

Application for FCC Certificate
On Behalf of
SHANGHAI HONGYUAN LIGHTING & ELECTRIC EQUIPMENT CO LTD

Highbay Luminaire

Model No. : LVD-GC00001-100, LVD-GC00001-120, LVD-GC00001-150

FCC ID : 2AAFG03022100-150

Prepared For : SHANGHAI HONGYUAN LIGHTING &
ELECTRIC EQUIPMENT CO LTD
5028 ZHENNAN RD 201802 SHANGHAI, CHINA

Prepared By : Audix Technology (Shanghai) Co., Ltd.
3F 34Bldg 680 Guiping Rd,
Caohejing Hi-Tech Park,
Shanghai 200233, China

Tel: +86-21-64955500
Fax: +86-21-64955491

Report No. : ACI-F13128
Date of Test : Mar 09 – Aug 09, 2013
Date of Report : Aug 10, 2013

TABLE OF CONTENTS

	Page
1 SUMMARY OF STANDARDS AND RESULTS.....	4
1.1 Description of Standards and Results.....	4
2 GENERAL INFORMATION.....	5
2.1 Description of Equipment Under Test.....	5
2.2 Description of Test Facility.....	5
2.3 Measurement Uncertainty	5
3 CONDUCTED EMISSION TEST	6
3.1 Test Equipment.....	6
3.2 Block Diagram of Test Setup	6
3.3 Conducted Emission Limits (FCC Part 18 Consumer Equipment).....	6
3.4 Test Configuration.....	6
3.5 Operating Condition of EUT	7
3.6 Test Procedures	7
3.7 Test Results	7
4 MAGNETIC FIELD EMISSION TEST	11
4.1 Test Equipment.....	11
4.2 Block Diagram of Test Setup	11
4.3 Magnetic Field Emission Limit (FCC Part 18 305(b)).....	12
4.4 Test Configuration.....	12
4.5 Operating Condition of EUT	12
4.6 Test Procedures	12
4.7 Test Results	13
5 RADIATED EMISSION TEST.....	17
5.1 Test Equipment.....	17
5.2 Block Diagram of Test Setup	17
5.3 Radiated Emission Limit (FCC Part 18.305(c) Consumer Equipment).....	18
5.4 Test Configuration.....	18
5.5 Operating Condition of EUT	18
5.6 Test Procedures	18
5.7 Test Results	19
6 DEBUG DESCRIPTION	23
7 DEVIATION TO TEST SPECIFICATIONS	24

TEST REPORT FOR FCC CERTIFICATE

Applicant : SHANGHAI HONGYUAN LIGHTING & ELECTRIC EQUIPMENT CO LTD

Manufacturer : SHANGHAI HONGYUAN LIGHTING & ELECTRIC EQUIPMENT CO LTD

Factory : Jiangsu LVD Lighting Industry Co., Ltd

EUT Description : Highbay Luminaire

(A) Model No. : LVD-GC00001-100, LVD-GC00001-120,
LVD-GC00001-150

(B) Power Supply : 120V/60Hz

Test Procedure Used:

**FCC RULES AND REGULATIONS PART 18 SUBPART C RF LIGHTING DEVICES
OCTOBER 2012 AND MP-5/1986**

The device described above is tested by Audix Technology (Shanghai) Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 18 Subpart C (RF Lighting Devices) limits both radiated and conducted emissions.

The test results are contained in this test report and Audix Technology (Shanghai) Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. This report shows that the EUT which was tested in 3m anechoic chamber on Mar 09 – Aug 09, 2013 is technically compliance with the FCC official limits also.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shanghai) Co., Ltd.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test : Mar 09 – Aug 09, 2013 Date of Report : Aug 10, 2013

Producer : Kathy Wang
KATHY WANG / Supervisor

Review : D. Y. Yang
DIO YANG / Assistant Manager

 For and on behalf of
Audix Technology (Shanghai) Co., Ltd.

