

Spectrum Design Solutions
LifeSense Hose Sensor
FCC 15.231:2013 / FCC.231:2014

Report #: SPCD0020

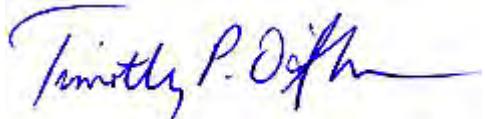
Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: September 8, 2014
 Spectrum Design Solutions
 Model: LifeSense Hose Sensor


Emissions

Test Description	Specification	Test Method	Pass/Fail
Duty Cycle	FCC 15.231:2013	ANSI C63.10:2009	Pass
Occupied Bandwidth	FCC 15.231:2013	ANSI C63.10:2009	Pass
Field Strength of Fundamental	FCC 15.231:2014	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.231:2014	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission - Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST - Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

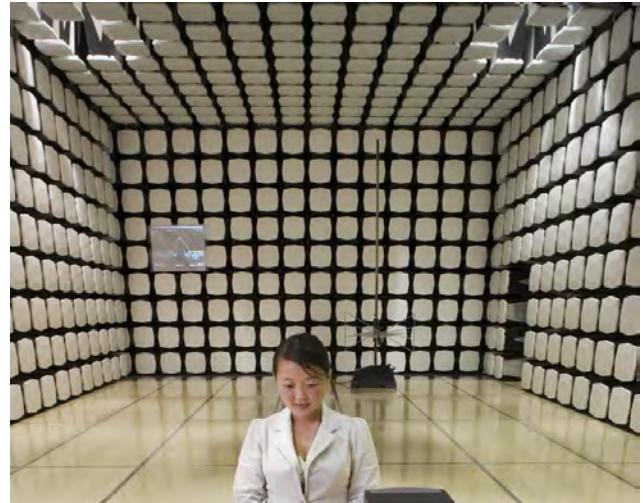
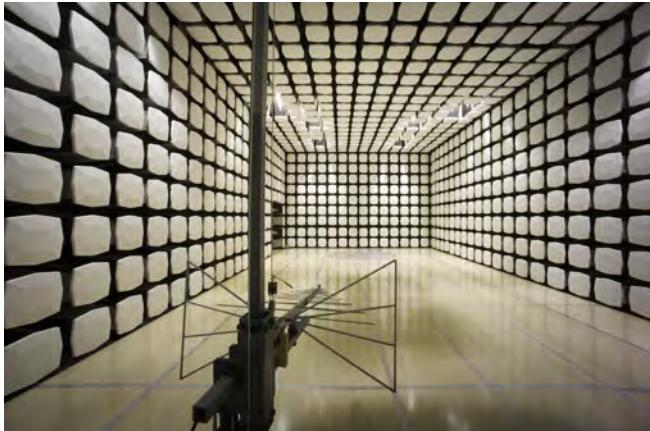
For details on the Scopes of our Accreditations, please visit:

<http://www.nwemc.com/accreditations/>

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty ($K=2$) for each test is listed below. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.



The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	3.80	-3.80
AC Powerline Conducted Emissions (dB)	2.94	-2.94

FACILITIES

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05, SU02, SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600
VCCI				
A-0108	A-0029		A-0109	A-0110
Industry Canada				
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1
NVLAP				
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Eaton Corporation
Address:	7945 Wallace Road
City, State, Zip:	Eden Prairie, MN 55344
Test Requested By:	John Capesius
Model:	LifeSense Hose Sensor
First Date of Test:	October 31, 2013
Last Date of Test:	September 8, 2014
Receipt Date of Samples:	October 31, 2013
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Low Power transceiver operating at 433 MHz. Modulation type FSK.

Testing Objective:

To demonstrate compliance to FCC 15.231(b) specifications.

Configuration SPCD0020- 1

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
LifeSense Hose Sensor	Eaton Corporation	None	73758310010	

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Metal Plate	None	None	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Hose	Yes	0.9 m	No	Metal Plate	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configuration SPCD0020- 2

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
LifeSense Hose Sensor	Eaton Corporation	None	73758310002	

Configuration EATN0006-2

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
LifeSense Hose Sensor	Eaton Corporation	None	None	

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	10/31/2013	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	10/31/2013	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.
3	9/8/2014	Field Strength of Fundamental	Modified from delivered configuration.	Raised power to level 0 per John Capesius. Modification authorized by John Capesius.	EUT remained at Northwest EMC following the test.
4	9/8/2014	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Duty Cycle

