

**FCC 47 CFR PART 02
FCC 47 CFR PART 96**

CERTIFICATION TEST REPORT

For

Tablet

MODEL NUMBER: VT-TABLET-5082G

FCC ID: 2AAGE5081GB486

REPORT NUMBER: 4789999654.1-7

ISSUE DATE: September 23, 2021

Prepared for

**Chengdu Vantron Technology Co., Ltd.
No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China**

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

**Building 10, Innovation Technology Park, No. 1, Li Bin Road,
Song Shan Lake Hi-Tech Development Zone, Dongguan, People's Republic of China**

Tel: +86 769-22038881

Fax: +86 769 33244054

Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
--	09/23/2021	Initial Issue	

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATIO	5
4. CALIBRATION AND UNCERTAINTY	6
4.1 <i>MEASURING INSTRUMENT CALIBRATION</i>	6
4.2 <i>MEASUREMENT UNCERTAINTY.....</i>	6
5. EQUIPMENT UNDER TEST.....	7
5.1 <i>DESCRIPTION OF EUT</i>	7
5.2 <i>TECHNICAL INFORMATION</i>	7
5.3 <i>MAXIMUM OUTPUT POWER</i>	8
5.4 <i>WORST-CASE CONFIGURATION AND MODE.....</i>	9
5.5 <i>TEST ENVIRONMENT</i>	10
5.6 <i>TEST CHANNEL LIST.....</i>	11
5.7 <i>DESCRIPTION OF AVAILABLE ANTENNAS.....</i>	12
5.8 <i>DESCRIPTION OF TEST SETUP</i>	12
5.9 <i>MEASURING INSTRUMENT AND SOFTWARE USED</i>	14
6. TEST RESULTS.....	16
6.1 <i>OUTPUT POWER VERIFICATION.....</i>	16
6.2 <i>PEAK TO AVERAGE RADIO</i>	19
6.3 <i>OCCUPIED BANDWIDTH</i>	23
6.4 <i>FREQUENCY STABILITY.....</i>	27
6.5 <i>BAND EDGE AND EMISSION MASK.....</i>	28
6.6 <i>CONDUCTED OUT OF BAND EMISSIONS</i>	35
6.7 <i>FIELD STRENGTH OF SPURIOUS RADIATION.....</i>	41

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Chengdu Vantron Technology Co., Ltd.
Address: No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China

Manufacturer Information

Company Name: Chengdu Vantron Technology Co., Ltd.
Address: No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China

EUT Information

EUT Name: Tablet
Model: VT-TABLET-5082G
Brand: VANTRON
Sample Received Date: June 20, 2021
Sample Status: Normal
Sample ID: 4030518
Date of Tested: June 27, 2021~ September 13,2021

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

FCC 47 CFR PART 2
FCC 47 CFR PART 96

PASS
PASS

Prepared By:

Jacky Jiang
Project Engineer
Approved By:

Stephen Guo
Laboratory Manager

Checked By:

Shawn Wen
Laboratory Leader

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.26-2015 & KDB971168, FCC CFR 47 Part 2, Part 27, Part90,RSS-140,RSS-192,RSS-197,RSS-199.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	<p>A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules</p> <p>ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320.</p> <p>VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.</p> <p>Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004 Shielding Room B , the VCCI registration No. is C-20012 and T-20011</p>
---------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Uncertainty for Conduction emission test	3.32dB (150KHz-30MHz)
	3.72dB (9KHz-150KHz)
Uncertainty for Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	4.70 dB (Antenna Polarize: V)
	4.84 dB (Antenna Polarize: H)
Uncertainty for Radiation Emission test (1GHz to 26GHz) (include Fundamental emission)	4.10dB(1-6GHz)
	4.40dB (6GHz-18Gz)
	3.54dB (18GHz-26Gz)
Bandwidth	1.1%
Stop Transmitting Time Test	0.6%

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1 DESCRIPTION OF EUT

Equipment	Tablet				
Model Name	VT-TABLET-5082G				
Power Input	DC 5 V				
Power Supply	Power Adapter	Input	/		
		Output	/		
	Li-ion Battery	3.8 V, 8000 mAh, 30.4Wh			
Hardware Version	2.0				
Software Version	/				

5.2 TECHNICAL INFORMATION

E-UTRA Band	Characteristics		
	E-UTRA operating bands		Bandwidth
	Transmit	Receive	
48	3550 MHz to 3700 MHz	3550 MHz to 3700 MHz	<input checked="" type="checkbox"/> 5M <input checked="" type="checkbox"/> 20M <input checked="" type="checkbox"/> 10M <input checked="" type="checkbox"/> 15M

5.3 MAXIMUM OUTPUT POWER

The transmitter has a maximum radiated ERP / EIRP output powers as follows:

LTE Band48

Part 96						
EIRP Limit(W)/ 10MHz		0.20				
Antenna Gain (dBi)		-0.3				
Bandwidth (MHz)	Modulation	Low Frequency (MHz)	Upper Frequency (MHz)	Conducted Average (dBm)	EIRP Average (dBm)	EIRP Average (W)
5	QPSK	3552.5	3697.5	19.61	19.31	0.085
	16QAM			18.42	18.12	0.065
10	QPSK	3555.0	3695.0	19.67	19.37	0.086
	16QAM			18.59	18.29	0.067
15	QPSK	3557.5	3692.5	19.63	19.33	0.086
	16QAM			18.70	18.40	0.069
20	QPSK	3560	3690	20.25	19.95	0.099
	16QAM			18.8	18.5	0.071

5.4 WORST-CASE CONFIGURATION AND MODE

The EUT supports LTE Bands of:
, Band 48.

During all testing, EUT is in link mode with base station emulator at maximum power level. The worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM. All testing was performed using QPSK and 16QAM modulations to represent the worst case.

The radiated spurious emissions measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was the worst-case orientation connected with charger and earphone.

Radiated spurious emissions were investigated below 30MHz, 30MHz-1GHz and above 1GHz. There were no emissions found on below 30MHz. the emissions between 30MHz-1GHz were tested the highest transmitting power channel and the worse configuration.

Worst Case

Test Items	Test configuration				
	Description	Modulation	Channel	Bandwidth (MHz)	RB Configuration
Max Output Power	QPSK, 16QAM	L, M, H	5,10,15,20	1.RB size=1, RB Location= Low,Middle,High 1.RB size=Half, RB Location= Low,Middle,High 2.RB Size=Full	
Peak to Average Ratio	QPSK, 16QAM	L, M, H	5,10,15,20	Full RB	
Frequency Stability	QPSK	M	The Maximum BW	Full RB	
Occupied Bandwidth	QPSK, 16QAM	L, M, H	5,10,15,20	Full RB	
Band Edge Compliance(Adjacent Channel Power)	QPSK, 16QAM	L, M, H	The Maximum BW	RB size=1, RB Location= Low	
Spurious Emission at Antenna Terminal	QPSK,	L, M, H	5,10,15,20	1.RB size=1, RB Location= Low,High 2.RB Size=Full	
Radiated Spurious Emissions	QPSK	L, M, H	The Maximum BW	RB size=1, RB Location= Low	

5.5 TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests	
Relative Humidity	52%	
Atmospheric Pressure:	1025Pa	
Temperature	TN	25.0 °C
Voltage:	VL	4.25 V
	VN	5.0 V
	VH	5.75 V
	End Voltage	3.00V

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.6 TEST CHANNEL LIST

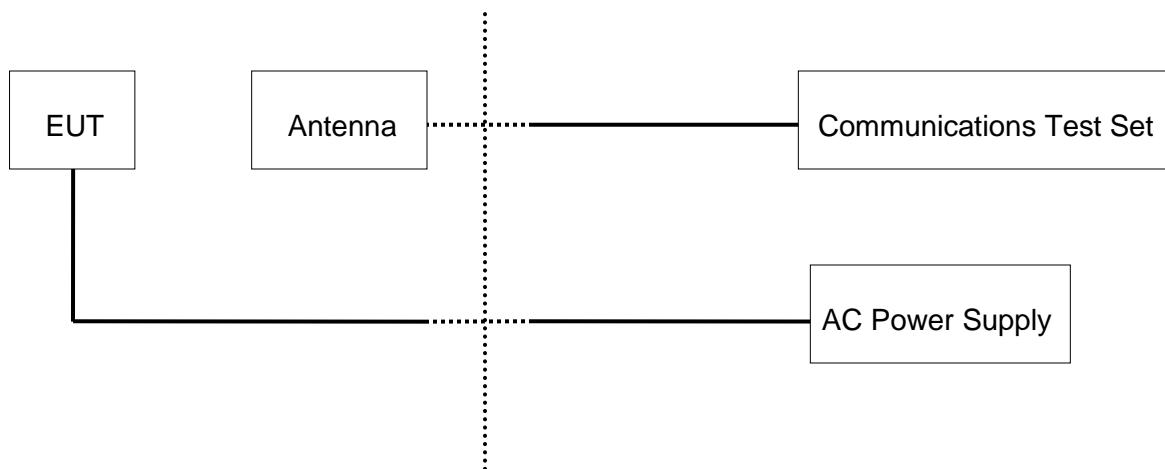
Mode	TX/RX	Low	Middle	High
LTE Band 48	TX (5 MHz)	55265	55990	56715
		3552.5	3625.5	3697.5
	TX (10 MHz)	55290	55990	56690
		3555.0	3625.5	3695.0
	TX (15 MHz)	55315	55990	56665
		3557.5	3625.5	3692.5
	TX (20 MHz)	55340	55990	56640
		3560.0	3625.5	3690.0

5.7 DESCRIPTION OF AVAILABLE ANTENNAS

Band	Antenna No.	Antenna Type	Antenna Gain (dBi)
LTE Band 48	1	PIFA	-0.3
LTE Band 48	2	PIFA	-0.3
LTE Band 48	3	PIFA	-0.3
LTE Band 48	4	PIFA	-0.3

5.8 DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT



Item	Equipment	Brand Name	Model Name	FCC ID
1	N/A	N/A	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	N/A	N/A	N/A	N/A	N/A

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Travel Changer	/	RD0501000-USBA18MG	5V/1A

CONDUCTED TEST SETUP**RADIATED TEST SETUP**

5.9 MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021
Two-Line V-Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021
Software					
Description			Manufacturer	Name	Version
Test Software for Conducted Emissions			Farad	EZ-EMC	Ver. UL-3A1
Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Apr. 24, 2020	Apr. 23, 2023
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021
Preamplifier	TDK	PA-02-0118	TRS-305-00067	Nov. 20, 2020	Nov. 19, 2021
Horn Antenna	Schwarzbeck	BBHA9170	#691	Aug. 11, 2018	Aug. 11, 2021
Horn Antenna	Schwarzbeck	BBHA9170	#697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307-00003	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	TDK	PA-02-3	TRS-308-00002	Nov. 12, 2020	Nov. 11, 2021
Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.17,2022
Preamplifier	TDK	PA-02-001-3000	TRS-302-00050	Nov. 12, 2020	Nov. 11, 2021
Preamplifier	Mini-Circuits	ZX60-83LN-S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021
Highpass Filter	Wainwright	WHKX10-5850-6500-1800-40SS	4	Nov. 12, 2020	Nov. 11, 2021
Band Reject Filter	Wainwright	WRCJV12-5695-5725-5850-5880-40SS	4	Nov. 12, 2020	Nov. 11, 2021
Band Reject	Wainwright	WRCJV20-	2	Nov. 12, 2020	Nov. 11, 2021

Filter		5120-5150-5350-5380-60SS			
Band Reject Filter	Wainwright	WRCJV20-5440-5470-5725-5755-60SS	1	Nov. 12, 2020	Nov. 11, 2021
Software					
Description		Manufacturer	Name	Version	
Test Software for Radiated Emissions		Farad	EZ-EMC	Ver. UL-3A1	
Tonsend RF Test System					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date
Wideband Radio Communication Tester	R&S	CMW500	155523	Nov.20,2020	Nov.19,2021
PXA Signal Analyzer	Keysight	N9030A	MY55410512	Nov.20,2020	Nov.19,2021
MXG Vector Signal Generator	Keysight	N5182B	MY56200284	Nov.20,2020	Nov.19,2021
MXG Vector Signal Generator	Keysight	N5172B	MY56200301	Nov.20,2020	Nov.19,2021
DC power supply	Keysight	E3642A	MY55159130	Nov.24,2020	Nov.23,2021
Temperature & Humidity Chamber	SANMOOD	SG-80-CC-2	2088	Nov.20,2020	Nov.19,2021
Software					
Description	Manufacturer	Name		Version	
Tonsend SRD Test System	Tonsend	JS1120-3 RF Test System		2.6.77.0518	
Other Instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

Note: For Horn Antenna, we will use antenna #697 to test after the calibration time of antenna #691 expires during the test.

