

**CFR 47 FCC PART 15 SUBPART C****CERTIFICATION TEST REPORT**

*For*

**Vivint Door and Window Sensor (Long Range)**

**MODEL NUMBER: DW03**

**FCC ID: 2AAAS-DW03**

**REPORT NUMBER: 4791771880-1-RF-2**

**ISSUE DATE: May 13, 2025**

**Prepared for**

**Vivint, Inc.  
3401 N. Ashton Blvd. Lehi Utah 84043 United States**

**Prepared by**

**UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch  
Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan,  
Guangdong, China**

**Tel: +86 769 22038881  
Fax: +86 769 33244054  
Website: [www.ul.com](http://www.ul.com)**

Revision History

| Rev. | Issue Date   | Revisions     | Revised By |
|------|--------------|---------------|------------|
| V0   | May 13, 2025 | Initial Issue |            |

| Summary of Test Results |                                          |                                                           |                 |
|-------------------------|------------------------------------------|-----------------------------------------------------------|-----------------|
| Clause                  | Test Items                               | FCC/ISED Rules                                            | Test Results    |
| 1                       | 6dB Bandwidth and 99% Occupied Bandwidth | FCC Part 15.247 (a) (2)                                   | Pass            |
| 2                       | Peak Conducted Output Power              | FCC Part 15.247 (b) (3)                                   | Pass            |
| 3                       | Power Spectral Density                   | FCC Part 15.247 (e)                                       | Pass            |
| 4                       | Conducted Bandedge and Spurious Emission | FCC Part 15.247 (d)                                       | Pass            |
| 5                       | Radiated Bandedge and Spurious Emission  | FCC Part 15.247 (d)<br>FCC Part 15.209<br>FCC Part 15.205 | Pass            |
| 6                       | AC Power Line Conducted Emission         | FCC Part 15.207                                           | N/A<br>(Note 3) |
| 7                       | Antenna Requirement                      | FCC Part 15.203                                           | Pass            |

**Note:**

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >when < Simple Acceptance > decision rule is applied.
3. The EUT is powered by battery and cannot be charged.

## TABLE OF CONTENTS

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>1. ATTESTATION OF TEST RESULTS .....</b>                     | <b>6</b>  |
| <b>2. TEST METHODOLOGY .....</b>                                | <b>7</b>  |
| <b>3. FACILITIES AND ACCREDITATION .....</b>                    | <b>7</b>  |
| <b>4. CALIBRATION AND UNCERTAINTY .....</b>                     | <b>8</b>  |
| 4.1. <i>MEASURING INSTRUMENT CALIBRATION .....</i>              | 8         |
| 4.2. <i>MEASUREMENT UNCERTAINTY.....</i>                        | 8         |
| <b>5. EQUIPMENT UNDER TEST .....</b>                            | <b>9</b>  |
| 5.1. <i>DESCRIPTION OF EUT .....</i>                            | 9         |
| 5.2. <i>CHANNEL LIST.....</i>                                   | 10        |
| 5.3. <i>MAXIMUM OUTPUT POWER .....</i>                          | 10        |
| 5.4. <i>TEST CHANNEL CONFIGURATION.....</i>                     | 10        |
| 5.5. <i>THE WORSE CASE POWER SETTING PARAMETER.....</i>         | 10        |
| 5.6. <i>DESCRIPTION OF AVAILABLE ANTENNAS.....</i>              | 10        |
| 5.7. <i>DESCRIPTION OF TEST SETUP .....</i>                     | 11        |
| <b>6. MEASURING INSTRUMENT AND SOFTWARE USED .....</b>          | <b>12</b> |
| <b>7. ANTENNA PORT TEST RESULTS .....</b>                       | <b>14</b> |
| 7.1. <i>ON TIME AND DUTY CYCLE.....</i>                         | 14        |
| 7.2. <i>6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH.....</i> | 15        |
| 7.3. <i>CONDUCTED OUTPUT POWER.....</i>                         | 17        |
| 7.4. <i>POWER SPECTRAL DENSITY.....</i>                         | 18        |
| 7.5. <i>CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS .....</i>     | 20        |
| <b>8. RADIATED TEST RESULTS.....</b>                            | <b>22</b> |
| 8.1. <i>SPURIOUS EMISSIONS (1 GHz ~ 10 GHz).....</i>            | 28        |
| 8.2. <i>SPURIOUS EMISSIONS (30 MHz ~ 1 GHz).....</i>            | 32        |
| 8.3. <i>SPURIOUS EMISSIONS BELOW 30 MHz .....</i>               | 34        |
| <b>9. ANTENNA REQUIREMENTS.....</b>                             | <b>37</b> |
| <b>10. Appendix.....</b>                                        | <b>38</b> |
| 10.1. <i>Appendix A: DTS Bandwidth.....</i>                     | 38        |
| 10.1.1. <i>Test Result.....</i>                                 | 38        |
| 10.1.2. <i>Test Graphs .....</i>                                | 39        |
| 10.2. <i>Appendix B: Occupied Channel Bandwidth.....</i>        | 40        |
| 10.2.1. <i>Test Result.....</i>                                 | 40        |
| 10.2.2. <i>Test Graphs .....</i>                                | 41        |