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2012	12
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

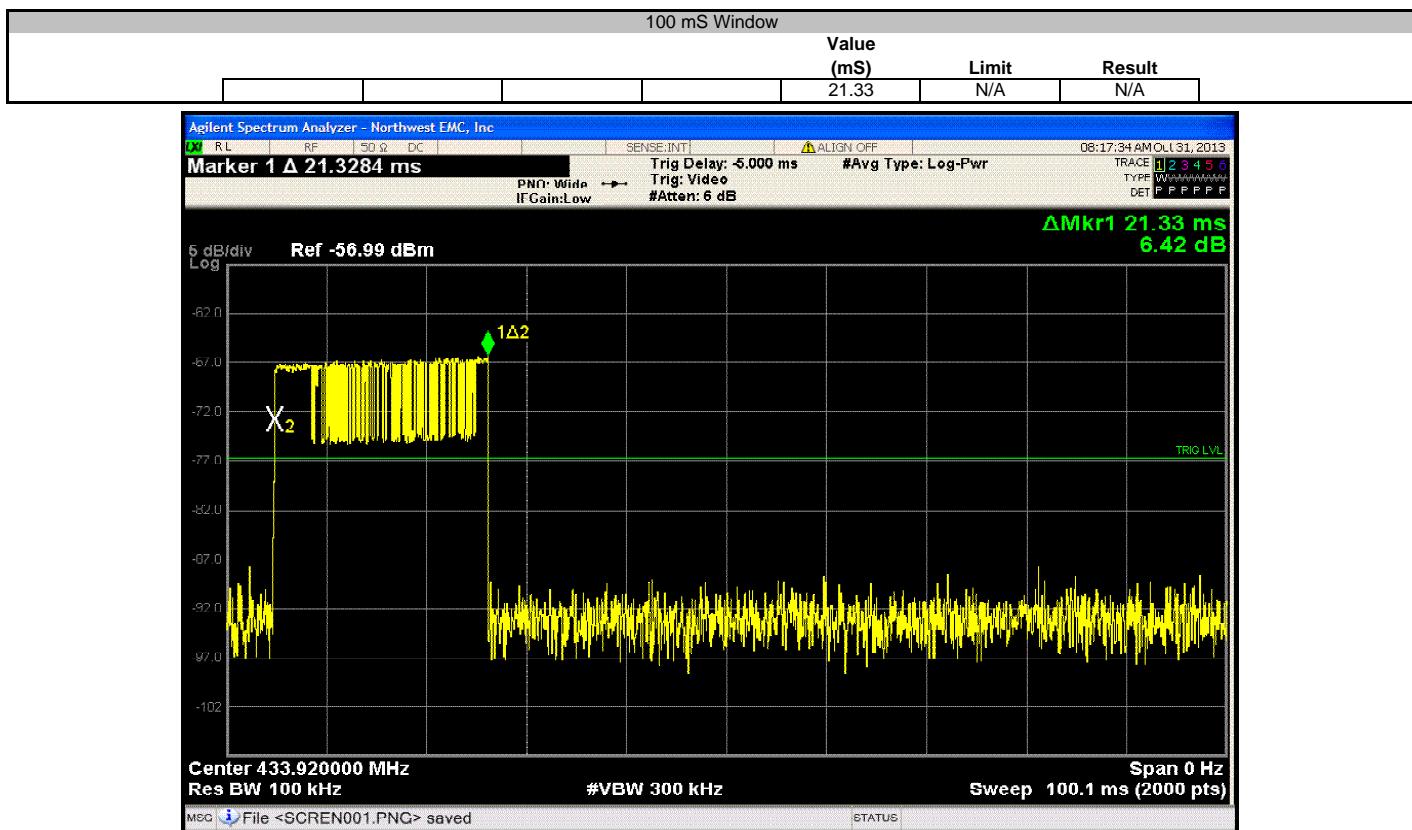
Where "On time" = $N1L1 + N2L2 + \dots$

Where $N1$ is the number of type 1 pulses, $L1$ is length of type 1 pulses, $N2$ is the number of type 2 pulses, $L2$ is the length of type 2 pulses, etc.

Therefore, Duty Cycle = $(N1L1 + N2L2 + \dots)/100mS$ or T , whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 21.33 mSec


Duty Cycle = $20 \log [((1)(21.33))/100] = -13.42 \text{ dB}$

The duty cycle correction factor of -13.42 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

The field strength of the fundamental (transmit) frequency meets the limits as defined in 47 CFR 15.231(b). It also meets the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions.

