Layout

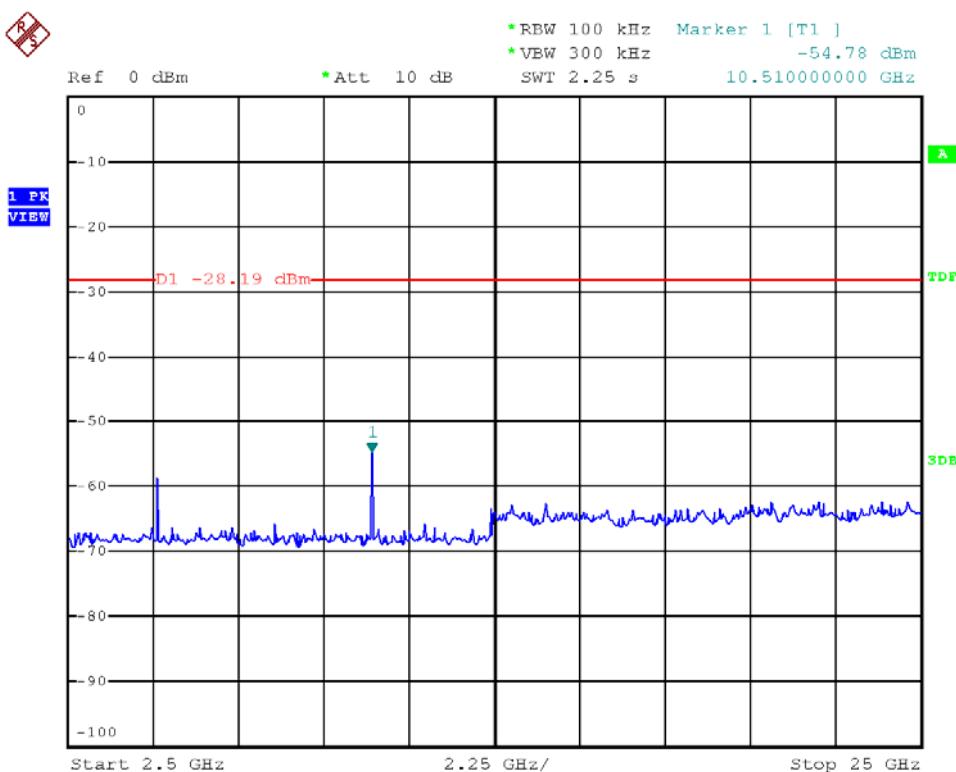
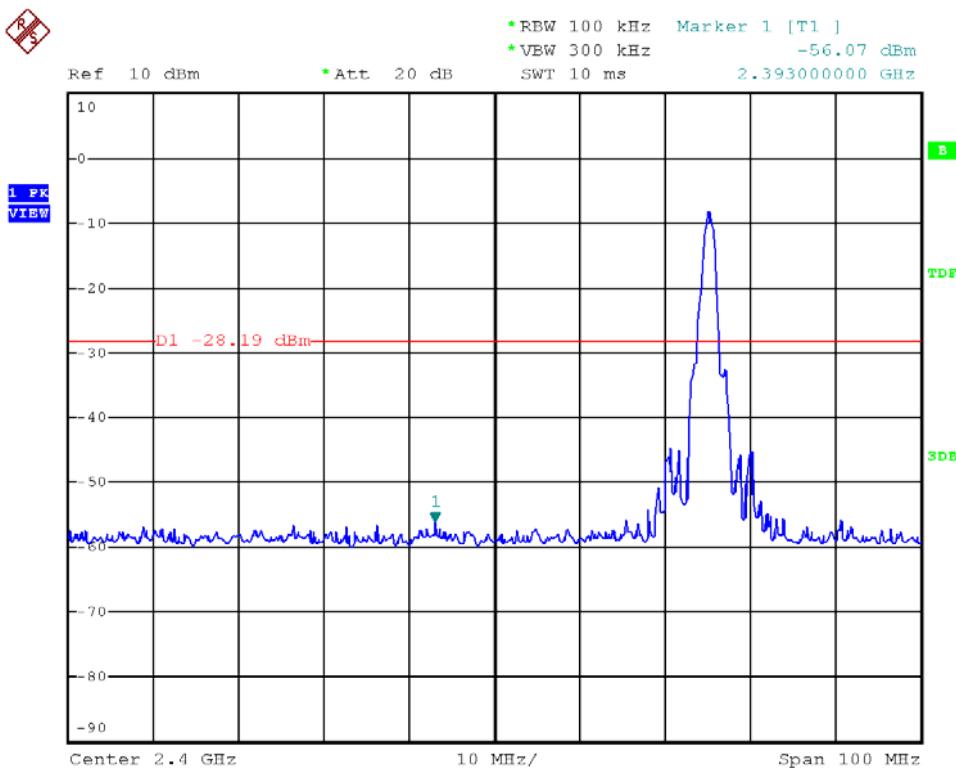
9.4 Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Spectrum Analyzer	R&S	FSP40	100219	2012/09/13	2013/09/12