|                                                       |    |
|-------------------------------------------------------|----|
| 10.3. Appendix C: Maximum conducted output power..... | 42 |
| 10.3.1. Test Result.....                              | 42 |
| 10.4. Appendix D: Maximum power spectral density..... | 43 |
| 10.4.1. Test Result.....                              | 43 |
| 10.4.2. Test Graphs.....                              | 44 |
| 10.5. Appendix E: Band edge measurements.....         | 45 |
| 10.5.1. Test Result.....                              | 45 |
| 10.5.2. Test Graphs.....                              | 46 |
| 10.6. Appendix F: Conducted Spurious Emission.....    | 47 |
| 10.6.1. Test Result.....                              | 47 |
| 10.6.2. Test Graphs.....                              | 48 |
| 10.7. Appendix G: Duty Cycle.....                     | 50 |
| 10.7.1. Test Result.....                              | 50 |
| 10.7.2. Test Graphs.....                              | 51 |

## 1. ATTESTATION OF TEST RESULTS

### Applicant Information

Company Name: Vivint, Inc.  
Address: 3401 N. Ashton Blvd. Lehi Utah 84043 United States

### Manufacturer Information

Company Name: Vivint, Inc.  
Address: 3401 N. Ashton Blvd. Lehi Utah 84043 United States

### EUT Information

EUT Name: Vivint Door and Window Sensor (Long Range)  
Model: DW03  
Sample Received Date: April 30, 2025  
Sample Status: Normal  
Sample ID: 8431413  
Date of Tested: May 6, 2025~ May 13, 2025

| APPLICABLE STANDARDS         |              |
|------------------------------|--------------|
| STANDARD                     | TEST RESULTS |
| CFR 47 FCC PART 15 SUBPART C | PASS         |

Prepared By:



Fanny Huang

Engineer Project Associate

Checked By:



Kebo Zhang

Senior Project Engineer

Approved By:



Stephen Guo

Operations Manager

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

## 3. FACILITIES AND ACCREDITATION

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accreditation Certificate | <p><b>A2LA (Certificate No.: 4102.01)</b><br/>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.</p> <p><b>FCC (FCC Designation No.: CN1187)</b><br/>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.</p> <p><b>ISED (Company No.: 21320)</b><br/>UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.</p> |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Note 1:

All tests measurement facilities use to collect the measurement data are located at Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan, Guangdong, China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

## 4. CALIBRATION AND UNCERTAINTY

### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

### 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Item                                                                                                                                     | Uncertainty                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Conduction emission                                                                                                                           | 3.62 dB                                                |
| Radiated Emission<br>(Included Fundamental Emission) (9 kHz ~ 30 MHz)                                                                         | 2.2 dB                                                 |
| Radiated Emission<br>(Included Fundamental Emission) (30 MHz ~ 1 GHz)                                                                         | 4.00 dB                                                |
| Radiated Emission<br>(Included Fundamental Emission) (1 GHz to 26 GHz)                                                                        | 5.78 dB (1 GHz ~ 18 GHz)<br>5.23 dB (18 GHz ~ 26 GHz)  |
| Duty Cycle                                                                                                                                    | ±0.028%                                                |
| DTS and 99% Occupied Bandwidth                                                                                                                | ±0.0196%                                               |
| Maximum Conducted Output Power                                                                                                                | ±0.686 dB                                              |
| Maximum Power Spectral Density Level                                                                                                          | ±0.743 dB                                              |
| Conducted Band-edge Compliance                                                                                                                | ±1.328 dB                                              |
| Conducted Unwanted Emissions In Non-restricted<br>Frequency Bands                                                                             | ±0.746 dB (9 kHz ~ 1 GHz)<br>±1.328dB (1 GHz ~ 26 GHz) |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. |                                                        |

## 5. EQUIPMENT UNDER TEST

### 5.1. DESCRIPTION OF EUT

|                          |                                            |
|--------------------------|--------------------------------------------|
| EUT Name                 | Vivint Door and Window Sensor (Long Range) |
| Model                    | DW03                                       |
| Battery                  | DC 3 V*2                                   |
| Protocol                 | ZWAVE                                      |
| Transmit Frequency Range | 902 MHz ~ 928 MHz                          |
| Modulation               | OQPSK                                      |

Note: There are two batteries in the EUT and they are connected in parallel. So the normal test Voltage is DC 3V.