Duty Cycle

EUT: LifeSense Hose Sensor		Work Order: SPCD0020						
Serial Number: 73758310002		Date: 10/31/13						
Customer: Spectrum Design Solutions		Temperature: 22.3°C						
Attendees: Charlie Kellerman, John Capesius		Humidity: 35%						
Project: None		Barometric Pres.: 1000.3						
Tested by: Trevor Buls	Power: Battery	Job Site: MN05						
TEST SPECIFICATIONS								
FCC 15.231:2013		Test Method: ANSI C63.10:2009						
COMMENTS								
None								
DEVIATIONS FROM TEST STANDARD								
None								
Configuration #	2	Signature: <i>Trevor Buls</i>						
<table border="1"> <thead> <tr> <th>Value (mS)</th> <th>Limit</th> <th>Result</th> </tr> </thead> <tbody> <tr> <td>21.33</td> <td>N/A</td> <td>N/A</td> </tr> </tbody> </table>			Value (mS)	Limit	Result	21.33	N/A	N/A
Value (mS)	Limit	Result						
21.33	N/A	N/A						
100 mS Window								

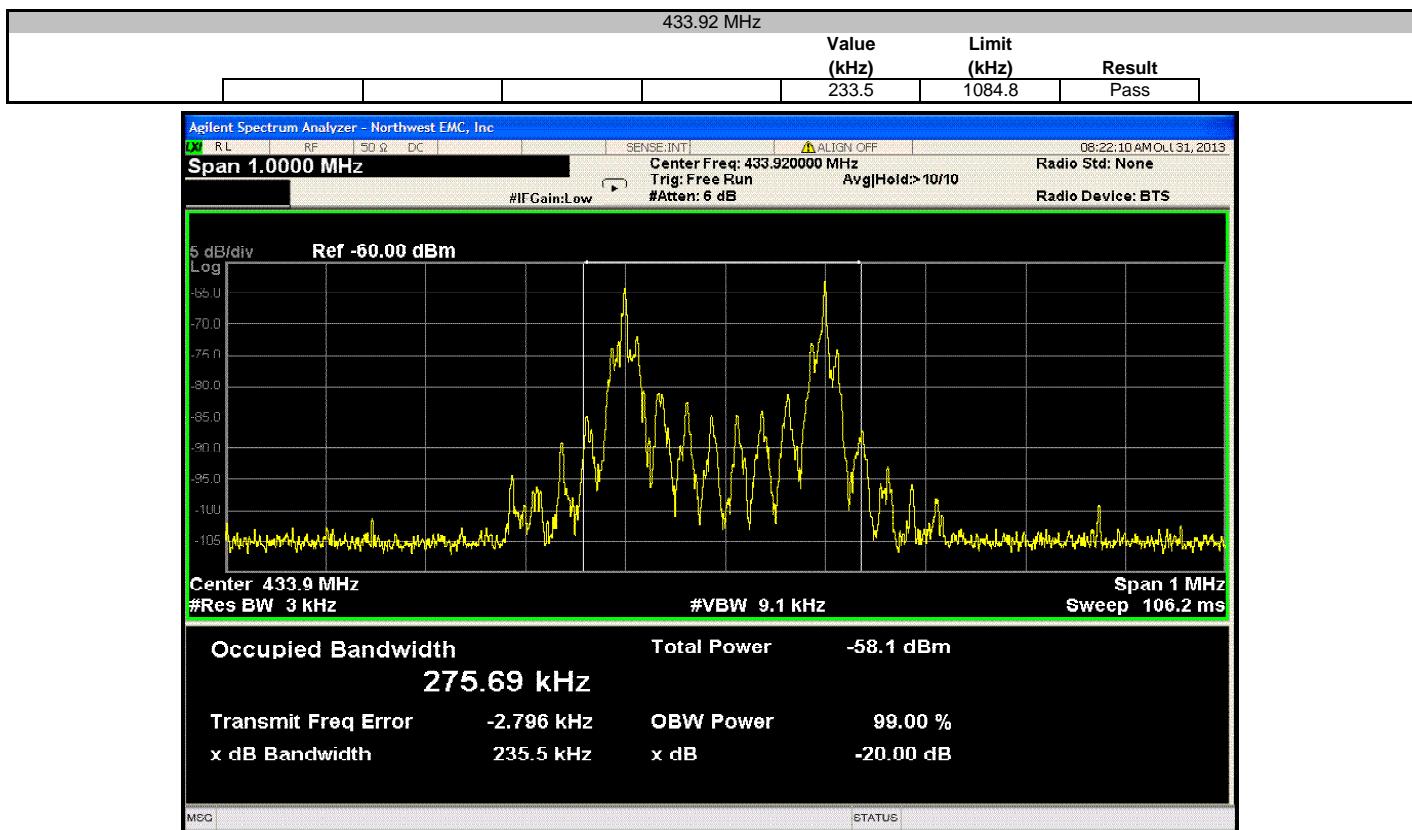
Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2012	12
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24