6. TEST RESULTS

6.1 OUTPUT POWER VERIFICATION

ERP/EIRP RULE PART(S)

FCC: §96.

ERP/EIRP TEST PROCEDURE

ANSI C63.26:2015/ KDB 971168 D01 Section 5.6.

ERP/ EIRP = PMeas + GT – LC

where:

ERP or EIRP = effective or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB

RESULTS

See the following pages.

LTE Band 48

Bandwidth	Mode	RB Allocation	RB offset	Channel		
				55265	55990	56715
				3552.5MHz	3625.5MHz	3697.5MHz
5MHz	QPSK	1	0	18.31	19	19.29
		1	12	18.32	18.88	19.22
		1	24	18.33	18.93	19.31
		12	0	17.5	18.17	18.38
		12	7	17.5	18.17	18.38
		12	13	17.34	17.87	18.15
		25	0	17.31	17.9	18.16
	16QAM	1	0	17.19	18	18.07
		1	12	17.19	17.91	18.03
		1	24	17.2	17.95	18.12
		12	0	16.46	17.23	17.31
		12	7	16.45	17.23	17.31
		12	13	16.28	16.95	17.09
		25	0	16.29	16.89	17.12
10MHz	QPSK	RB Allocation	RB offset	Channel		
				55290	55990	56690
				3555MHz	3625.5MHz	3695MHz
		1	0	18.59	19.09	19.26
		1	25	18.57	18.96	19.25
		1	49	18.75	18.98	19.37
		25	0	17.45	17.78	17.97
	16QAM	25	12	17.45	17.77	17.96
		25	25	17.45	17.74	18.02
		50	0	17.37	17.75	17.99
		1	0	17.41	17.77	18.18
		1	25	17.37	17.68	18.19
		1	49	17.54	17.68	18.29
		25	0	16.43	16.81	16.85
15MHz	QPSK	RB Allocation	RB offset	Channel		
				55315	55990	56665
				3557.5MHz	3625.5MHz	3692.5MHz
		1	0	18.5	18.99	19.19
		1	37	18.38	18.76	18.97

	16QAM	36	0	17.51	17.87	18.11
		36	20	17.39	17.67	17.77
		36	39	17.75	17.9	18.28
		75	0	17.22	17.7	17.74
		1	0	17.16	17.97	18.13
		1	37	17.38	17.71	17.81
		1	74	17.87	17.95	18.36
		36	0	17.56	17.93	18.19
		36	20	17.3	17.45	17.86
		36	39	17.82	17.85	18.4
		75	0	17.15	16.62	16.93
Bandwidth	Mode	RB Allocation	RB offset	Channel		
				55340	55990	56640
				3560MHz	3625.5MHz	3690MHz
		QPSK	1	19.17	19.58	19.43
			1	18.98	19.27	19.95
			1	19.67	19.58	19.9
			50	17.84	18.27	18.37
			50	17.86	18.3	18.36
			50	18.05	18.31	18.37
			100	17.94	18.33	18.4
		16QAM	1	18	18.48	18.45
			1	17.95	18.25	18.19
			1	18.43	18.50	18.46
			50	16.98	17.34	17.21
			50	16.88	17.32	17.36
			50	16.97	17.23	17.28
			100	16.8	17.29	17.26