## 5.2. CHANNEL LIST

| Channel | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|---------|-----------------|
| 1       | 912             | 2       | 920             | /       | /               |

## 5.3. MAXIMUM OUTPUT POWER

| Test Mode | Frequency (MHz) | Channel Number | Maximum Peak Output Power (dBm) |
|-----------|-----------------|----------------|---------------------------------|
| OQPSK     | 902 - 928       | 2              | 14.01                           |

## 5.4. TEST CHANNEL CONFIGURATION

| Test Mode | Test Channel                             | Frequency           |
|-----------|------------------------------------------|---------------------|
| OQPSK     | CH 1(Low Channel),<br>CH 2(High Channel) | 912 MHz,<br>920 MHz |

## 5.5. THE WORSE CASE POWER SETTING PARAMETER

| The Worse Case Power Setting Parameter |                         |                             |         |
|----------------------------------------|-------------------------|-----------------------------|---------|
| Test Software Version                  |                         | sscom5.12.1                 |         |
| Test Mode                              | Transmit Antenna Number | Test Software Setting Value |         |
|                                        |                         | LCH                         | HCH     |
| OQPSK                                  | 1                       | default                     | default |

## 5.6. DESCRIPTION OF AVAILABLE ANTENNAS

| Antenna | Frequency (MHz) | Antenna Type  | MAX Antenna Gain (dBi) |
|---------|-----------------|---------------|------------------------|
| 1       | 902 - 928       | Metal Antenna | 1.44                   |

| Test Mode | Transmit and Receive Mode                    | Description                                              |
|-----------|----------------------------------------------|----------------------------------------------------------|
| OQPSK     | <input checked="" type="checkbox"/> 1TX, 1RX | Antenna 1 can be used as transmitting/receiving antenna. |

Note: 1. The value of the antenna gain was declared by customer.

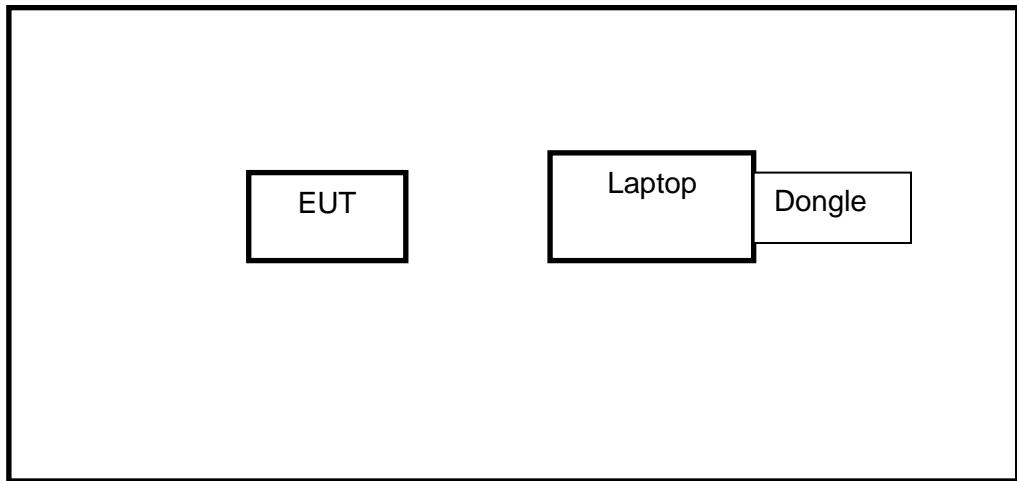
## 5.7. DESCRIPTION OF TEST SETUP

### SUPPORT EQUIPMENT

| Item | Equipment | Brand Name | Model Name | P/N |
|------|-----------|------------|------------|-----|
| 1    | PC        | Lenovo     | E42-80     | /   |
| 2    | Dongle    | /          | /          | /   |

### I/O CABLES

| Cable No | Port | Connector Type | Cable Type | Cable Length(m) | Remarks |
|----------|------|----------------|------------|-----------------|---------|
| /        | /    | /              | /          | /               | /       |


### ACCESSORIES

| Item | Accessory | Brand Name | Model Name | Description |
|------|-----------|------------|------------|-------------|
| /    | /         |            | /          | /           |

### TEST SETUP

The EUT can work in engineering mode with a software through a Laptop controlled by dongle.