9.5 Test Result and Data

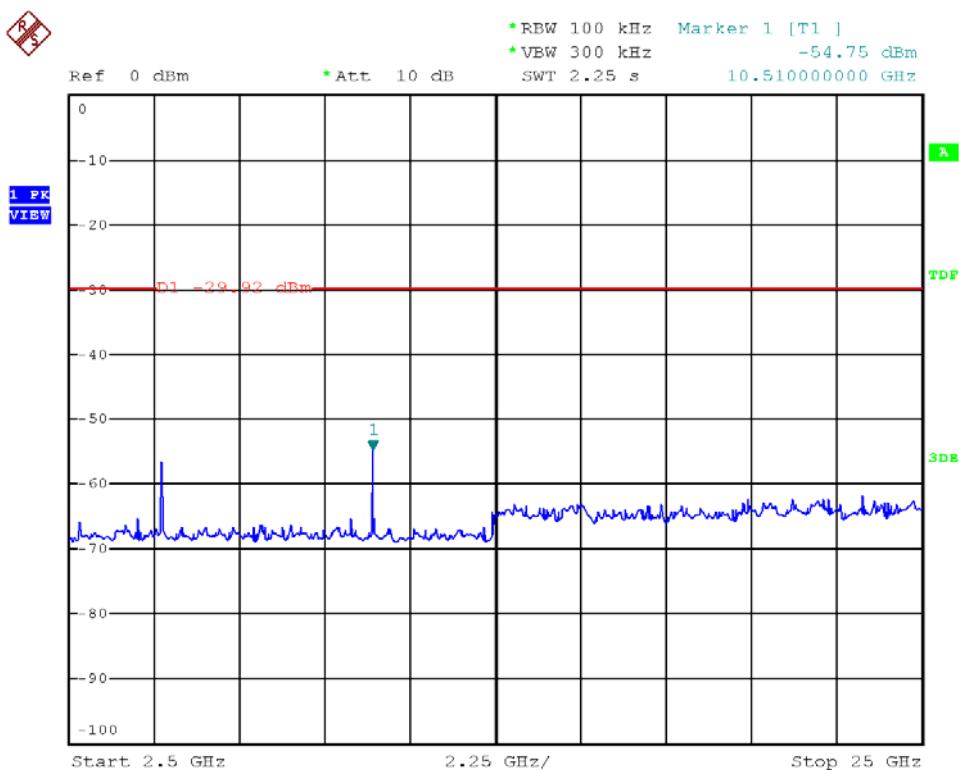
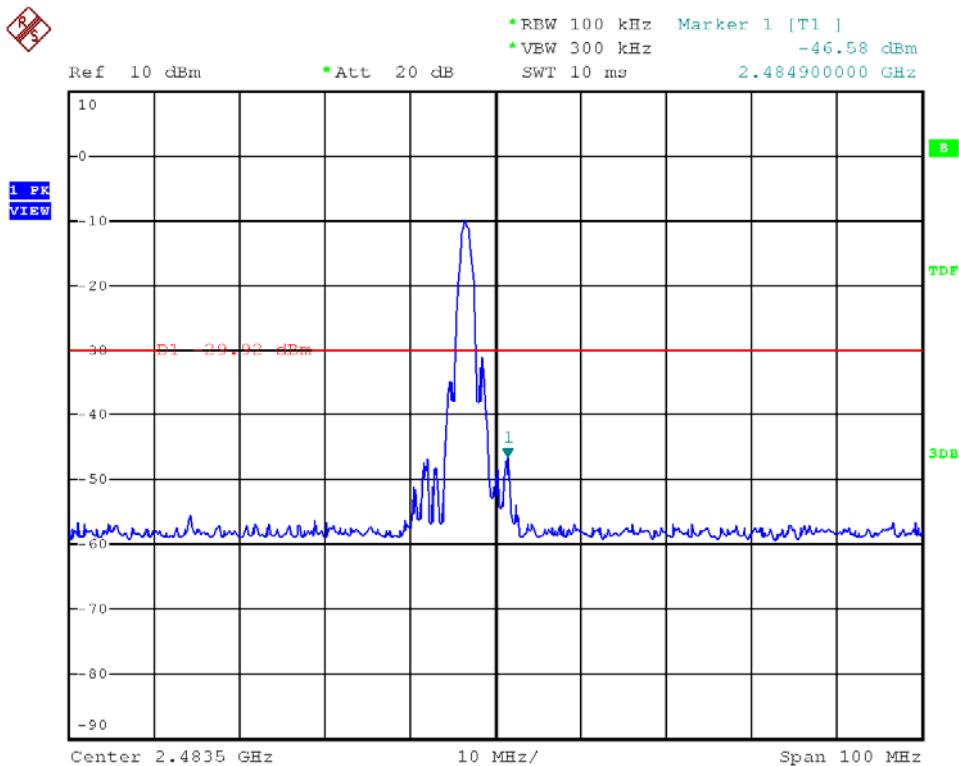
Test Date: May 02, 2013