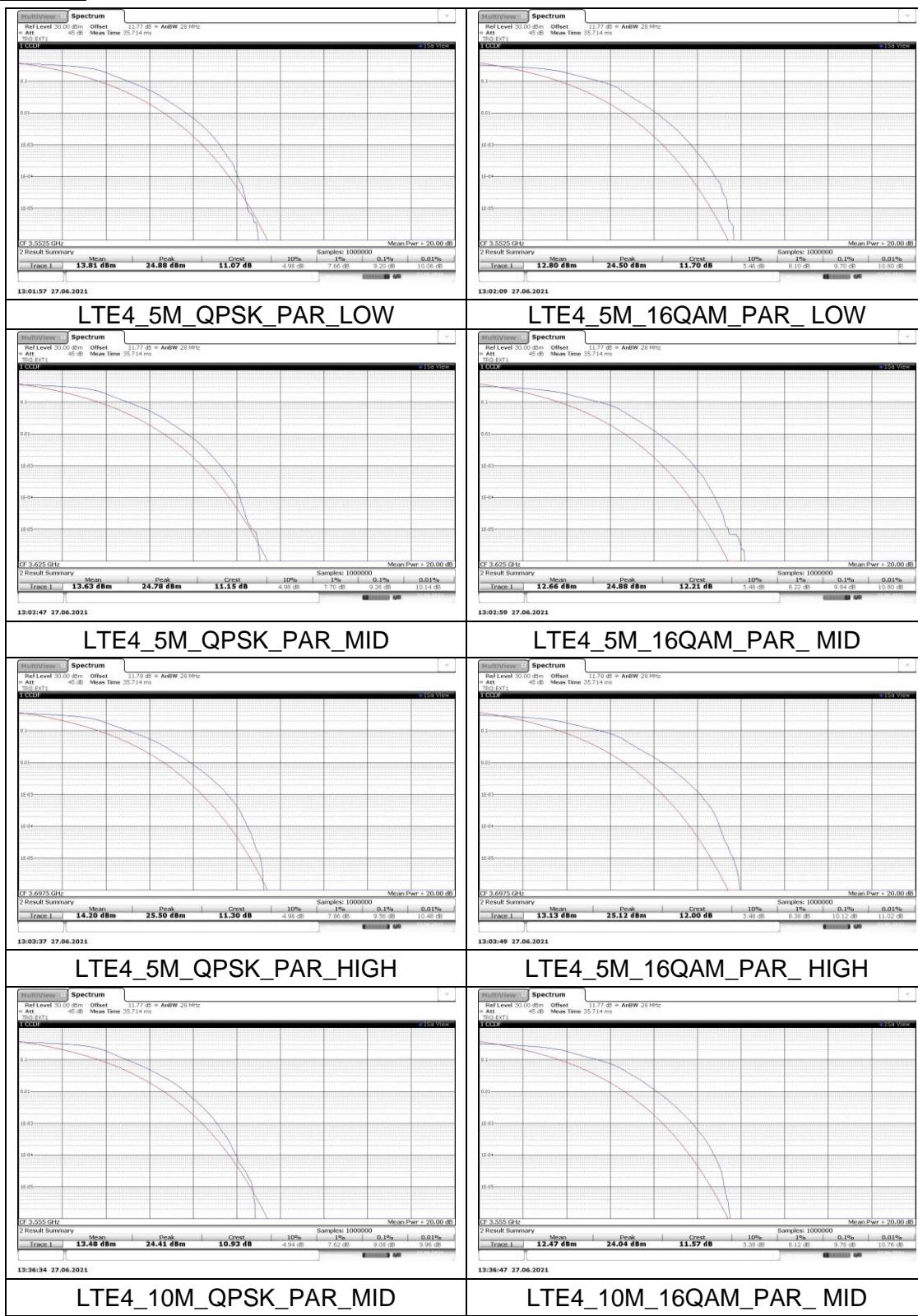
6.2 PEAK TO AVERAGE RADIO

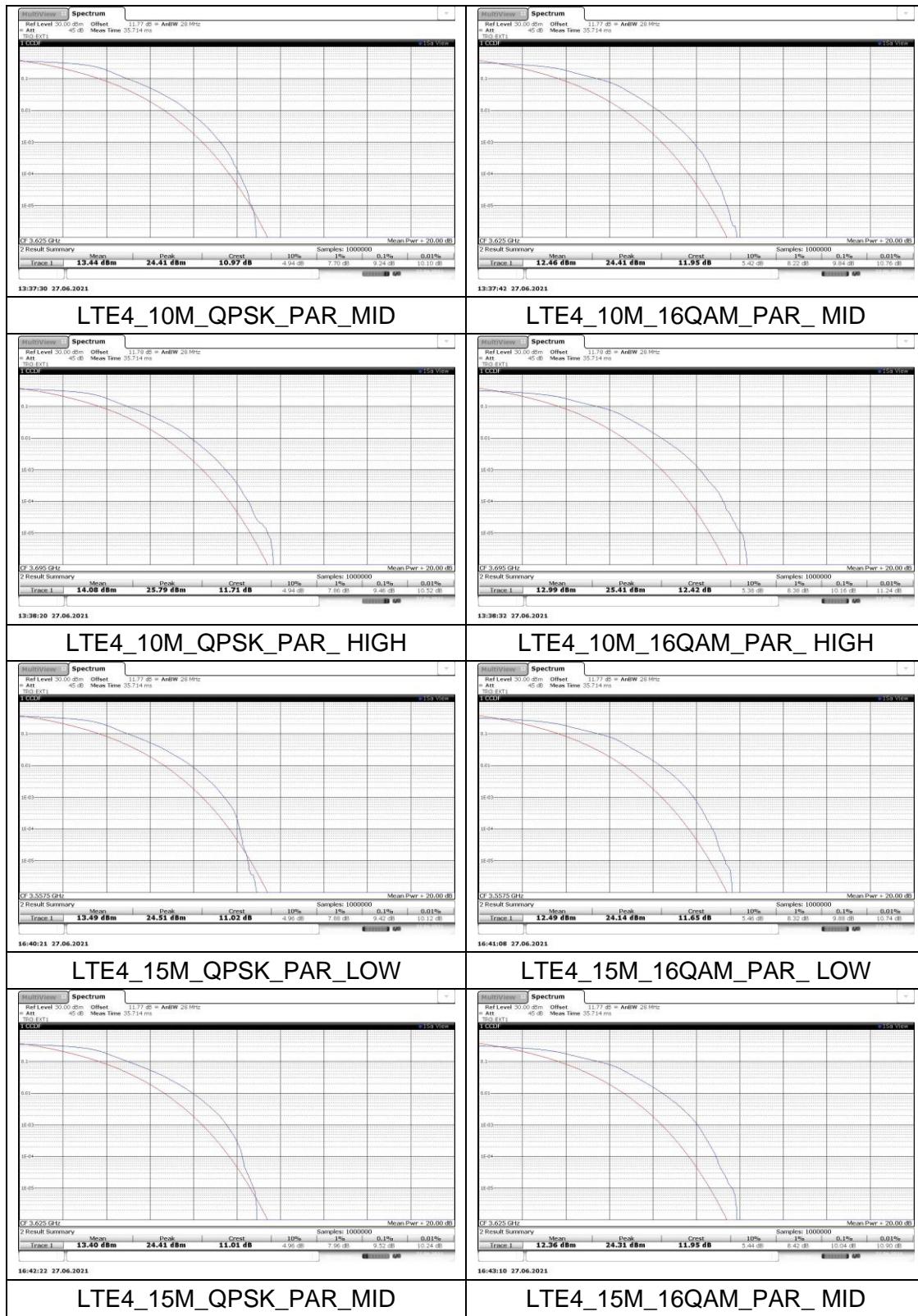
LIMITS

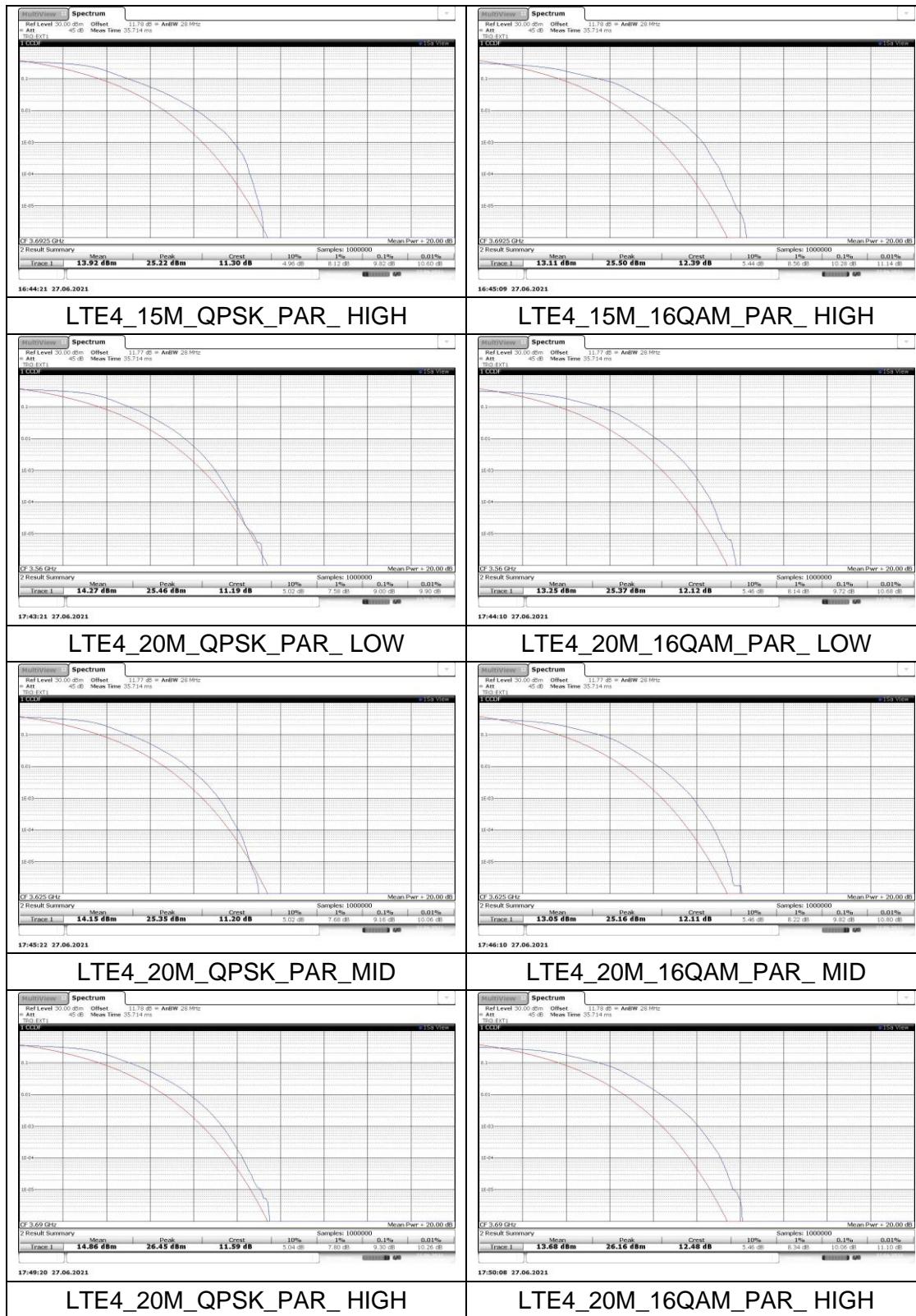
In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01.


The transmitter output was connected to a UXM Test Set and configured to operate at maximum power. The PAR was measured on the Spectrum Analyzer.


RESULTS


See the following pages.

LTE Band	Bandwidth (MHz)	F (MHz)	RB Configuration	Modulation	The Maximum Measured (dB)	Limit (dB)	Verdict	
48	5	3525.5	25RB 0#	QPSK	9.56	13	PASS	
				16QAM	10.12	13	PASS	
	10		50RB 0#	QPSK	9.46	13	PASS	
				16QAM	10.16	13	PASS	
	15		75RB 0#	QPSK	9.82	13	PASS	
				16QAM	10.28	13	PASS	
	20		100RB 0#	QPSK	9.30	13	PASS	
				16QAM	10.06	13	PASS	

LTE Band 48

6.3 OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049.

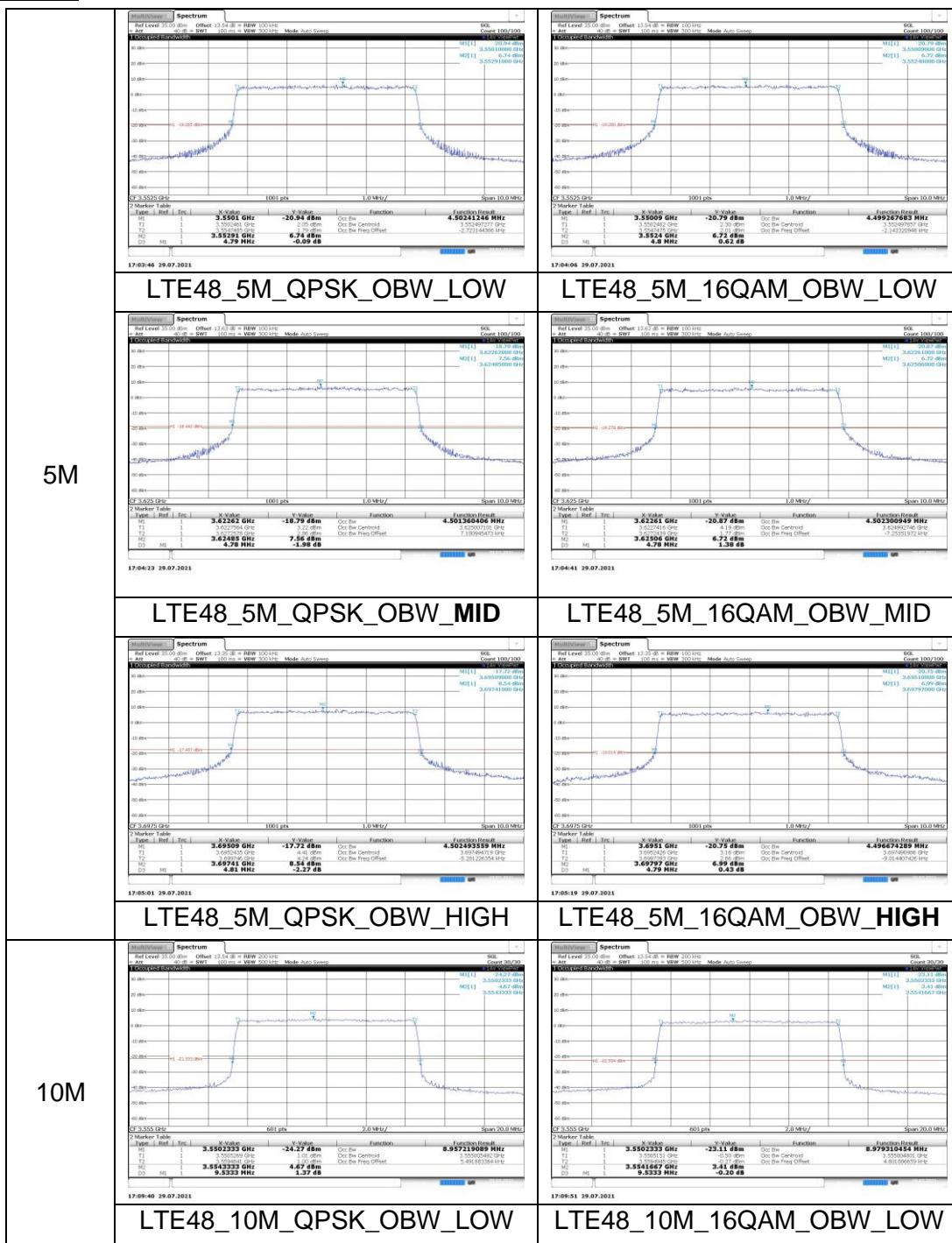
LIMITS

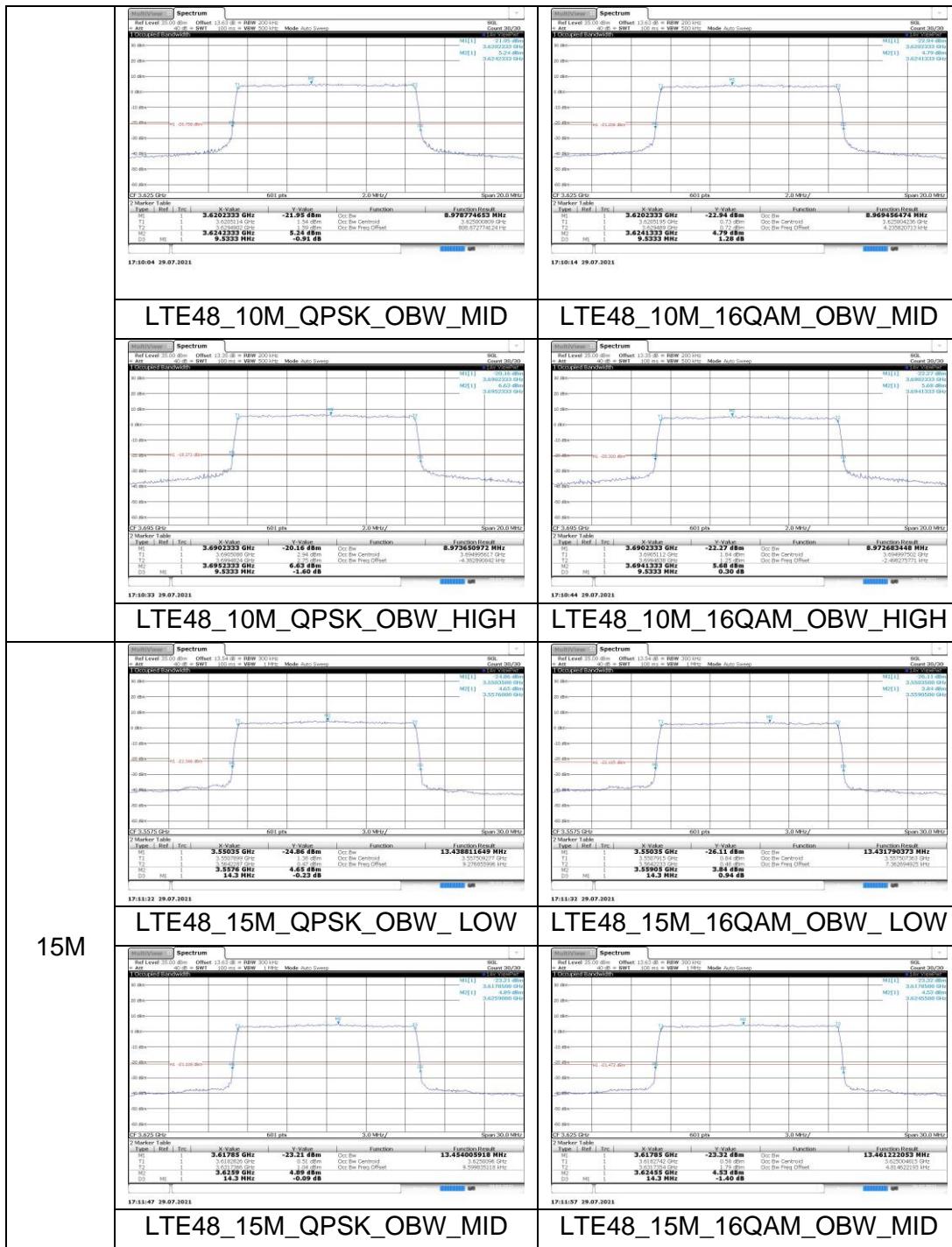
For reporting purposes only.