Signatory :

Authorized Signature EMC SAMMY CHEN / Deputy Manager

1 SUMMARY OF STANDARDS AND RESULTS

1.1 Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Description / Test Item	Test Standard	Meets Limit	Results
EMISSION			
Conducted Disturbance at the Mains Terminals	FCC RULES AND REGULATIONS PART 18 SUBPART C OCTOBER 2012 AND MP-5/1986	18.307(c) Consumer Equipment	Pass
Magnetic Field Strength	FCC RULES AND REGULATIONS PART 18 SUBPART C OCTOBER 2012 AND MP-5/1986	18.305(b) Any type, Non-ISM Frequency	Pass
Radiated Emission	FCC RULES AND REGULATIONS PART 18 SUBPART C OCTOBER 2012 AND MP-5/1986	18.305(c) Consumer Equipment	Pass

2 GENERAL INFORMATION

2.1 Description of Equipment Under Test

Description : Highbay Luminaire

Type of EUT : Production Pre-product Pro-type

Model No.	LVD-GC00001-100	LVD-GC00001-120	LVD-GC00001-150
Rated Power	100W	120W	150W

Applicant : SHANGHAI HONGYUAN LIGHTING & ELECTRIC EQUIPMENT CO LTD
5028 ZHENNAN RD 201802 SHANGHAI,
CHINA

Manufacturer : SHANGHAI HONGYUAN LIGHTING & ELECTRIC EQUIPMENT CO LTD
5028 ZHENNAN RD 201802 SHANGHAI,
CHINA

Factory : Jiangsu LVD Lighting Industry Co., Ltd
9 Minjiang Rd. Yancheng Economic and
Technological Development Zone

2.2 Description of Test Facility

Site Description : Sept. 17, 1998 file on
(Semi-Anechoic Chamber) Mar 16, 2012 Renewed
Federal Communications Commission
FCC Engineering Laboratory
7435 Oakland Mills Road
Columbia, MD 21046, USA

Name of Firm : Audix Technology (Shanghai) Co., Ltd.

Site Location : 3F 34Bldg 680 Guiping Rd,
Caohejing Hi-Tech Park,
Shanghai 200233, China

NVLAP Lab Code : 200371-0

2.3 Measurement Uncertainty

Conducted Emission Expanded Uncertainty: U = 3.42 dB

Radiated Emission Expanded Uncertainty (30-200MHz):

U = 4.14 dB (Horizontal)

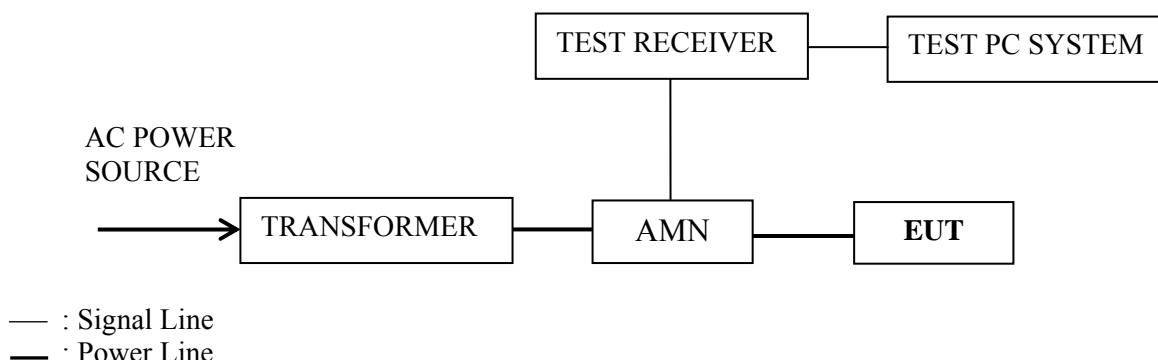
U = 4.28 dB (Vertical)

Radiated Emission Expanded Uncertainty (200MHz-1GHz):

U = 4.18 dB (Horizontal)

U = 4.26 dB (Vertical)

3 CONDUCTED EMISSION TEST


3.1 Test Equipment

The following test equipments are used during the conducted emission test in a shielded room:

Item	Type	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R&S	ESCI	100841	Mar 20, 2013	Mar 20, 2014
2.	Artificial Mains Network (AMN)	R&S	ESH2-Z5	843890/011	Feb 25, 2013	Feb 25, 2014
3.	50 Ω Coaxial Switch	Anritsu	MP59B	6200426389	Mar 18, 2013	Sep 18, 2013
4.	Software	Audix	E3	SET00200 9804M592	--	--