### SETUP DIAGRAM FOR TESTS



## 6. MEASURING INSTRUMENT AND SOFTWARE USED

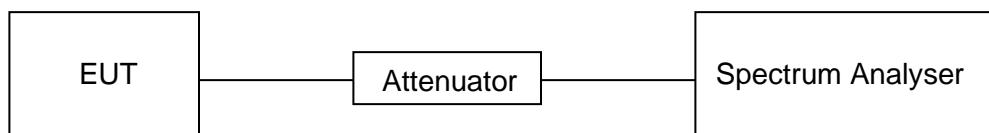
| R&S TS 8997 Test System        |                 |                         |                  |              |              |
|--------------------------------|-----------------|-------------------------|------------------|--------------|--------------|
| Equipment                      | Manufacturer    | Model No.               | Serial No.       | Last Cal.    | Due. Date    |
| Power sensor, Power Meter      | R&S             | OSP120                  | 100921           | Dec.27,2024  | Dec.26,2025  |
| Vector Signal Generator        | R&S             | SMBV100A                | 261637           | Sep.28, 2024 | Sep.27, 2025 |
| Signal Generator               | R&S             | SMB100A                 | 178553           | Sep.28, 2024 | Sep.27, 2025 |
| Signal Analyzer                | R&S             | FSV40                   | 101118           | Sep.28, 2024 | Sep.27, 2025 |
| Software                       |                 |                         |                  |              |              |
| Description                    | Manufacturer    | Name                    |                  | Version      |              |
| For R&S TS 8997 Test System    | Rohde & Schwarz | EMC 32                  |                  | 10.60.10     |              |
| Tonsend RF Test System         |                 |                         |                  |              |              |
| Equipment                      | Manufacturer    | Model No.               | Serial No.       | Last Cal.    | Due. Date    |
| Wireless Connectivity Tester   | R&S             | CMW270                  | 1201.0002N75-102 | Sep.13, 2024 | Sep.12, 2025 |
| PXA Signal Analyzer            | Keysight        | N9030A                  | MY55410512       | Sep.28, 2024 | Sep.27, 2025 |
| MXG Vector Signal Generator    | Keysight        | N5182B                  | MY56200284       | Sep.28, 2024 | Sep.27, 2025 |
| MXG Vector Signal Generator    | Keysight        | N5172B                  | MY56200301       | Sep.28, 2024 | Sep.27, 2025 |
| DC power supply                | Keysight        | E3642A                  | MY55159130       | Sep.28, 2024 | Sep.27, 2025 |
| Temperature & Humidity Chamber | SANMOOD         | SG-80-CC-2              | 2088             | Sep.28, 2024 | Sep.27, 2025 |
| Attenuator                     | Aglient         | 8495B                   | 2814a12853       | Sep.28, 2024 | Sep.27, 2025 |
| RF Control Unit                | Tonsend         | JS0806-2                | 23B80620666      | Dec.27,2024  | Dec.26,2025  |
| Software                       |                 |                         |                  |              |              |
| Description                    | Manufacturer    | Name                    |                  | Version      |              |
| Tonsend SRD Test System        | Tonsend         | JS1120-3 RF Test System |                  | V3.2.22      |              |

| Radiated Emissions          |              |            |               |               |              |
|-----------------------------|--------------|------------|---------------|---------------|--------------|
| Equipment                   | Manufacturer | Model No.  | Serial No.    | Last Cal.     | Due Date     |
| MXE EMI Receiver            | KESIGHT      | N9038A     | MY56400036    | Sep.28, 2024  | Sep.27, 2025 |
| Hybrid Log Periodic Antenna | TDK          | HLP-3003C  | 130960        | June 28, 2024 | June.27 2027 |
| Preamplifier                | HP           | 8447D      | 2944A09099    | Sep.28, 2024  | Sep.27, 2025 |
| EMI Measurement Receiver    | R&S          | ESR26      | 101377        | Sep.28, 2024  | Sep.27, 2025 |
| Horn Antenna                | TDK          | HRN-0118   | 130940        | Dec.10, 2024  | Dec.11, 2027 |
| Preamplifier                | TDK          | PA-02-0118 | TRS-305-00067 | Sep.28, 2024  | Sep.27, 2025 |
| Horn Antenna                | Schwarzbeck  | BBHA9170   | 697           | Jun 30, 2024  | Jun 29, 2027 |
| Preamplifier                | TDK          | PA-02-2    | TRS-307-00003 | Sep.28, 2024  | Sep.27, 2025 |
| Preamplifier                | TDK          | PA-02-3    | TRS-308-00002 | Sep.28, 2024  | Sep.27, 2025 |
| Loop antenna                | Schwarzbeck  | 1519B      | 00008         | Dec.09, 2024  | Dec.08, 2027 |