TEST DESCRIPTION


The occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

The measurement was made using near field probe near the integral antenna of the EUT to the input of the spectrum analyzer. The EUT was transmitting at its maximum data rate.

Occupied Bandwidth

EUT: LifeSense Hose Sensor		Work Order: SPCD0020								
Serial Number: 73758310002		Date: 10/31/13								
Customer: Spectrum Design Solutions		Temperature: 22.3°C								
Attendees: Charlie Kellerman, John Capesius		Humidity: 35%								
Project: None		Barometric Pres.: 1000.3								
Tested by: Trevor Buls	Power: Battery	Job Site: MN05								
TEST SPECIFICATIONS										
FCC 15.231:2013		Test Method: ANSI C63.10:2009								
COMMENTS										
Limit is based on 433.92 MHz * .25% = 1084.8 kHz.										
DEVIATIONS FROM TEST STANDARD										
None										
Configuration #	2	Signature: <i>Trevor Buls</i>								
<table border="1"> <thead> <tr> <th></th> <th>Value (kHz)</th> <th>Limit (kHz)</th> <th>Result</th> </tr> </thead> <tbody> <tr> <td>433.92 MHz</td> <td>233.5</td> <td>1084.8</td> <td>Pass</td> </tr> </tbody> </table>				Value (kHz)	Limit (kHz)	Result	433.92 MHz	233.5	1084.8	Pass
	Value (kHz)	Limit (kHz)	Result							
433.92 MHz	233.5	1084.8	Pass							

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 433.92 MHz CW

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

EATN0006 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	433 MHz	Stop Frequency	435 MHz
-----------------	---------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/14/2014	12 mo
Antenna, Biconilog	Teseq	CBL 6141B	AYD	12/17/2013	24 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous modulated operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2009).

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = $N1L1 + N2L2 + \dots$

Where $N1$ is the number of type 1 pulses, $L1$ is length of type 1 pulses, $N2$ is the number of type 2 pulses, $L2$ is the length of type 2 pulses, etc.

Therefore, Duty Cycle = $(N1L1 + N2L2 + \dots)/100mS$ or T , whichever is less. Where T is the period of the pulse train.

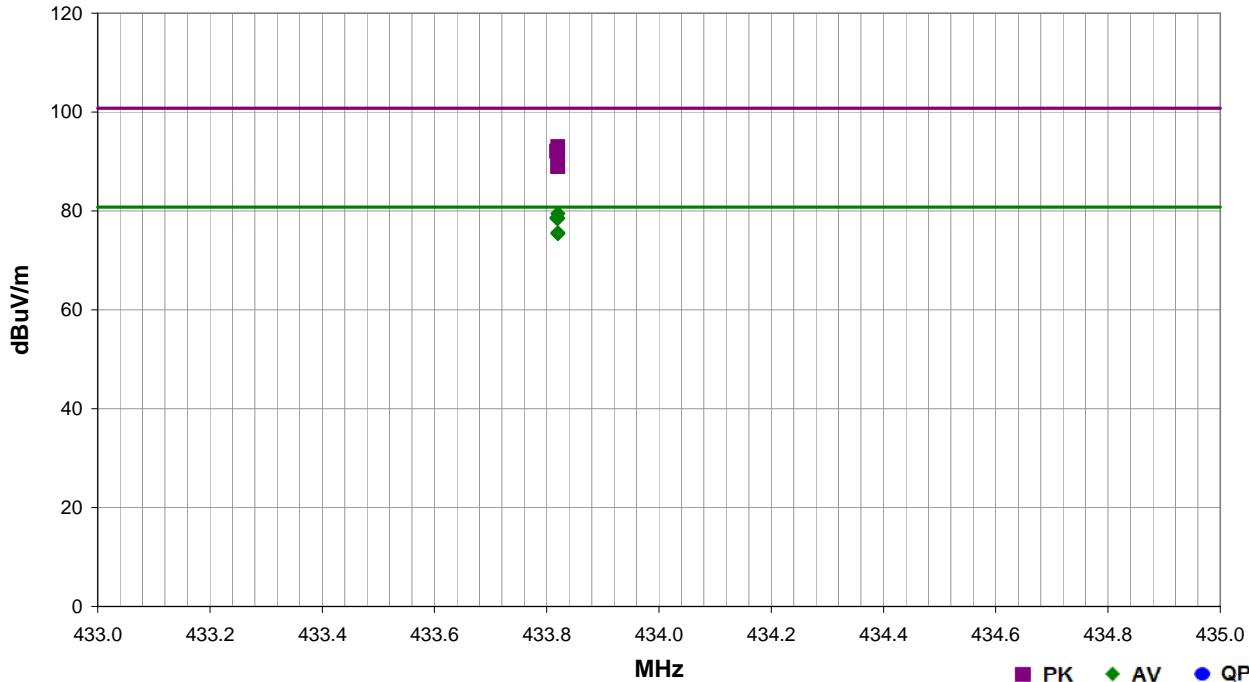
The measured values for the EUT's pulse train are as follows:

Period = 21.33 mSec

Duty Cycle = $20 \log [((1)(21.33))/100] = -13.42 \text{ dB}$

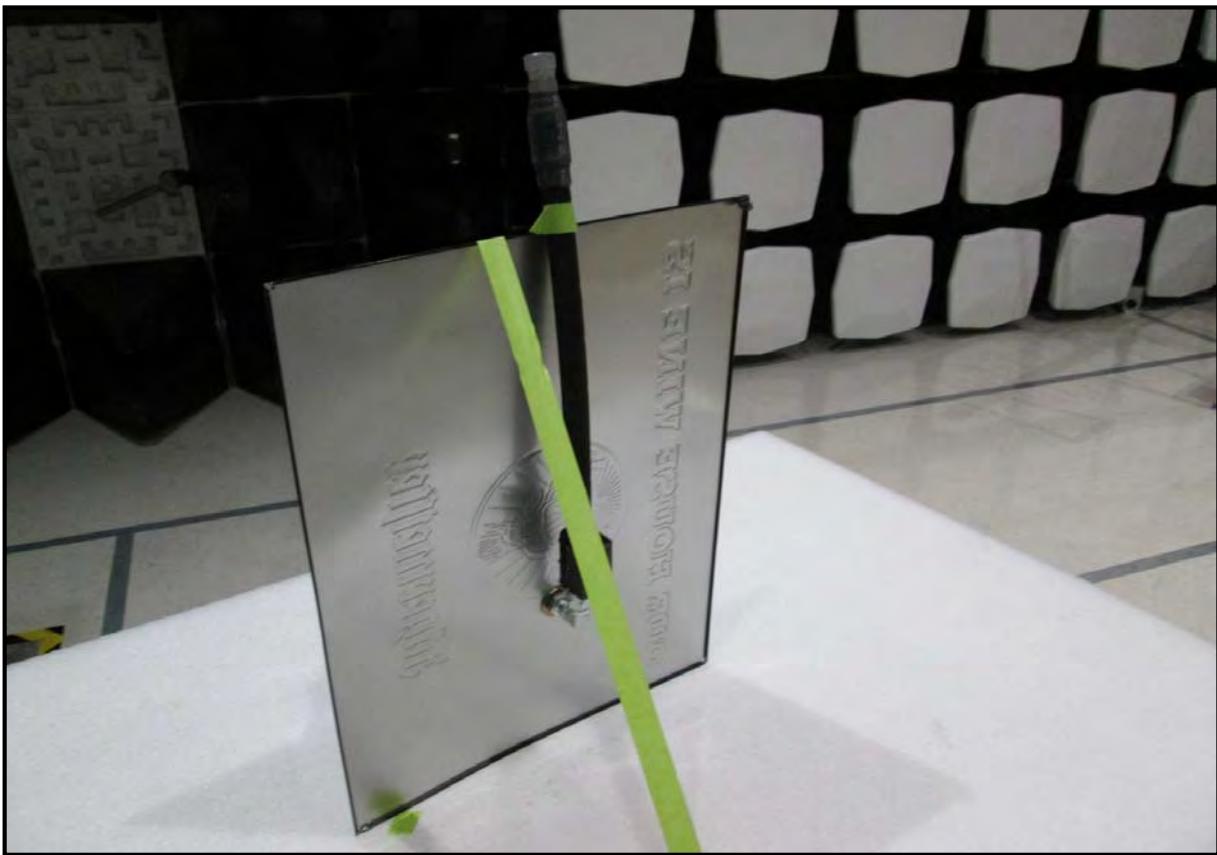
The duty cycle correction factor of -13.42 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