3.2 Block Diagram of Test Setup

3.2.1 Conducted Disturbance Test Setup

3.3 Conducted Emission Limits (FCC Part 18 Consumer Equipment)

Frequency (MHz)	Maximum RF Line Voltage	
	(μV)	dB(μV)
0.45 ~ 2.51	250	48
2.51 ~ 3.0	3000	70
3.0 ~ 30	250	48

NOTE 1 – RF Line Voltage dB (μV) = 20 log RF Line Voltage (μV)
NOTE 2 – The tighter limits shall apply at the boundary between two frequency ranges.

3.4 Test Configuration

The EUT (listed in Sec.2.1) was installed as shown on Sec.3.2 to meet FCC requirement and operating in a manner that tends to maximize its emission level in a normal application.

3.5 Operating Condition of EUT

- 3.5.1 Setup the EUT as shown in Sec. 3.2.
- 3.5.2 Turn on the power of EUT.
- 3.5.3 The EUT will be operated normally.
- 3.5.4 Set the EUT on the lighting test mode, and then test.

3.6 Test Procedures

The EUT was connected to the power mains through a Artificial Mains Network (AMN). This provided a 50 ohm coupling impedance for the measuring equipment.

Both sides of AC line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed or manipulated according to MP-5/1986 during conducted emission test.

The I.F bandwidth of Test Receiver ESCI was set at 9 kHz.

The frequency range from 450 kHz to 30 MHz for Lighting mode was checked.

The test modes were done on conducted test and the test results of the highest emissions are listed in Sec. 3.7.

3.7 Test Results

< PASS >

The frequency and amplitude of the highest conducted emission relative to the limit is reported. All emissions not reported below are too low against the prescribed limits.

Model No	Test Mode	Data Page
LVD-GC00001-100		P8
LVD-GC00001-120		P9
LVD-GC00001-150		P10

NOTE 1 – Factor = Cable Loss + AMN Factor.

NOTE 2 – Emission Level = Meter Reading + Factor.

NOTE 3 – All readings are Quasi-Peak values. (QP)

NOTE 4 – The worst case is for LVD-GC00001-100 model. The worst emission is detected at 17.897 MHz with corrected signal level of 40.62 dB (μ V) (limit is 48.00 dB (μ V)), when the Neutral of the EUT is connected to AMN.

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-100 Humidity : 48%RH
Serial No. : N/A Date of Test : Mar 10, 2013
Test Mode : Lighting

Test Line	Frequency (MHz)	Meter Reading dB(μV)	Factor (dB)	Emission Level dB(μV)	Limits dB(μV)	Margin (dB)	Remark
Line	0.676	19.70	0.20	19.90	48.00	28.10	QP
	1.119	19.86	0.32	20.18	48.00	27.82	
	1.573	22.62	0.37	22.99	48.00	25.01	
	7.409	21.49	0.66	22.15	48.00	25.85	
	15.129	30.73	0.84	31.57	48.00	16.43	
	18.822	35.08	0.92	36.00	48.00	12.00	
Neutral	1.119	18.64	0.22	18.86	48.00	29.14	QP
	1.573	22.20	0.17	22.37	48.00	25.63	
	7.409	23.47	0.58	24.05	48.00	23.95	
	15.912	34.95	0.74	35.69	48.00	12.31	
	17.897	39.83	0.79	40.62	48.00	7.38	
	19.384	35.35	0.82	36.17	48.00	11.83	

TEST ENGINEER: WENCY YANG

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-120 Humidity : 48%RH
Serial No. : N/A Date of Test : Mar 10, 2013
Test Mode : Lighting