| Other Instrument           |              |           |            |              |              |
|----------------------------|--------------|-----------|------------|--------------|--------------|
| Equipment                  | Manufacturer | Model No. | Serial No. | Last Cal.    | Due Date     |
| Temperature humidity probe | OMEGA        | ITHX-SD-5 | 18470007   | Oct.8, 2024  | Oct.7, 2025  |
| Barometer                  | Yiyi         | Baro      | N/A        | Oct.10, 2024 | Oct.9, 2025  |
| Attenuator                 | Agilent      | 8495B     | 2814a12853 | Sep.28, 2024 | Sep.27, 2025 |

## 7. ANTENNA PORT TEST RESULTS

### 7.1. ON TIME AND DUTY CYCLE


#### LIMITS

None; for reporting purposes only.

#### PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

#### TEST SETUP



#### TEST ENVIRONMENT

|                     |         |                   |        |
|---------------------|---------|-------------------|--------|
| Temperature         | 24.1 °C | Relative Humidity | 52 %   |
| Atmosphere Pressure | 101 kPa | Test Voltage      | DC 3 V |

#### TEST DATE / ENGINEER

|           |             |         |             |
|-----------|-------------|---------|-------------|
| Test Date | May 8, 2025 | Test By | Walker Yuan |
|-----------|-------------|---------|-------------|

#### RESULTS

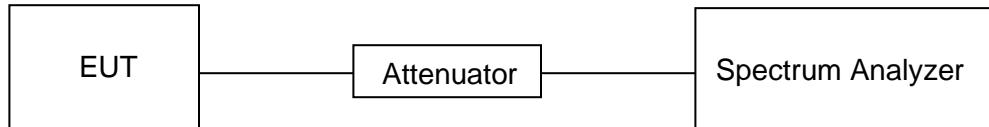
Please refer to appendix G.

## 7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

### LIMITS

| CFR 47FCC Part15 (15.247) Subpart C |                         |                                    |                       |
|-------------------------------------|-------------------------|------------------------------------|-----------------------|
| Section                             | Test Item               | Limit                              | Frequency Range (MHz) |
| CFR 47 FCC 15.247(a)(2)             | 6 dB Bandwidth          | $\geq 500$ kHz                     | 902-928               |
| ISED RSS-Gen Clause 6.7             | 99 % Occupied Bandwidth | None; for reporting purposes only. | 902-928               |

### TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

|                  |                                                                                                                                                               |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Center Frequency | The center frequency of the channel under test                                                                                                                |
| Frequency Span   | For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission<br>For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW |
| Detector         | Peak                                                                                                                                                          |
| RBW              | For 6 dB Bandwidth: 100 kHz<br>For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth                                                              |
| VBW              | For 6 dB Bandwidth: $\geq 3 \times$ RBW<br>For 99 % Occupied Bandwidth: $\geq 3 \times$ RBW                                                                   |
| Trace            | Max hold                                                                                                                                                      |
| Sweep            | Auto couple                                                                                                                                                   |

- Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

### TEST SETUP



TEST ENVIRONMENT

|                     |         |                   |        |
|---------------------|---------|-------------------|--------|
| Temperature         | 24.1 °C | Relative Humidity | 52 %   |
| Atmosphere Pressure | 101 kPa | Test Voltage      | DC 3 V |

TEST DATE / ENGINEER

|           |             |         |             |
|-----------|-------------|---------|-------------|
| Test Date | May 8, 2025 | Test By | Walker Yuan |
|-----------|-------------|---------|-------------|

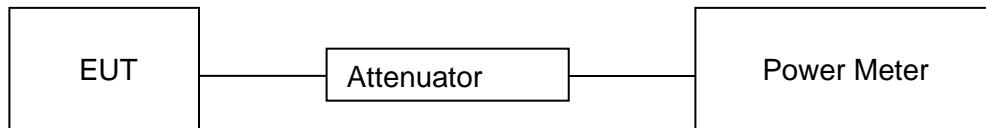
RESULTS

Please refer to appendix A & B.

### 7.3. CONDUCTED OUTPUT POWER

#### LIMITS

| CFR 47 FCC Part15 (15.247) Subpart C |                   |                  |                       |
|--------------------------------------|-------------------|------------------|-----------------------|
| Section                              | Test Item         | Limit            | Frequency Range (MHz) |
| CFR 47 FCC 15.247(b)(3)              | Peak Output Power | 1 watt or 30 dBm | 902-928               |


#### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 1.9.1.3.