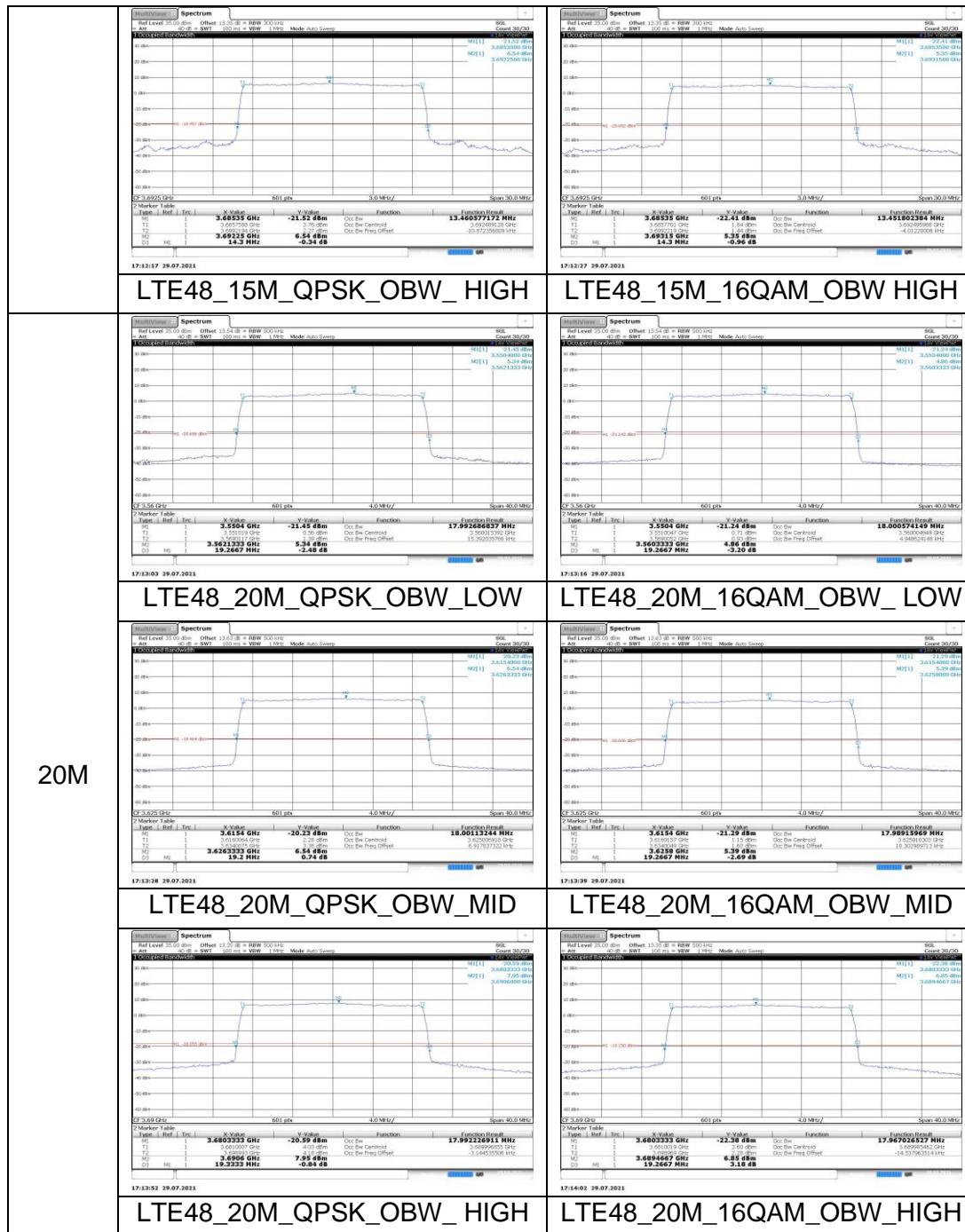
TEST PROCEDURE

KDB 971168 D01 Power Meas License Digital Systems v03r01.

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.


RESULTS


See the following pages.


LTE Band	Bandwidth (MHz)	Channel	Modulation	The Maximum Measured OBW (MHz)
48	5	HIGH	QPSK	4.502
		HIGH	16QAM	4.502
	10	LOW	QPSK	8.979
		MID	16QAM	8.979
	15	LOW	QPSK	13.461
		MID	16QAM	13.461
	20	MID	QPSK	18.001
		MID	16QAM	18.001

LTE Band	Bandwidth (MHz)	Channel	Modulation	The Maximum Measured 26dB bandwidth (MHz)
48	5	HIGH	QPSK	4.81
		LOW	16QAM	4.80
	10	MID	QPSK	9.53
		MID	16QAM	9.53
	15	MID	QPSK	14.3
		MID	16QAM	14.3
	20	HIGH	QPSK	19.33
		MID	16QAM	19.27

LTE Band 48

6.4 FREQUENCY STABILITY

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01.

RESULTS

Test Mode	Test Conditions		Frequency Deviation Middle Channel		
	Power (VDC)	Temperature (°C)	Frequency Error	Frequency Error	Limit
LTE Band 48			Hz	ppm	ppm
VN	-30	17.84	0.005022	± 2.5	
	-20	27.75	0.007811		
	-10	21.21	0.005970		
	0	-37.18	-0.010466		
	+10	-54.72	-0.015403		
	+20	-35.31	-0.009939		
	+30	-44.66	-0.012571		
	+40	36.61	0.010305		
VL	+50	22.75	0.006276		
	VL	73.93	0.020394		
	VH	28.02	0.007730		
End Point		30.94	0.008535		

6.5 BAND EDGE AND EMISSION MASK

RULE PART(S)

FCC:§96.41.

LIMITS

FCC: §96.41.

(e) 3.5 GHz Emissions and Interference Limits-

(ii) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01:

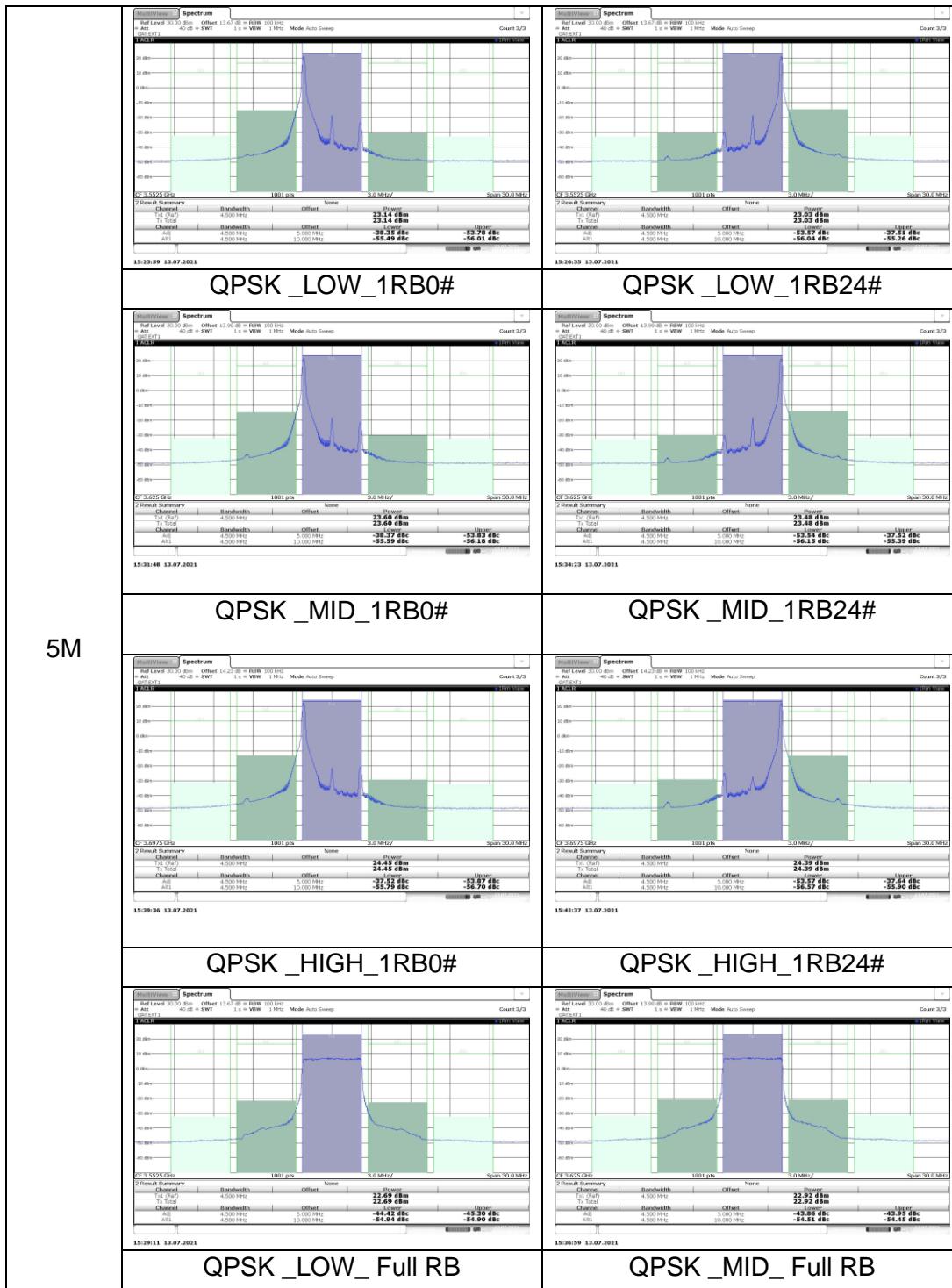
The transmitter output was connected to a Call BOX Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