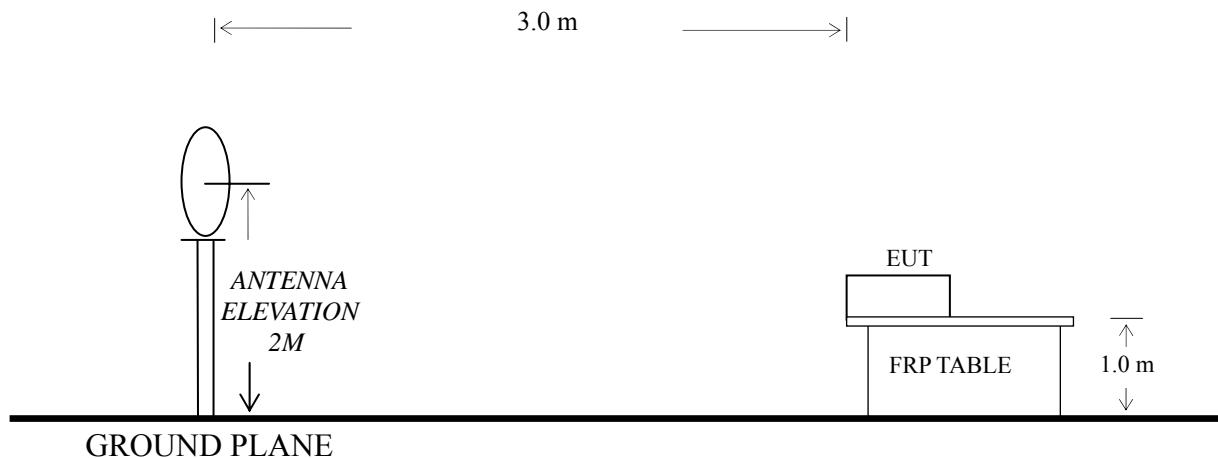
Test Line	Frequency (MHz)	Meter Reading dB(μV)	Factor (dB)	Emission Level dB(μV)	Limits dB(μV)	Margin (dB)	Remark
Line	0.498	24.15	0.35	24.50	48.00	23.50	QP
	0.589	22.51	0.28	22.79	48.00	25.21	
	1.134	22.70	0.32	23.02	48.00	24.98	
	1.586	25.14	0.37	25.51	48.00	22.49	
	17.161	33.88	0.87	34.75	48.00	13.25	
	18.280	31.39	0.90	32.29	48.00	15.71	
Neutral	0.460	20.54	0.17	20.71	48.00	27.29	QP
	1.134	19.71	0.22	19.93	48.00	28.07	
	5.663	22.33	0.46	22.79	48.00	25.21	
	10.152	28.84	0.48	29.32	48.00	18.68	
	15.129	34.70	0.73	35.43	48.00	12.57	
	17.450	31.20	0.79	31.99	48.00	16.01	

TEST ENGINEER: WENCY YANG

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-150 Humidity : 48%RH
Serial No. : N/A Date of Test : Mar 10, 2013
Test Mode : Lighting

Test Line	Frequency (MHz)	Meter Reading dB(μV)	Factor (dB)	Emission Level dB(μV)	Limits dB(μV)	Margin (dB)	Remark
Line	1.087	18.97	0.32	19.29	48.00	28.71	QP
	1.527	20.55	0.37	20.92	48.00	27.08	
	3.705	11.40	0.48	11.88	48.00	36.12	
	9.102	21.32	0.72	22.04	48.00	25.96	
	18.665	38.98	0.91	39.89	48.00	8.11	
	20.557	39.07	0.94	40.01	48.00	7.99	
Neutral	1.527	20.63	0.18	20.81	48.00	27.19	QP
	3.690	16.94	0.38	17.32	48.00	30.68	
	8.655	19.83	0.52	20.35	48.00	27.65	
	11.909	27.52	0.55	28.07	48.00	19.93	
	18.048	35.20	0.80	36.00	48.00	12.00	
	20.818	39.65	0.84	40.49	48.00	7.51	

TEST ENGINEER: WENCY YANG


4 MAGNETIC FIELD EMISSION TEST

4.1 Test Equipment

The following test equipments are used during the field strength test in a shielded room:

Item	Type	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Loop Antenna	Schaffner	HLA6120	1193	Apr 25, 2013	Apr 25, 2014
2.	Test Receiver	R&S	ESCI	101302	Sep 11, 2012	Sep 11, 2013
3.	50Ω Coaxial Switch	ANRITSU	MP59B	6200426390	Mar 18, 2013	Sep 18, 2013
4.	Software	Audix	E3	SET00200 9912M295-2	--	--