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

#### TEST SETUP



#### TEST ENVIRONMENT

|                     |         |                   |        |
|---------------------|---------|-------------------|--------|
| Temperature         | 24.1 °C | Relative Humidity | 52 %   |
| Atmosphere Pressure | 101 kPa | Test Voltage      | DC 3 V |

#### TEST DATE / ENGINEER

|           |             |         |             |
|-----------|-------------|---------|-------------|
| Test Date | May 8, 2025 | Test By | Walker Yuan |
|-----------|-------------|---------|-------------|

#### RESULTS

Please refer to appendix C.

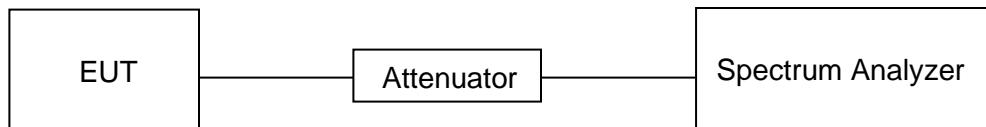
## 7.4. POWER SPECTRAL DENSITY

### LIMITS

| CFR 47 FCC Part15 (15.247) Subpart C |                        |                                                   |                       |
|--------------------------------------|------------------------|---------------------------------------------------|-----------------------|
| Section                              | Test Item              | Limit                                             | Frequency Range (MHz) |
| CFR 47 FCC §15.247 (e)               | Power Spectral Density | Shall not be greater than 8 dBm in any 3 kHz band | 902-928               |

### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.2.


Connect the EUT to the spectrum analyzer and use the following settings:

|                  |                                                      |
|------------------|------------------------------------------------------|
| Center Frequency | The center frequency of the channel under test       |
| Detector         | peak                                                 |
| RBW              | $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ |
| VBW              | $\geq 3 \times \text{RBW}$                           |
| Span             | $1.5 \times \text{DTS bandwidth}$                    |
| Trace            | Max hold                                             |
| Sweep time       | Auto couple                                          |

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### TEST SETUP



**TEST ENVIRONMENT**

|                     |         |                   |        |
|---------------------|---------|-------------------|--------|
| Temperature         | 24.1 °C | Relative Humidity | 52 %   |
| Atmosphere Pressure | 101 kPa | Test Voltage      | DC 3 V |

**TEST DATE / ENGINEER**

|           |             |         |             |
|-----------|-------------|---------|-------------|
| Test Date | May 8, 2025 | Test By | Walker Yuan |
|-----------|-------------|---------|-------------|

**RESULTS**

Please refer to appendix D.

## 7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

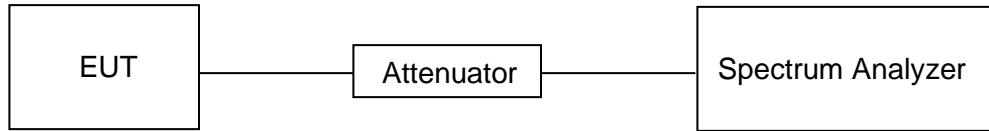
### LIMITS

| CFR 47 FCC Part15 (15.247) Subpart C |                                           |                                                                                                                         |
|--------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Section                              | Test Item                                 | Limit                                                                                                                   |
| CFR 47 FCC §15.247 (d)               | Conducted Bandedge and Spurious Emissions | at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power |

### TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:


|                  |                                                |
|------------------|------------------------------------------------|
| Center Frequency | The center frequency of the channel under test |
| Detector         | Peak                                           |
| RBW              | 100 kHz                                        |
| VBW              | $\geq 3 \times$ RBW                            |
| Span             | 1.5 x DTS bandwidth                            |
| Trace            | Max hold                                       |
| Sweep time       | Auto couple.                                   |

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| Span               | Set the center frequency and span to encompass frequency range to be measured |
| Detector           | Peak                                                                          |
| RBW                | 100 kHz                                                                       |
| VBW                | $\geq 3 \times$ RBW                                                           |
| measurement points | $\geq$ span/RBW                                                               |
| Trace              | Max hold                                                                      |
| Sweep time         | Auto couple.                                                                  |

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUPTEST ENVIRONMENT

|                     |         |                   |        |
|---------------------|---------|-------------------|--------|
| Temperature         | 24.1 °C | Relative Humidity | 52 %   |
| Atmosphere Pressure | 101 kPa | Test Voltage      | DC 3 V |

TEST DATE / ENGINEER

|           |             |         |             |
|-----------|-------------|---------|-------------|
| Test Date | May 8, 2025 | Test By | Walker Yuan |
|-----------|-------------|---------|-------------|

RESULTS

Please refer to appendix E&F.