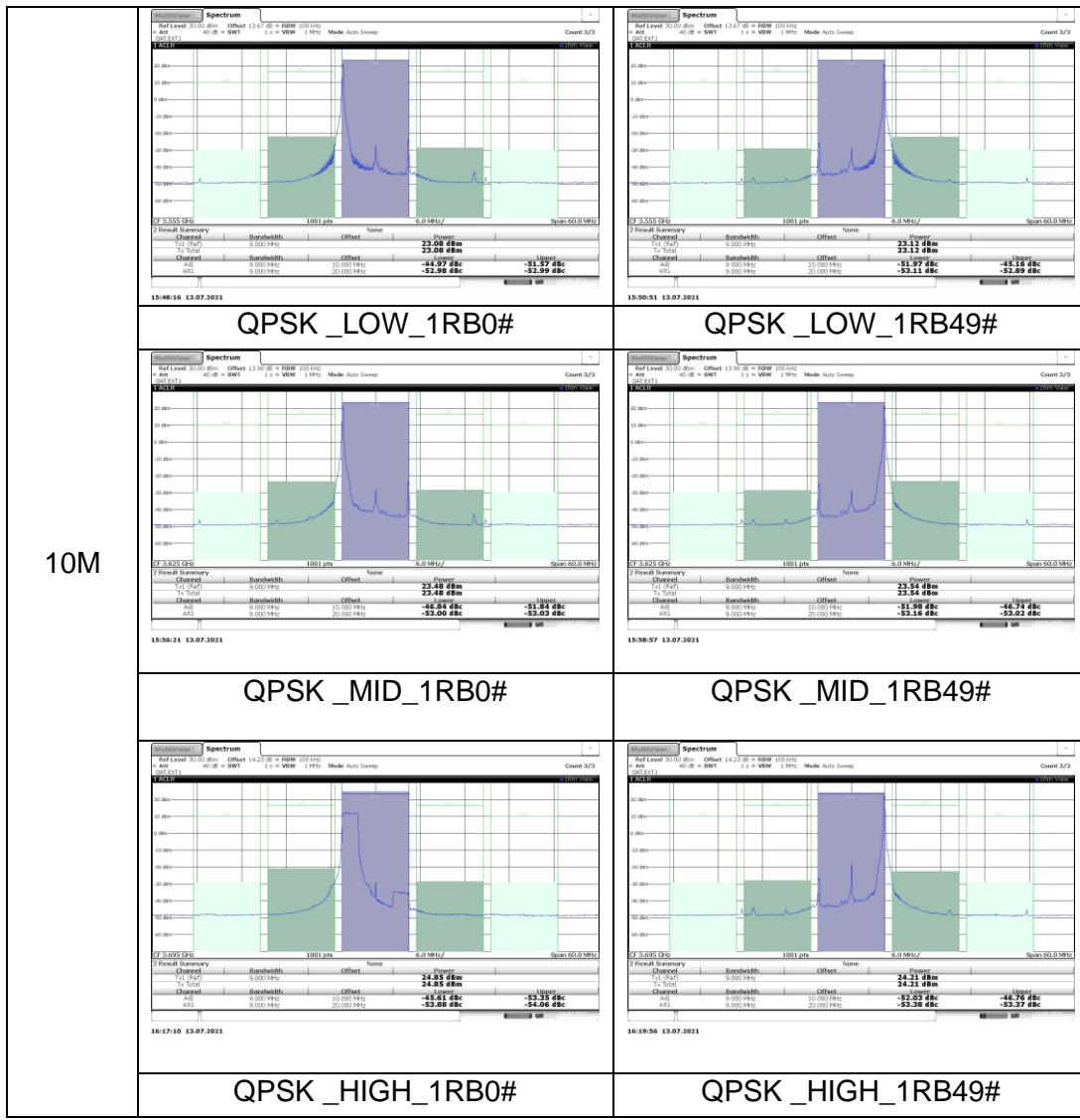
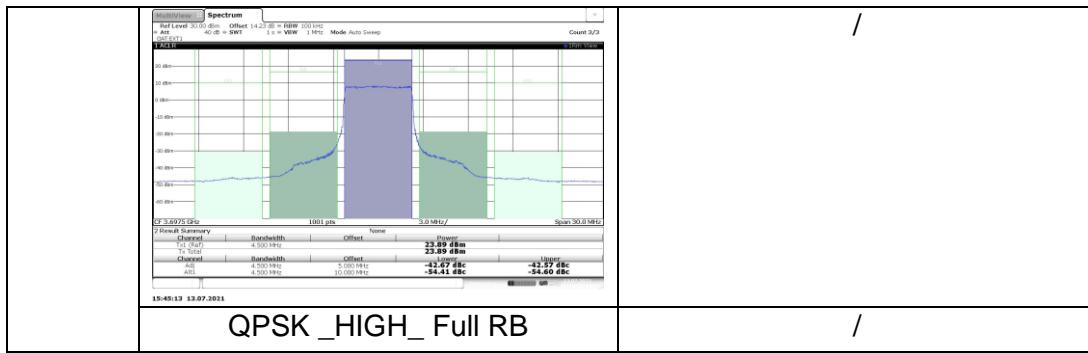
Set the RBW = $1 \sim 1.5$ % of OBW (Typically limited to a minimum RBW of 1% of the OBW)

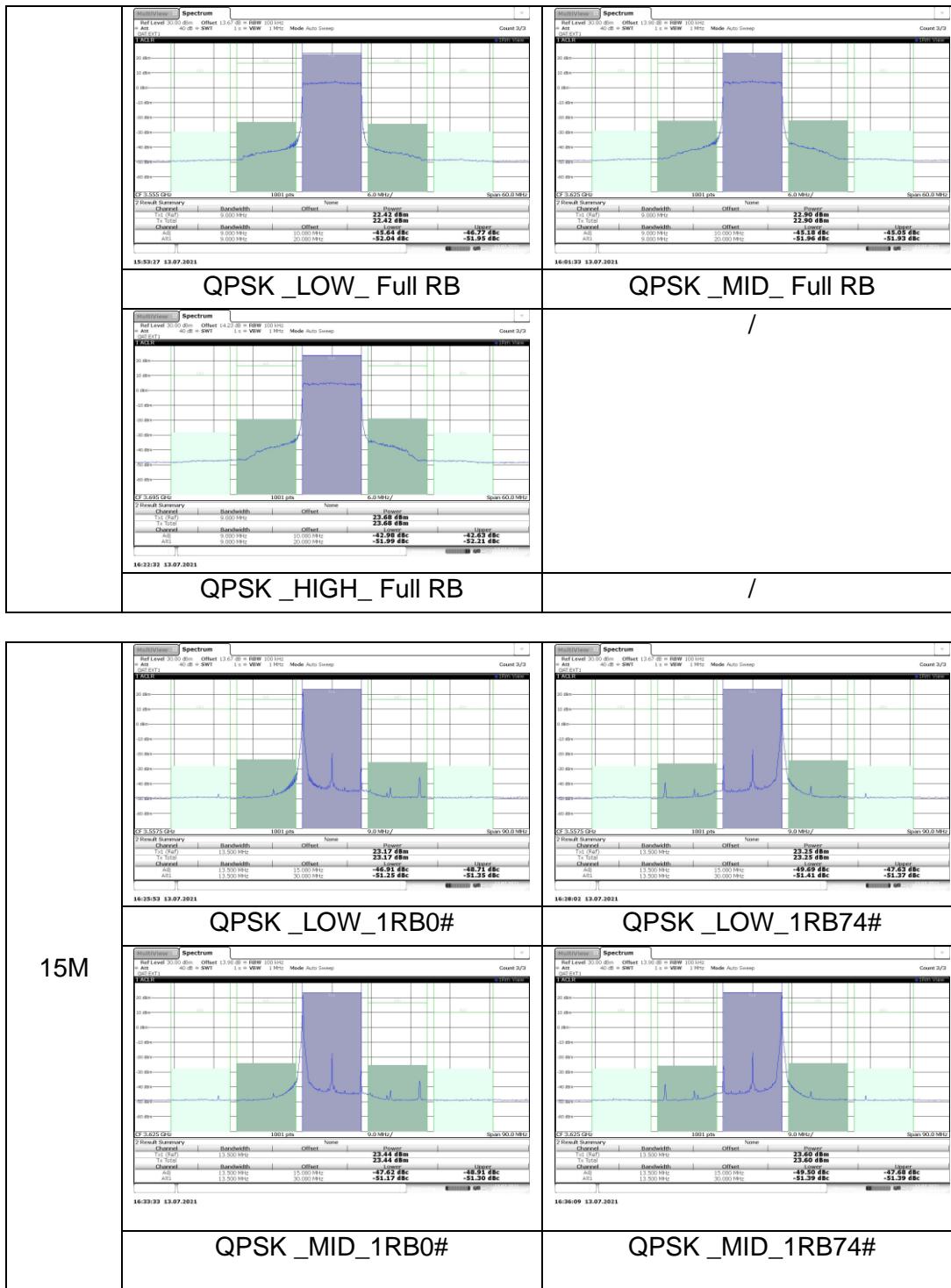
- b) Set VBW $\geq 3 \times$ RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points $\geq 2 \times$ Span/RBW;
- g) Trace mode = Average (100).

TEST PROCEDURE (LTE Band48)