The field strength of the fundamental (transmit) frequency meets the limits as defined in 17 CFR 15.231(h). It also meets


FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2014.06.19
EmiR5 2014.07.09

Work Order:	EATN0006	Date:	09/08/14	<i>Trevor Buls</i>			
Project:	None	Temperature:	22.8 °C				
Job Site:	MN05	Humidity:	51.8% RH				
Serial Number:	None	Barometric Pres.:	1013.1 mbar	Tested by: Trevor Buls			
EUT:	LifeSense Hose Sensor						
Configuration:	2						
Customer:	Eaton Corporation						
Attendees:	John Capesius						
EUT Power:	Battery						
Operating Mode:	Transmitting 433.92 MHz CW						
Deviations:	None						
Comments:	17 inch hose						


Test Specifications		Test Method
FCC 15.231:2014		ANSI C63.10:2009

Run #	11	Test Distance (m)	3	Antenna Height(s)	1 to 4(m)	Results	Pass

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
433.820	70.2	22.8	1.8	270.0	-13.5	0.0	Vert	AV	0.0	79.5	80.8	-1.3	EUT on side
433.818	69.3	22.8	1.7	109.0	-13.5	0.0	Vert	AV	0.0	78.6	80.8	-2.2	EUT Vert
433.820	69.2	22.8	1.0	193.0	-13.5	0.0	Horz	AV	0.0	78.5	80.8	-2.3	EUT Horz
433.818	69.2	22.8	1.0	150.0	-13.5	0.0	Vert	AV	0.0	78.5	80.8	-2.3	EUT Horz
433.820	66.3	22.8	1.7	192.0	-13.5	0.0	Horz	AV	0.0	75.6	80.8	-5.2	EUT Vert
433.820	66.1	22.8	1.0	285.0	-13.5	0.0	Horz	AV	0.0	75.4	80.8	-5.4	EUT on side

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 433.92 MHz CW

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

EATN0006 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	8.2 GHz
-----------------	--------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 10db, SMA'	S.M. Electronics	SA18H-10	REN	5/15/2014	12 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/14/2014	12 mo
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cab	MNI	3/14/2014	12 mo
Antenna, Horn (DRG)	ETS Lindgren	3115	AJA	6/3/2014	24 mo
Antenna, Biconilog	Teseq	CBL 6141B	AYD	12/17/2013	24 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/14/2014	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/14/2014	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The single, integral antenna to be used with the EUT was tested. The EUT was configured for un-modulated, CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2009).

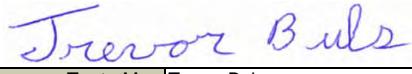
A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

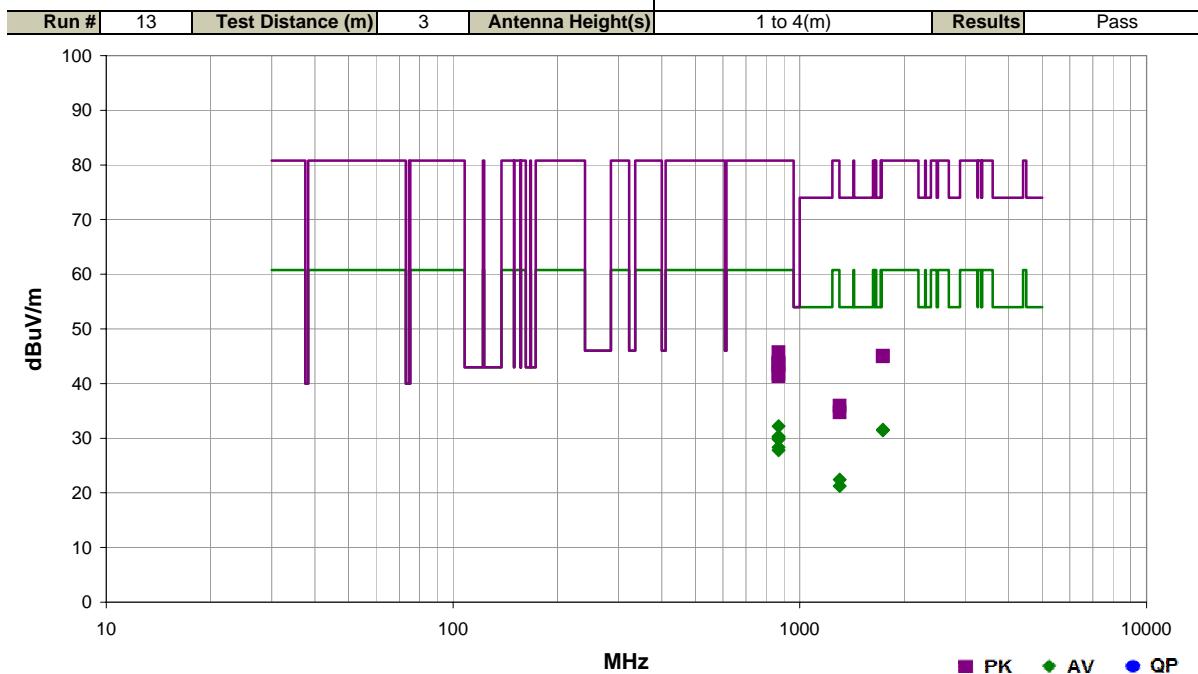
Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = $N1L1 + N2L2 + \dots$