4.2 Block Diagram of Test Setup

4.3 Magnetic Field Emission Limit (FCC Part 18 305(b))

All emanations from Non-ISM frequency devices or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Frequency (MHz)	Distance (m)	Field Strength Limits (μ V/m)	Converted Field Strength Limits By 3 Meters Measuring Distance dB (μ V/m)
0.009~30	300	15	63.5

NOTE 1 - Distance refers to the distance in meters between the test antenna and the closed point of any part of the EUT.

NOTE 2 - Audix Technology (Shanghai) Co., Ltd. only has a 3 meters Semi-anechoic Chamber to do the radiated disturbance test, therefore, Audix Shanghai used 3 meters measuring distance and converted limits to judge the EUT compliance with or not.

4.4 Test Configuration

The FCC part 18 regulations test method must be used to find the maximum emission during Radiated Emission test.

The configuration of the EUT is same as used in conducted emission test. Please Refer to Section 3.4.

4.5 Operating Condition of EUT

- 4.5.1 Setup the EUT as shown on Section 4.2.
- 4.5.2 Turn on the power of all equipments.
- 4.5.3 Let the EUT work in test mode and test it.

4.6 Test Procedures

The EUT was placed on a table, which is 1.0 meter above ground. Measurements are performed at distance 3.0m with a 0.6m loop antenna as described in 2.2.4 of MP-5. The antenna shall be set at height 2m above the floor.

The bandwidth setting on the test receiver (R&S Test Receiver ESCI) is 200Hz from 9kHz to 150kHz and 9kHz from 150kHz to 30MHz. The EUT is tested in a semi-anechoic chamber.

All the test results are attached within Sec. 4.7.

4.7 Test Results

<PASS>

Refer to the following pages.

Model Number	Test Mode	Data Page
LVD-GC00001-100	Lighting	P14
LVD-GC00001-120		P15
LVD-GC00001-150		P16

NOTE 1 – Factor = Antenna Factor + Cable Loss

Emission Level = Meter Reading + Factor

NOTE 2 – All reading are Quasi-Peak Values.

NOTE 3 – The worst case is for LVD-GC00001-150 model. The worst emission at horizontal polarization was detected at 0.010 MHz with corrected signal level of 58.85 dB (μ V/m) (limit is 63.50 dB (μ V/m)). The worst emission at vertical polarization was detected at 0.010 MHz with corrected signal level of 55.25 dB (μ V/m) (limit is 63.50 dB (μ V/m)).

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-100 Humidity : 52%RH
Serial No. : N/A Date of Test : Aug 09, 2013
Test Mode : Lighting

Polarization	Frequency (MHz)	Meter Reading dB (μ V)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	Margin (dB)
Horizontal	0.010	37.12	20.30	0.03	57.45	63.50	6.05
	0.010	34.89	20.33	0.03	55.25	63.50	8.25
	0.010	32.82	20.45	0.03	53.30	63.50	10.20
	0.020	33.51	20.46	0.03	54.00	63.50	9.50
	0.750	29.60	20.36	0.04	50.00	63.50	13.50
	1.200	27.58	20.37	0.05	48.00	63.50	15.50
Vertical	0.010	37.20	20.31	0.03	57.54	63.50	5.96
	0.010	32.56	20.34	0.03	52.93	63.50	10.57
	0.010	35.07	20.43	0.03	55.53	63.50	7.97
	0.020	30.02	20.22	0.03	50.27	63.50	13.23
	0.030	31.07	20.69	0.03	51.79	63.50	11.71
	0.730	25.56	20.38	0.04	45.98	63.50	17.52

TEST ENGINEER: WENCY YANG

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-120 Humidity : 52%RH
Serial No. : N/A Date of Test : Aug 09, 2013
Test Mode : Lighting