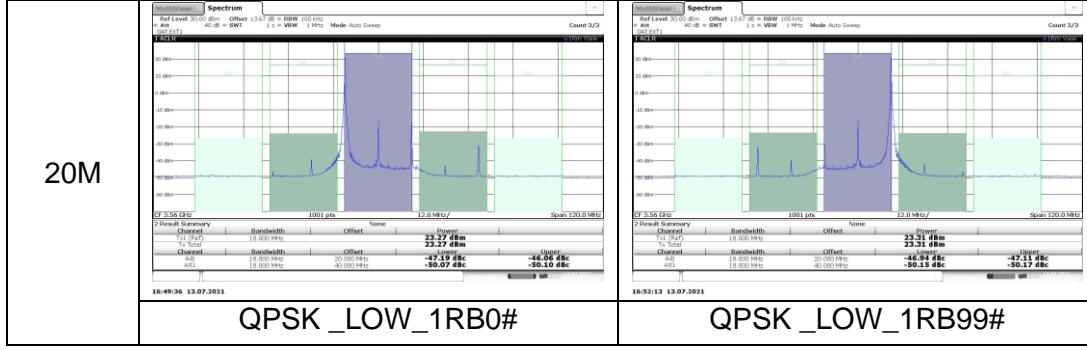
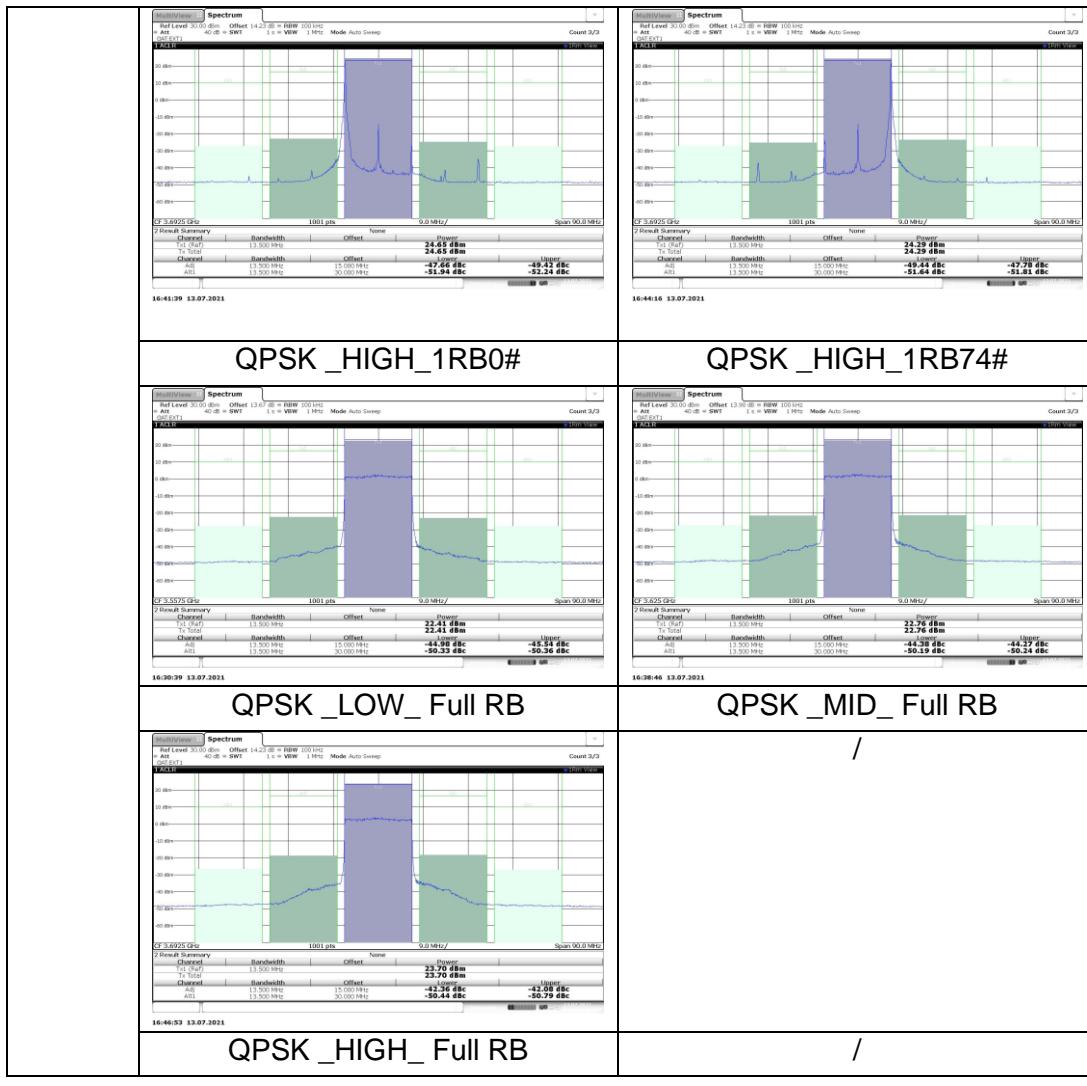
(i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.


(ii) When measuring unwanted emissions to demonstrate compliance with the limits, the CBSD and End User Device nominal carrier frequency/ channel shall be adjusted as close to the licensee's authorized frequency block edges, both upper and lower, as the design permits.



(iii) Compliance with emission limits shall be demonstrated using either average(RMS)-detected or peak-detected power measurement techniques.


RESULTS

See the following pages.