## 8. RADIATED TEST RESULTS

### LIMITS

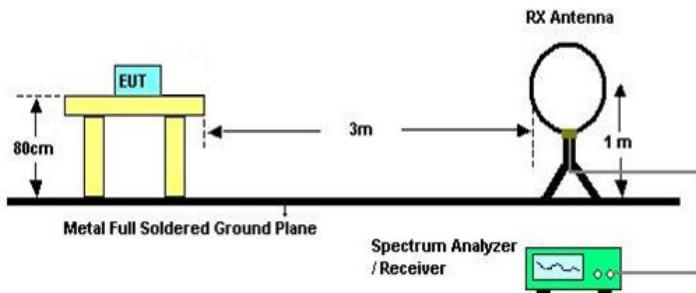
Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

| Emissions radiated outside of the specified frequency bands above 30 MHz |                                    |                                      |         |
|--------------------------------------------------------------------------|------------------------------------|--------------------------------------|---------|
| Frequency Range (MHz)                                                    | Field Strength Limit (uV/m) at 3 m | Field Strength Limit (dBuV/m) at 3 m |         |
|                                                                          |                                    | Quasi-Peak                           |         |
| 30 - 88                                                                  | 100                                | 40                                   |         |
| 88 - 216                                                                 | 150                                | 43.5                                 |         |
| 216 - 960                                                                | 200                                | 46                                   |         |
| Above 960                                                                | 500                                | 54                                   |         |
| Above 1000                                                               | 500                                | Peak                                 | Average |
|                                                                          |                                    | 74                                   | 54      |

| FCC Emissions radiated outside of the specified frequency bands below 30 MHz |                                   |                               |
|------------------------------------------------------------------------------|-----------------------------------|-------------------------------|
| Frequency (MHz)                                                              | Field strength (microvolts/meter) | Measurement distance (meters) |
| 0.009-0.490                                                                  | 2400/F(kHz)                       | 300                           |
| 0.490-1.705                                                                  | 24000/F(kHz)                      | 30                            |
| 1.705-30.0                                                                   | 30                                | 30                            |

FCC Restricted bands of operation refer to FCC §15.205 (a):