Where $N1$ is the number of type 1 pulses, $L1$ is length of type 1 pulses, $N2$ is the number of type 2 pulses, $L2$ is the length of type 2 pulses, etc.

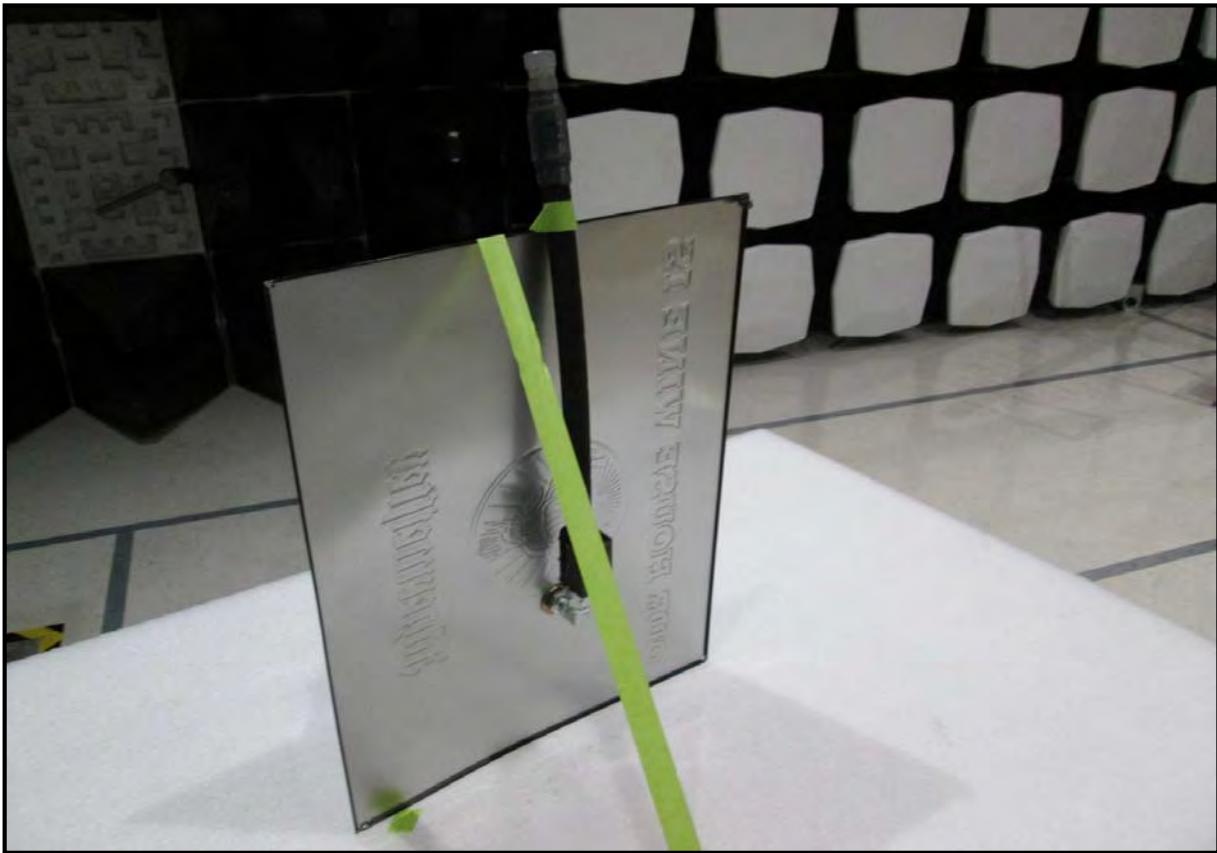

Therefore, Duty Cycle = $(N1L1 + N2L2 + \dots)/100mS$ or T , whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:


Period = 21.33 mSec

Duty Cycle = $20 \log [(1)(21.33)/100] = -13.42 \text{ dB}$

The duty cycle correction factor of -13.42 dB was added to the peak readings to mathematically derive the average levels.


Work Order:	EATN0006	Date:	09/08/14	
Project:	None	Temperature:	22.8 °C	
Job Site:	MN05	Humidity:	51.8% RH	
Serial Number:	None	Barometric Pres.:	1013.1 mbar	
EUT:	LifeSense Hose Sensor	Tested by:	Trevor Buls	
Configuration:	2			
Customer:	Eaton Corporation			
Attendees:	John Capesius			
EUT Power:	Battery			
Operating Mode:	Transmitting 433.92 MHz CW			
Deviations:	None			
Comments:	None			

Test Specifications	Test Method
FCC 15.231(b):2014	ANSI C63.10:2009

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
867.640	26.2	9.5	1.3	204.0	-13.5	10.0	Horz	AV	0.0	32.2	60.8	-28.6	EUT on side
1736.083	50.3	-5.2	1.0	39.0	-13.5	0.0	Vert	AV	0.0	31.6	60.8	-29.0	EUT Vert
1735.250	50.2	5.2	1.0	302.0	-13.5	0.0	Horz	AV	0.0	31.5	60.8	-29.1	EUT on side
867.660	24.3	9.5	2.1	92.0	-13.5	10.0	Horz	AV	0.0	30.3	60.8	-30.5	EUT Vert
868.035	24.1	9.5	1.3	146.0	-13.5	10.0	Vert	AV	0.0	30.1	60.8	-30.7	EUT Vert
867.665	23.8	9.5	1.0	296.0	-13.5	10.0	Vert	AV	0.0	29.8	60.8	-31.0	EUT Horz
1302.162	41.6	-5.7	1.0	293.0	-13.5	0.0	Horz	AV	0.0	22.4	54.0	-31.6	EUT on side
867.620	22.3	9.5	1.0	173.0	-13.5	10.0	Horz	AV	0.0	28.3	60.8	-32.5	EUT Horz
1302.220	40.4	-5.7	1.0	30.0	-13.5	0.0	Vert	AV	0.0	21.2	54.0	-32.8	EUT Vert
868.050	21.8	9.5	1.0	205.0	-13.5	10.0	Vert	AV	0.0	27.8	60.8	-33.0	EUT on side
867.640	26.2	9.5	1.3	204.0		10.0	Horz	PK	0.0	45.7	80.8	-35.1	EUT on side
1736.083	50.3	-5.2	1.0	39.0		0.0	Vert	PK	0.0	45.1	80.8	-35.7	EUT Vert
1735.250	50.2	-5.2	1.0	302.0		0.0	Horz	PK	0.0	45.0	80.8	-35.8	EUT on side
867.660	24.3	9.5	2.1	92.0		10.0	Horz	PK	0.0	43.8	80.8	-37.0	EUT Vert
868.035	24.1	9.5	1.3	146.0		10.0	Vert	PK	0.0	43.6	80.8	-37.2	EUT Vert
867.665	23.8	9.5	1.0	296.0		10.0	Vert	PK	0.0	43.3	80.8	-37.5	EUT Horz
1302.162	41.6	-5.7	1.0	293.0		0.0	Horz	PK	0.0	35.9	74.0	-38.1	EUT on side
867.620	22.3	9.5	1.0	173.0		10.0	Horz	PK	0.0	41.8	80.8	-39.0	EUT Horz
1302.220	40.4	-5.7	1.0	30.0		0.0	Vert	PK	0.0	34.7	74.0	-39.3	EUT Vert
868.050	21.8	9.5	1.0	205.0		10.0	Vert	PK	0.0	41.3	80.8	-39.5	EUT on side