Polarization	Frequency (MHz)	Meter Reading dB (μ V)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	Margin (dB)
Horizontal	0.010	34.83	20.31	0.03	55.17	63.50	8.33
	0.010	34.11	20.42	0.03	54.56	63.50	8.94
	0.010	33.06	20.48	0.03	53.57	63.50	9.93
	0.030	22.72	20.66	0.03	43.41	63.50	20.09
	0.710	30.74	20.40	0.04	51.18	63.50	12.32
	3.170	18.21	20.66	0.05	38.92	63.50	24.58
Vertical	0.010	37.36	20.40	0.03	57.79	63.50	5.71
	0.010	37.98	20.49	0.03	58.50	63.50	5.00
	0.030	30.04	20.62	0.03	50.69	63.50	12.81
	0.790	23.89	20.33	0.04	44.26	63.50	19.24
	1.540	22.82	20.58	0.05	43.45	63.50	20.05
	1.670	20.53	20.52	0.05	41.10	63.50	22.40

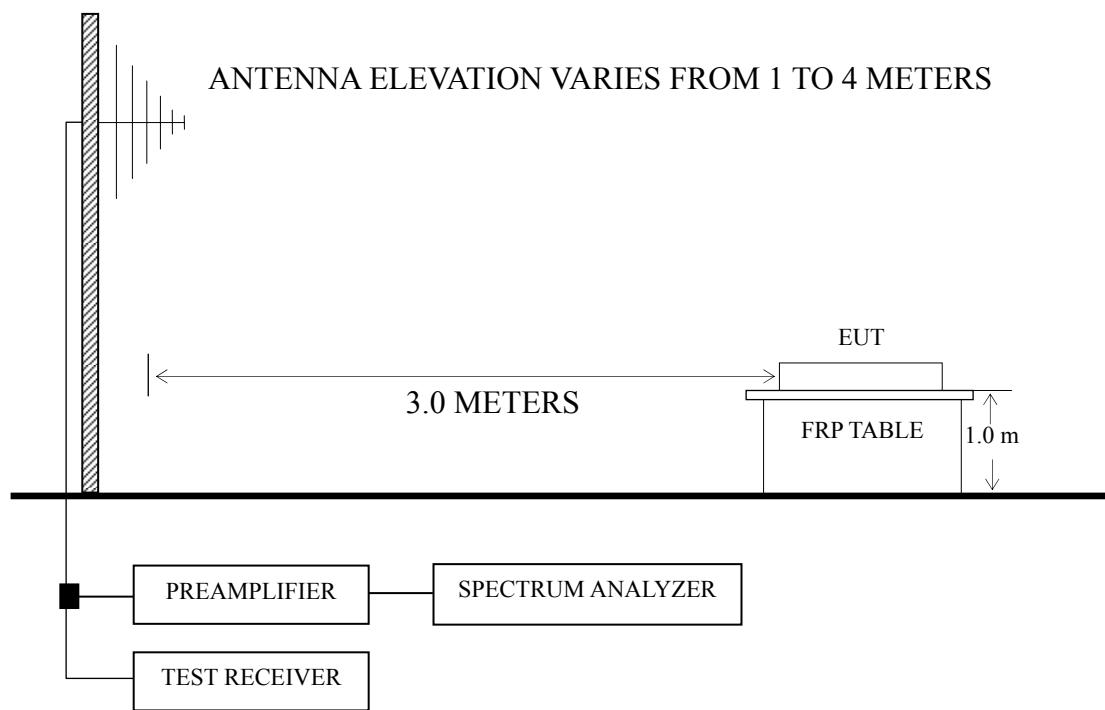
TEST ENGINEER: WENCY YANG

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-150 Humidity : 52%RH
Serial No. : N/A Date of Test : Aug 09, 2013
Test Mode : Lighting