LTE Band 48

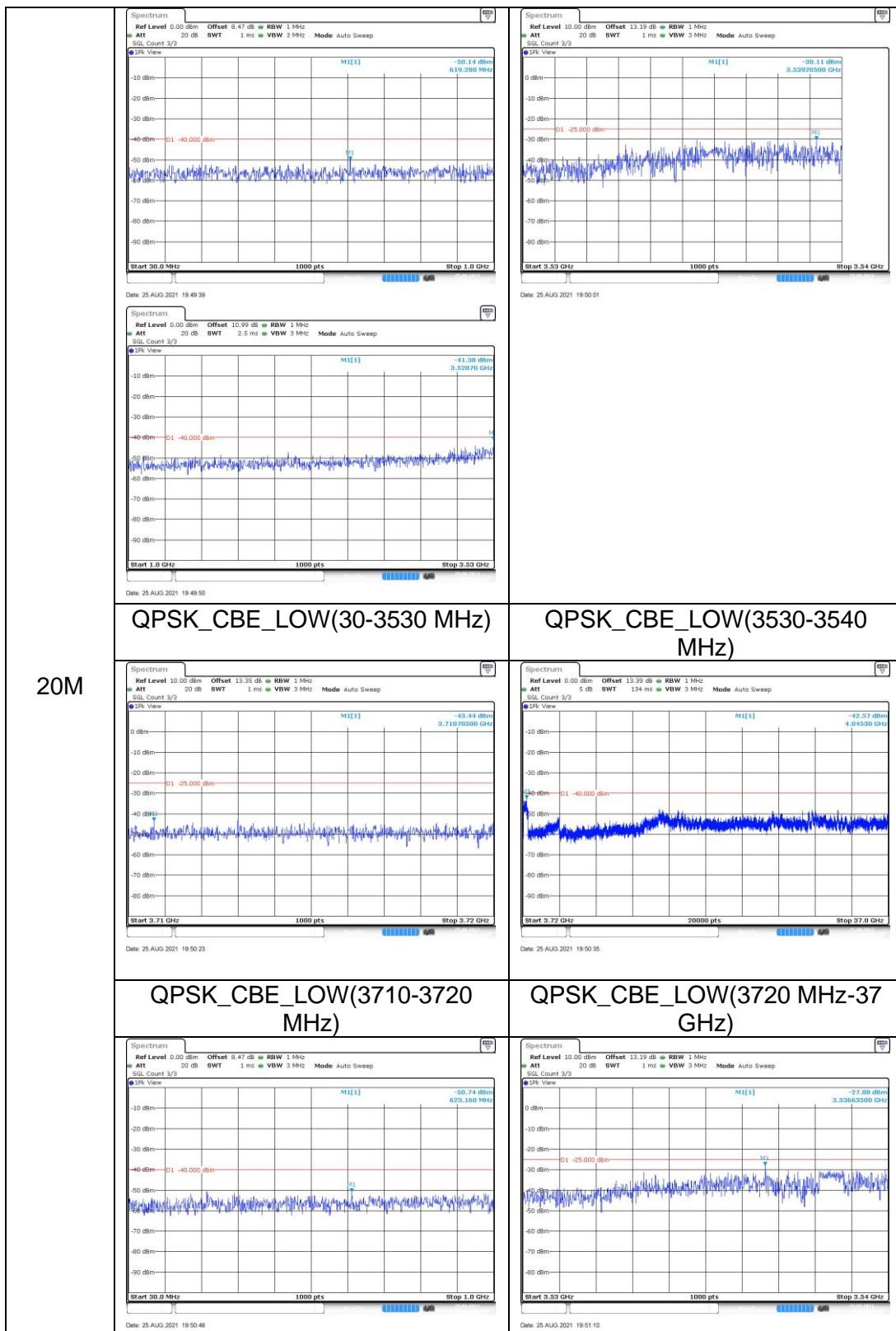
15M

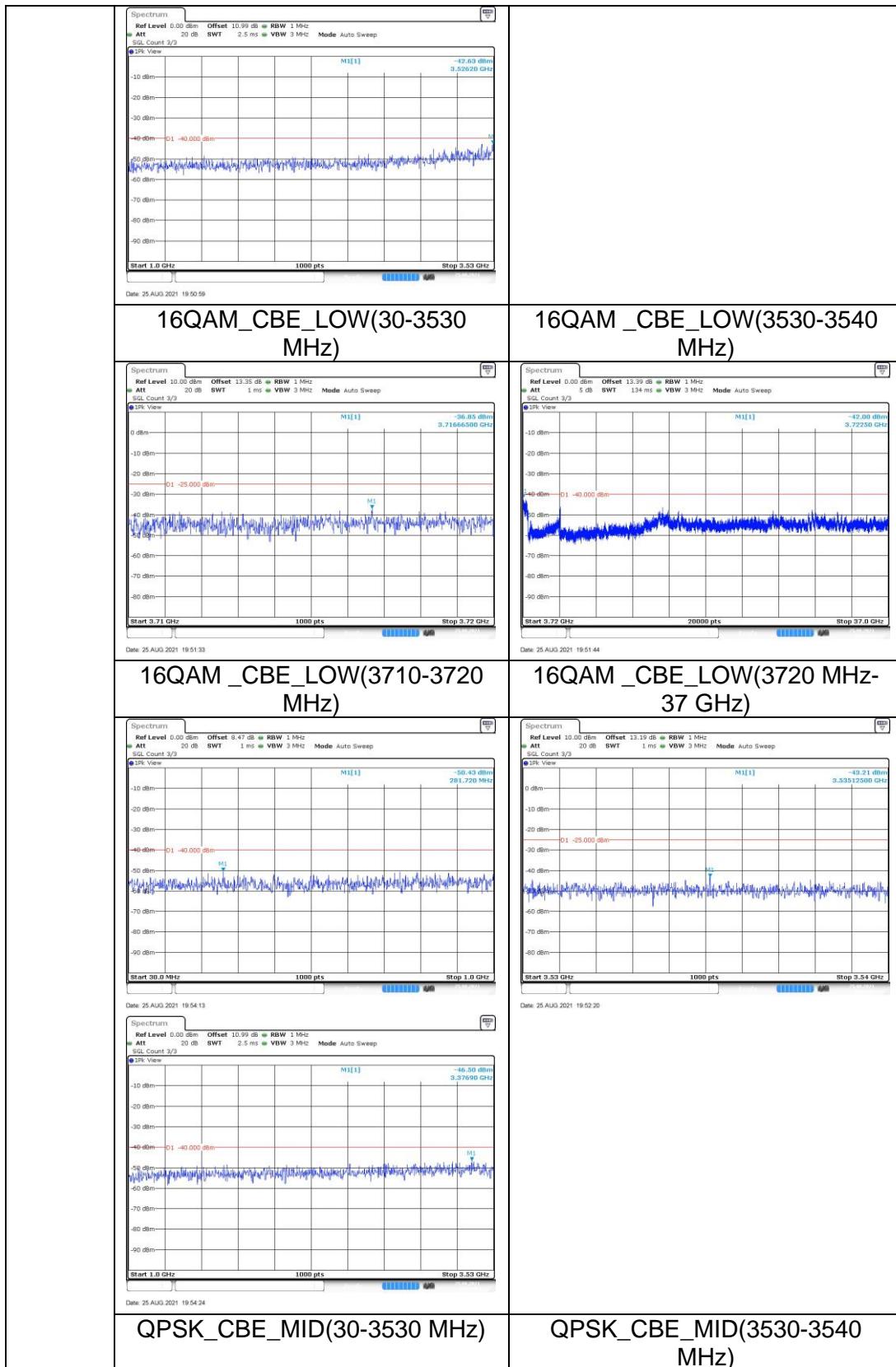
6.6 CONDUCTED OUT OF BAND EMISSIONS

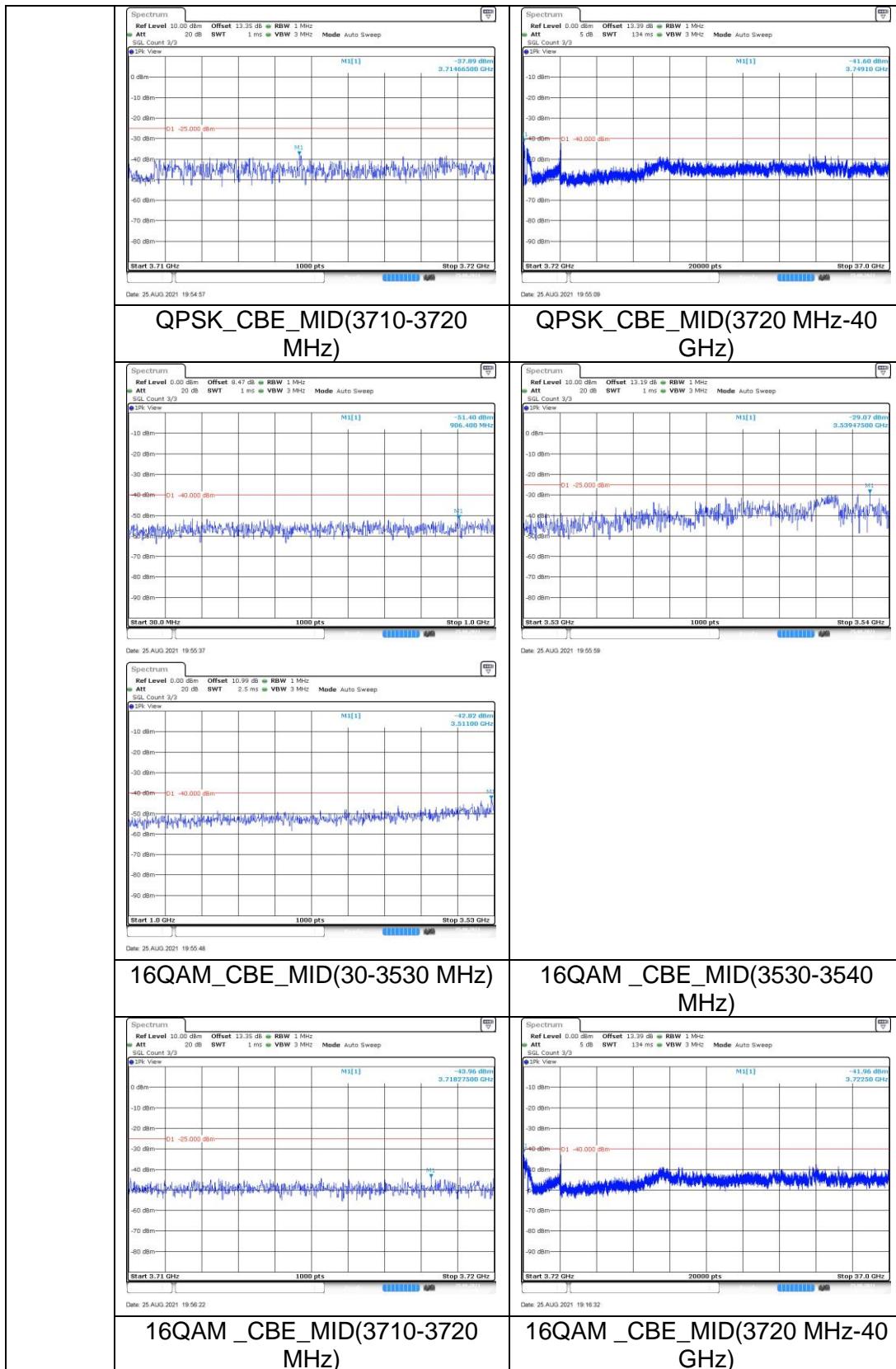
RULE PART(S)

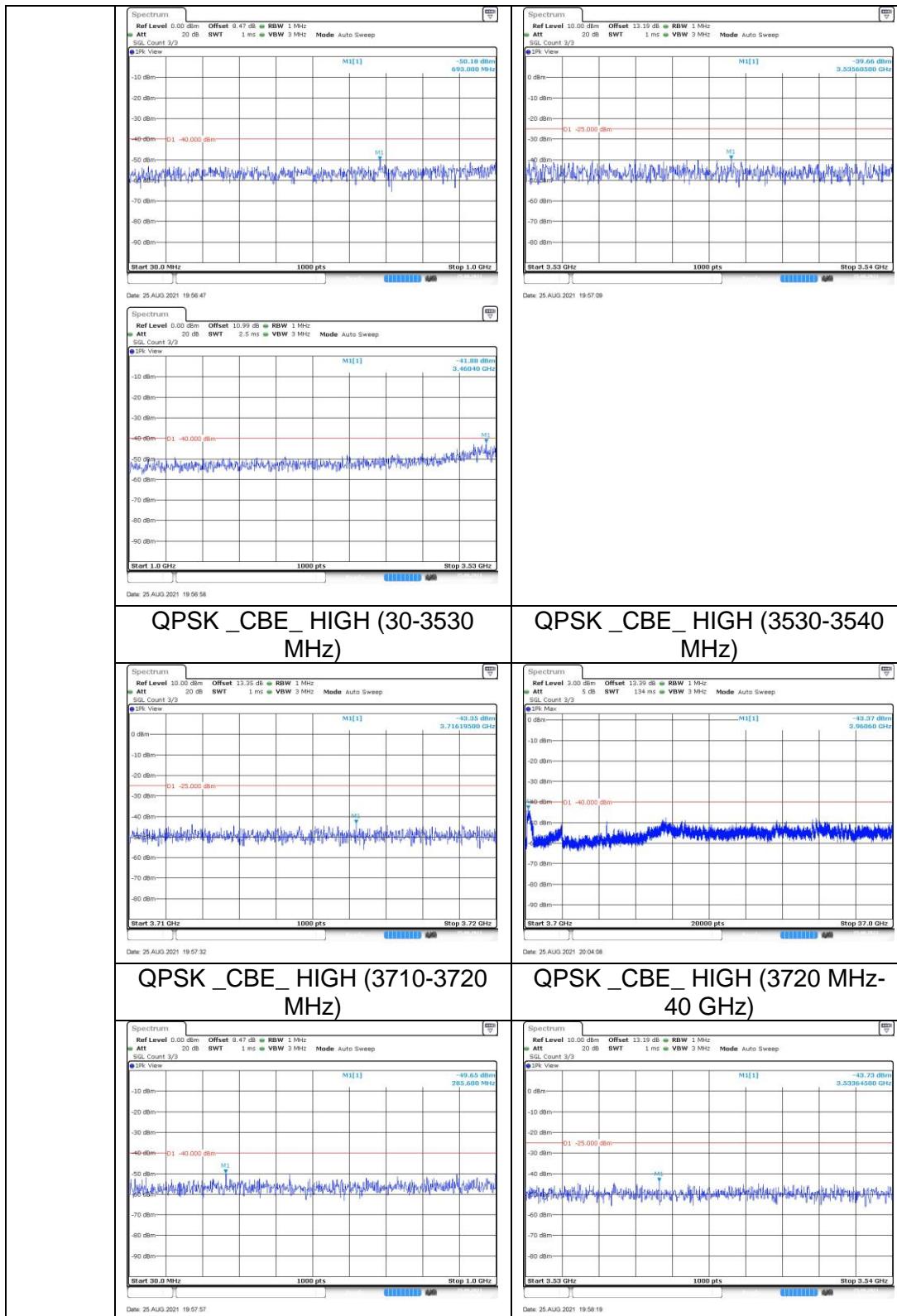
FCC: §96.41.

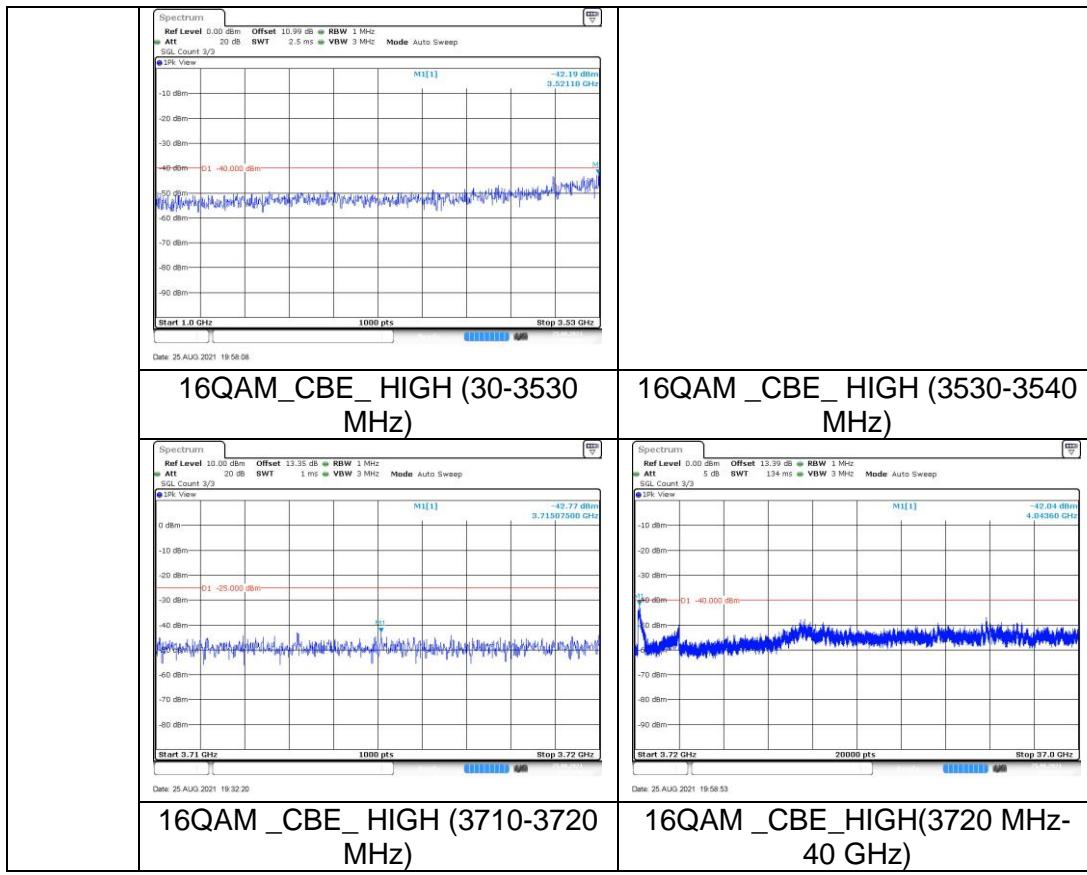
LIMITS


(e) 3.5GHz Emissions and Interference Limits-


(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

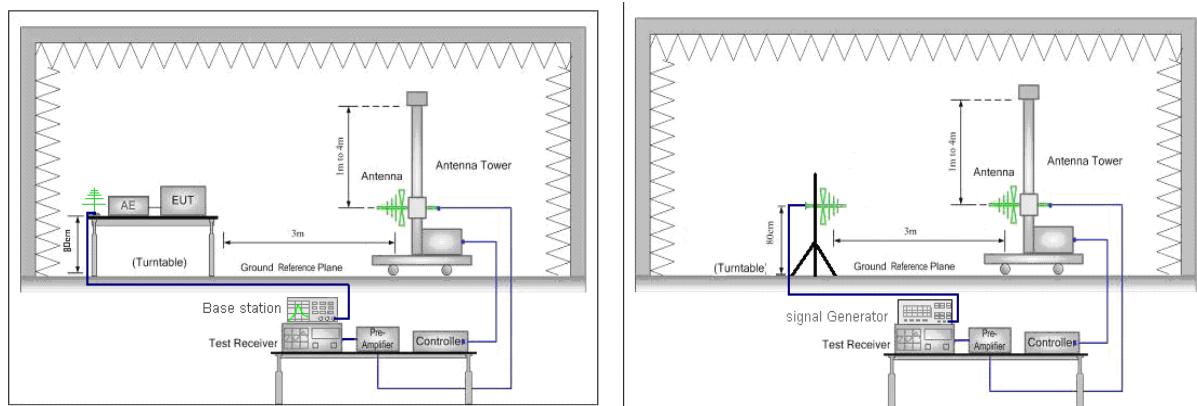

RESULTS


See the following pages.