Temperature: 24



Atmospheric pressure: 1020 hPa

Humidity: 57%

Modulation Standard	Channel	Frequency (MHz)	maximum value in frequency (MHz)	maximum value (dBm)
O-QPSK	01	2425	10510.00	-54.78
	04	2480	2484.90	-46.58



Modulation Standard: O-QPSK
Channel: 01

Modulation Standard: O-QPSK

Channel: 04

10. Restrict Band Emission Measurement Data

Test Date: Apr. 25, 2013

Temperature: 22

Atmospheric pressure: 1019 hPa

Humidity: 61%

Modulation Standard: O-QPSK

Channel 1							Fundamental Frequency: 2425 MHz			
Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result (dBuV/m)	Remark	Limit (dBuV/m)		Margin (dB)	Table Deg.	Ant High (m)
						Peak	Ave			
2376.01	H	48.12	1.67	49.79	Peak	74	54	-24.21	360	1.00
-----	H	-----	-----	-----	Ave	74	54	-----	-----	-----
2389.01	V	48.40	2.27	50.67	Peak	74	54	-23.33	0	1.00
-----	V	-----	-----	-----	Ave	74	54	-----	-----	-----
Channel 4							Fundamental Frequency: 2480 MHz			
Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result (dBuV/m)	Remark	Limit (dBuV/m)		Margin (dB)	Table Deg.	Ant High (m)
						Peak	Ave			
2483.98	H	60.84	0.29	61.13	Peak	74	54	-12.87	360	1.00
2483.58	H	40.67	0.30	40.97	Ave	74	54	-13.03	360	1.00
2483.50	V	62.91	-2.35	60.56	Peak	74	54	-13.44	0	1.00
2483.50	V	43.52	-2.35	41.17	Ave	74	54	-12.83	0	1.00

Notes:

1. Result = Meter Reading + Factor
2. Factor = Antenna Factor + Cable Loss – Amplifier
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz (detector peak mode) for Peak detection at frequency above 1GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz (detector sample mode) for Average detection at frequency above 1GHz.

11. Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.09000 – 0.11000	16.42000 – 16.42300	399.9 – 410.0	4.500 – 5.250
0.49500 – 0.505**	16.69475 – 16.69525	608.0 – 614.0	5.350 – 5.460
2.17350 – 2.19050	16.80425 – 16.80475	960.0 – 1240.0	7.250 – 7.750
4.12500 – 4.12800	25.50000 – 25.67000	1300.0 – 1427.0	8.025 – 8.500
4.17725 – 4.17775	37.50000 – 38.25000	1435.0 – 1626.5	9.000 – 9.200
4.20725 – 4.20775	73.00000 – 74.60000	1645.5 – 1646.5	9.300 – 9.500
6.21500 – 6.21800	74.80000 – 75.20000	1660.0 – 1710.0	10.600 – 12.700
6.26775 – 6.26825	108.00000 – 121.94000	1718.8 – 1722.2	13.250 – 13.400
6.31175 – 6.31225	123.00000 – 138.00000	2200.0 – 2300.0	14.470 – 14.500
8.29100 – 8.29400	149.90000 – 150.05000	2310.0 – 2390.0	15.350 – 16.200
8.36200 – 8.36600	156.52475 – 156.52525	2483.5 – 2500.0	17.700 – 21.400
8.37625 – 8.38675	156.70000 – 156.90000	2655.0 – 2900.0	22.010 – 23.120
8.41425 – 8.41475	162.01250 – 167.17000	3260.0 – 3267.0	23.600 – 24.000
12.29000 – 12.29300	167.72000 – 173.20000	3332.0 – 3339.0	31.200 – 31.800
12.51975 – 12.52025	240.00000 – 285.00000	3345.8 – 3358.0	36.430 – 36.500
12.57675 – 12.57725	322.00000 – 335.40000	3600.0 – 4400.0	Above 38.6
13.36000 – 13.41000			

**: Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

11.1 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.