Polarization	Frequency (MHz)	Meter Reading dB (μ V)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	Margin (dB)
Horizontal	0.010	37.50	20.30	0.03	57.83	63.50	5.67
	0.010	38.49	20.33	0.03	58.85	63.50	4.65
	0.270	17.31	20.32	0.03	37.66	63.50	25.84
	0.680	25.39	20.35	0.04	45.78	63.50	17.72
	1.050	16.82	20.24	0.05	37.11	63.50	26.39
	3.220	11.00	20.65	0.05	31.70	63.50	31.80
Vertical	0.010	34.89	20.33	0.03	55.25	63.50	8.25
	0.010	30.41	20.34	0.03	50.78	63.50	12.72
	0.020	30.17	20.37	0.03	50.57	63.50	12.93
	0.730	30.56	20.38	0.04	50.98	63.50	12.52
	1.270	24.88	20.44	0.05	45.37	63.50	18.13
	1.620	27.22	20.55	0.05	47.82	63.50	15.68

TEST ENGINEER: WENCY YANG

5 RADIATED EMISSION TEST


5.1 Test Equipment

The following test equipments are used during the radiated emission test in a semi-anechoic chamber:

Item	Type	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R&S	ESCI	101302	Sep 11, 2012	Sep 11, 2013
2.	Preamplifier	Agilent	8447D	2944A10548	Mar 18, 2013	Sep 18, 2013
3.	Bi-log Antenna	TESEQ	CBL6112D	23192	Nov 29, 2012	Nov 29, 2013
4.	Spectrum	Agilent	E7405A	MY45106600	Dec 17, 2012	Dec 17, 2013
5.	Software	Audix	E3	SET00200 9912M295-2	--	--

5.2 Block Diagram of Test Setup

5.2.1 Radiated emission test setup

█ : 50 ohm Coaxial Switch

5.3 Radiated Emission Limit (FCC Part 18.305(c) Consumer Equipment)

Frequency (MHz)	Distance (m)	Field strength limits		Converted Field Strength Limits By 3 Meters Measuring Distance
		(μ V/m)	dB (μ V/m)	dB (μ V/m)
30 ~ 88	30	10	20.0	40.0
88 ~ 216	30	15	23.5	43.5
216 ~ 1000	30	20	26.0	46.0

NOTE 1 - The lower limit shall apply at the transition frequency.
NOTE 2 - Measuring distance of 30 m is a primary requirement.
However, 3 m (instead of 30 m) distance maybe allowed. In this case, the limits with measuring distance of 3 m shall be the above limit value increased $20\lg(30/3)=20$ dB.
NOTE 3 - 1 μ V/m is regarded as 0 dB μ V/m.

5.4 Test Configuration

The configuration of the EUT and peripherals are same as those used in conducted emission test.

Please refer to Sec.3.4.

5.5 Operating Condition of EUT

Same as conducted emission test which is listed in Sec.3.5, except for the test setup replaced by Sec.5.2.

5.6 Test Procedures

The EUT was placed on a turntable that is 1.0 meter above ground. The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna, which was mounted on an antenna tower. The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (Calibrated Bilog Antenna) was used as receiving antenna. Both horizontal and vertical polarizations of the antenna were set on measurement. In order to find the maximum emission, all of the interference cables were manipulated according to FCC MP-5: 1986 requirements during radiated emission test.

The bandwidth of Test Receiver R&S ESCI was set at 120 kHz.

The frequency range from 30 MHz to 1000 MHz was checked.

The test mode was done on radiated disturbance test and all the test results are listed in Sec.5.7.

5.7 Test Results

<PASS>

Refer to the following pages.

Model No	Test Mode	Data Page
LVD-GC00001-100	Lighting	P20
LVD-GC00001-120		P21
LVD-GC00001-150		P22

NOTE 1 – Emission Level = Antenna Factor + Cable Loss + Meter Reading.

NOTE 2 – The emission levels that are 20dB below the official limit are not reported.

NOTE 3 – 0° was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.

NOTE 4 – The worst case is for LVD-GC00001-150 model. The worst emission at horizontal polarization was detected at 95.960 MHz with corrected signal level of 35.30 dB (μ V/m) (limit is 43.50 dB (μ V/m)), when the antenna was 2.00 m height and the turntable was at 235°. The worst emission at vertical polarization was detected at 91.520 MHz with corrected signal level of 42.90 dB (μ V/m) (limit is 43.50 dB (μ V/m)), when the antenna was 1.00 m height and the turntable was at 20°.