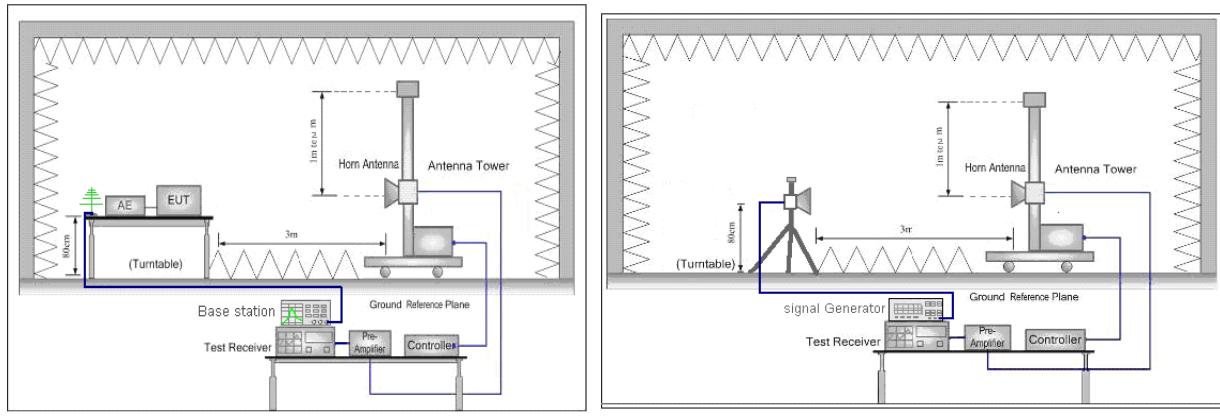

LTE Band 48

6.7 FIELD STRENGTH OF SPURIOUS RADIATION

LIMIT


FCC: §96.41.

(e) 3.5GHz Emissions and Interference Limits-


(2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

TEST SETUP

Test Setup for Below 1G

Test Setup for Above 1G

TEST PROCEDURE

KDB 971168 D01 Section 7

Below 1GHz test procedure as below:

1. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
5. Taking the record of maximum spurious emission.
6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
8. Taking the record of output power at antenna port.
9. Repeat step 7 to step 8 for another polarization.
10. Calculate power in dBm by the following formula:

$$\text{ERP(dBm)} = \text{Pg (dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBd)}$$

Where:

P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_g [dBm] – cable loss [dB]. The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of $43 + 10\log_{10}(\text{Power [Watts]})$.

Above 1GHz test procedure as below:

1. The EUT was placed on a rotatable wooden table with 0.8 meter above ground.
2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
5. Taking the record of maximum spurious emission.
6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
8. Taking the record of output power at antenna port.
9. Repeat step 7 to step 8 for another polarization.

10. Calculate power in dBm by the following formula:

$$\text{EIRP(dBm)} = \text{Pg(dBm)} - \text{cable loss (dB)} + \text{antenna gain (dBi)}$$

$$\text{EIRP} = \text{ERP} + 2.15\text{dB}$$

Where: Pg is the generator output power into the substitution antenna.

11. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

$$= P(\text{W}) - [43 + 10\log(P)] \text{ (dB)}$$

$$= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)}$$

$$= -13\text{dBm.}$$

NOTE 1: Radiated spurious emissions were investigated below 30MHz, 30MHz – 1GHz and above 1GHz. There were no emissions found on below 30MHz and 30MHz – 1GHz.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site.

Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the one of tests made in an open field based on KDB 414788.

NOTE 2: Please refer to section 5.4 for bandwidth and RB setting about LTE bands.

RESULTS

See the following pages

RADIATED SPURIOUS EMISSION RESULTS BETWEEN 30MHz and 1GHz

Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization	
30.97	-75.47	-40.00	-35.47	Horizontal	/
58.13	-76.30	-40.00	-36.30	Horizontal	
72.68	-79.65	-40.00	-39.65	Horizontal	
226.91	-82.07	-40.00	-42.07	Horizontal	
800.18	-73.89	-40.00	-33.89	Horizontal	
900.09	-72.82	-40.00	-32.82	Horizontal	
30.97	-73.40	-40.00	-33.40	Vertical	
75.59	-72.33	-40.00	-32.33	Vertical	
255.04	-72.67	-40.00	-32.67	Vertical	
700.27	-74.73	-40.00	-34.73	Vertical	
800.18	-69.33	-40.00	-29.33	Vertical	
851.59	-71.62	-40.00	-31.62	Vertical	

LTE B48_20M_QPSK_LOW	/
----------------------	---

RADIATED SPURIOUS EMISSION RESULTS ABOVE 1GHz

LTE Band 48

Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization	Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization
1642	-51.77	-40.00	-11.77	Horizontal	1564	-52.22	-40.00	-12.22	Horizontal
2278	-47.97	-40.00	-7.97	Horizontal	2206	-48.72	-40.00	-8.72	Horizontal
3280	-48.51	-40.00	-8.51	Horizontal	3130	-43.33	-40.00	-3.33	Horizontal
4498	-49.31	-40.00	-9.31	Horizontal	4594	-45.19	-40.00	-5.19	Horizontal
5878	-44.79	-40.00	/	Horizontal	5812	-35.51	-40.00	/	Horizontal
6742	-42.42	-40.00	-2.42	Horizontal	6502	-41.45	-40.00	-1.45	Horizontal
7099	-42.38	-40.00	-2.38	Horizontal	7231	-45.37	-40.00	-5.37	Horizontal
8496	-49.76	-40.00	-9.76	Horizontal	8991	-46.21	-40.00	-6.21	Horizontal
9002	-43.19	-40.00	-3.19	Horizontal	10850	-47.77	-40.00	-7.77	Horizontal
10652	-43.05	-40.00	-3.05	Horizontal	11499	-49.51	-40.00	-9.51	Horizontal
11752	-50.03	-40.00	-10.03	Horizontal	14502	-51.02	-40.00	-11.02	Horizontal
16009	-43.51	-40.00	-3.51	Horizontal	16009	-51.86	-40.00	-11.86	Horizontal
Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization	Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization
1726	-50.58	-40.00	-10.58	Vertical	1750.00	-50.88	-40.00	-10.88	Vertical
2398	-47.55	-40.00	-7.55	Vertical	2398.00	-44.97	-40.00	-4.97	Vertical
3178	-42.57	-40.00	-2.57	Vertical	3358.00	-50.18	-40.00	-10.18	Vertical
4486	-49.95	-40.00	-9.95	Vertical	4894.00	-47.68	-40.00	-7.68	Vertical
4888	-47.10	-40.00	-7.10	Vertical	6028.00	-44.57	-40.00	/	Vertical
6544	-51.40	-40.00	-11.40	Vertical	6508.00	-41.15	-40.00	-1.15	Vertical
7099	-47.16	-40.00	-7.16	Vertical	7231.00	-45.23	-40.00	-5.23	Vertical
8496	-46.93	-40.00	-6.93	Vertical	8749.00	-45.29	-40.00	-5.29	Vertical
10652	-52.34	-40.00	-12.34	Vertical	10850.00	-46.78	-40.00	-6.78	Vertical
12269	-44.81	-40.00	-4.81	Vertical	13589.00	-44.24	-40.00	-4.24	Vertical
14865	-45.43	-40.00	-5.43	Vertical	16009.00	-44.11	-40.00	-4.11	Vertical
17725	-51.56	-40.00	-11.56	Vertical	17604.00	-51.04	-40.00	-11.04	Vertical
LTE B48_20M_QPSK_LOW					LTE B48_20M_QPSK_MID				
Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization	Frequency (MHz)	Level (dBm)	Limit line (dBm)	Over limit (dB)	Polarization
1840.00	-49.99	-40.00	-9.99	Horizontal	3604.00	-56.34	-40.00	-16.34	Horizontal
2494.00	-46.61	-40.00	-6.61	Horizontal	4270.00	-54.56	-40.00	-14.56	Horizontal
3238.00	-50.53	-40.00	-10.53	Horizontal	4720.00	-54.38	-40.00	-14.38	Horizontal
4066.00	-47.55	-40.00	-7.55	Horizontal	5656.00	-53.45	-40.00	-13.45	Horizontal
5248.00	-47.16	-40.00	/	Horizontal	6046.00	-54.10	-40.00	-14.10	Horizontal
6490.00	-43.71	-40.00	-3.71	Horizontal	6664.00	-53.62	-40.00	-13.62	Horizontal
7352.00	-50.04	-40.00	-10.04	Horizontal	8221.00	-48.72	-40.00	-8.72	Horizontal
8991.00	-44.79	-40.00	-4.79	Horizontal	8947.00	-47.50	-40.00	-7.50	Horizontal
10003.00	-45.04	-40.00	-5.04	Horizontal	11686.00	-43.75	-40.00	-3.75	Horizontal
11499.00	-48.91	-40.00	-8.91	Horizontal	12698.00	-43.71	-40.00	-3.71	Horizontal
14722.00	-49.26	-40.00	-9.26	Horizontal	13512.00	-43.77	-40.00	-3.77	Horizontal
16009.00	-43.89	-40.00	-3.89	Horizontal	16856.00	-43.65	-40.00	-3.65	Horizontal
Frequency (MHz)	Level (dB)	Limit Line (dB)	Over Limit (dB)	Polarization	Frequency (MHz)	Level (dBm)	Limit line (dBm)	Over limit (dB)	Polarization
1588.00	-50.84	-40.00	-10.84	Vertical	3814.00	-56.89	-40.00	-16.89	Vertical
2398.00	-45.28	-40.00	-5.28	Vertical	4228.00	-55.57	-40.00	-15.57	Vertical
3340.00	-48.24	-40.00	-8.24	Vertical	4750.00	-54.38	-40.00	-14.38	Vertical
4870.00	-46.89	-40.00	-6.89	Vertical	5662.00	-53.64	-40.00	-13.64	Vertical
5902.00	-44.87	-40.00	-4.87	Vertical	5926.00	-53.90	-40.00	-13.90	Vertical
6502.00	-51.25	-40.00	-11.25	Vertical	6658.00	-53.95	-40.00	-13.95	Vertical
7352.00	-44.76	-40.00	-4.76	Vertical	8237.00	-48.96	-40.00	-8.96	Vertical
9002.00	-45.33	-40.00	-5.33	Vertical	9233.00	-47.54	-40.00	-7.54	Vertical
9992.00	-44.84	-40.00	-4.84	Vertical	11653.00	-44.39	-40.00	-4.39	Vertical
11037.00	-44.42	-40.00	-4.42	Vertical	134435.00	-44.06	-40.00	-4.06	Vertical
14722.00	-47.76	-40.00	-7.76	Vertical	17417.00	-44.18	-40.00	-4.18	Vertical
17659.00	-51.53	-40.00	-11.53	Vertical	17989.00	-43.46	-40.00	-3.46	Vertical
LTE B48_20M_QPSK_HIGH					Simultaneous transmission (Worst case for 2.4G WIFI +LTE mode)				

Note: For transmit simultaneously, all the modes had been tested, only the worst data for LTE & 2.4G WIFI was recorded in the report.

END OF REPORT