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-100 Humidity : 60%RH
Serial No. : N/A Date of Test : Mar 09, 2013
Test Mode : Lighting

Polarization	Frequency (MHz)	Meter Reading dB (μ V)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	Margin (dB)
Horizontal	31.940	0.72	16.50	0.68	17.90	40.00	22.10
	55.220	10.21	6.08	0.87	17.16	40.00	22.84
	94.020	23.27	9.12	1.27	33.66	43.50	9.84
	144.460	10.01	10.30	1.61	21.92	43.50	21.58
	189.080	12.44	8.00	1.89	22.33	43.50	21.17
	323.910	2.01	14.09	2.58	18.68	46.00	27.32
Vertical	42.610	15.86	11.30	0.79	27.95	40.00	12.05
	56.190	21.35	6.00	0.87	28.22	40.00	11.78
	83.350	23.43	7.19	1.13	31.75	40.00	8.25
	94.020	29.74	9.12	1.27	40.13	43.50	3.37
	146.400	9.74	10.25	1.62	21.61	43.50	21.89
	181.320	8.28	8.22	1.84	18.34	43.50	25.16

TEST ENGINEER: NEAL WANG

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-120 Humidity : 60%RH
Serial No. : N/A Date of Test : Mar 09, 2013
Test Mode : Lighting

Polarization	Frequency (MHz)	Meter Reading dB (μ V)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	Margin (dB)
Horizontal	30.970	0.37	17.65	0.67	18.69	40.00	21.31
	55.220	11.47	6.08	0.87	18.42	40.00	21.58
	92.080	22.87	8.66	1.24	32.77	43.50	10.73
	98.870	19.54	10.17	1.32	31.03	43.50	12.47
	129.910	8.25	11.90	1.53	21.68	43.50	21.82
	353.980	1.06	14.90	2.63	18.59	46.00	27.41
Vertical	42.610	18.52	11.30	0.79	30.61	40.00	9.39
	56.190	20.61	6.00	0.87	27.48	40.00	12.52
	82.380	24.21	7.10	1.11	32.42	40.00	7.58
	91.350	29.50	8.47	1.24	39.21	43.50	4.29
	132.820	10.31	11.45	1.56	23.32	43.50	20.18
	342.340	7.67	14.80	2.61	25.08	46.00	20.92

TEST ENGINEER: NEAL WANG

EUT : Highbay Luminaire Temperature : 22
Model No. : LVD-GC00001-150 Humidity : 60%RH
Serial No. : N/A Date of Test : Mar 09, 2013
Test Mode : Lighting

Polarization	Frequency (MHz)	Meter Reading dB (μ V)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	Margin (dB)
Horizontal	30.000	-1.99	18.80	0.65	17.46	40.00	22.54
	54.250	11.80	6.18	0.87	18.85	40.00	21.15
	71.710	16.04	6.02	0.95	23.01	40.00	16.99
	84.320	22.08	7.32	1.13	30.53	40.00	9.47
	95.960	24.44	9.57	1.29	35.30	43.50	8.20
	177.440	11.29	8.26	1.83	21.38	43.50	22.12
Vertical	30.000	7.44	18.80	0.65	26.89	40.00	13.11
	35.820	10.53	15.63	0.73	26.89	40.00	13.11
	54.250	19.21	6.18	0.87	26.26	40.00	13.74
	91.520	33.10	8.56	1.24	42.90	43.50	0.60
	174.530	14.65	8.31	1.80	24.76	43.50	18.74
	335.550	3.60	14.65	2.61	20.86	46.00	25.14

TEST ENGINEER: NEAL WANG

6 DEBUG DESCRIPTION

The following components are used during the countermeasure procedures:

Name	M/N	Specifications	Manufacturer	Location
Ferrite core	F5B	T25*12*15-P.W	Kunshan Youci Electronic Co. Ltd. Wuxi Jianhua Electric Appliance Factory	See Internal Photos Figure 22 – 27

Note: We had required the applicant and manufacturer that all electrical and mechanical devices employed for spurious radiation suppression, including any modifications made during certification testing, must be incorporated in each unit marked

TEST ENGINEER:

Neal Wang
(NEAL WANG)

7 DEVIATION TO TEST SPECIFICATIONS

None.