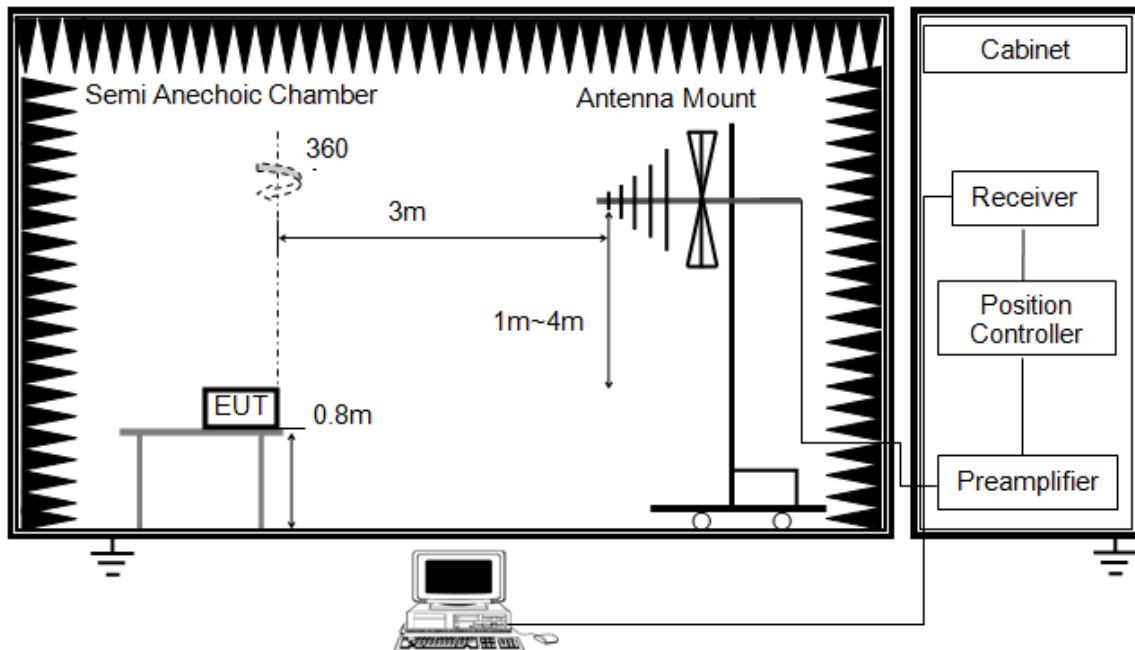

| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |

Note: <sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup>Above 38.6c

## TEST SETUP AND PROCEDURE

Below 30 MHz

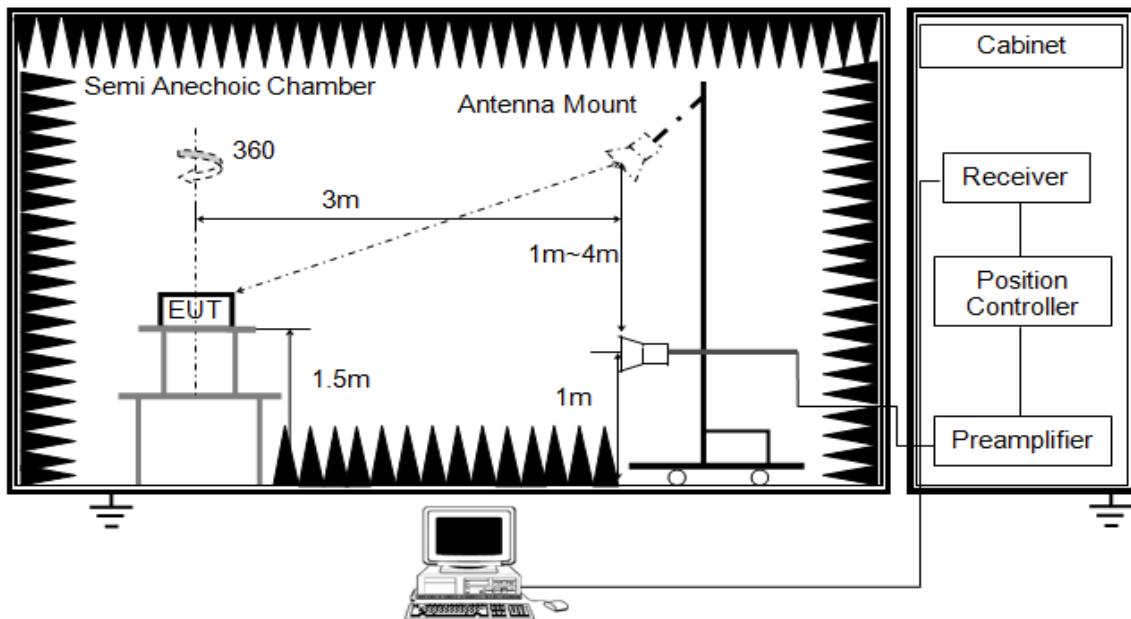



The setting of the spectrum analyser

|       |                                                                  |
|-------|------------------------------------------------------------------|
| RBW   | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) |
| VBW   | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) |
| Sweep | Auto                                                             |
| Trace | Max hold                                                         |

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of  $377\Omega$ . For example, the measurement frequency  $X$  KHz resulted in a level of  $Y$  dB $V/m$ , which is equivalent to  $Y-51.5 = Z$  dB $uA/m$ , which has the same margin,  $W$  dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

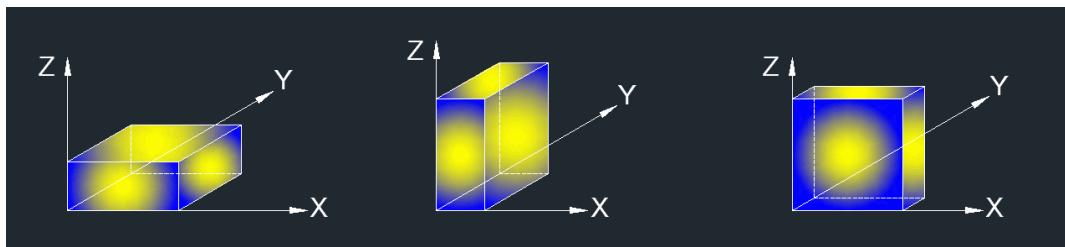



The setting of the spectrum analyser

|          |          |
|----------|----------|
| RBW      | 120 kHz  |
| VBW      | 300 kHz  |
| Sweep    | Auto     |
| Detector | Peak/QP  |
| Trace    | Max hold |

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1GHz




The setting of the spectrum analyser

|          |                                |
|----------|--------------------------------|
| RBW      | 1 MHz                          |
| VBW      | PEAK: 3 MHz<br>AVG: see note 6 |
| Sweep    | Auto                           |
| Detector | Peak                           |
| Trace    | Max hold                       |

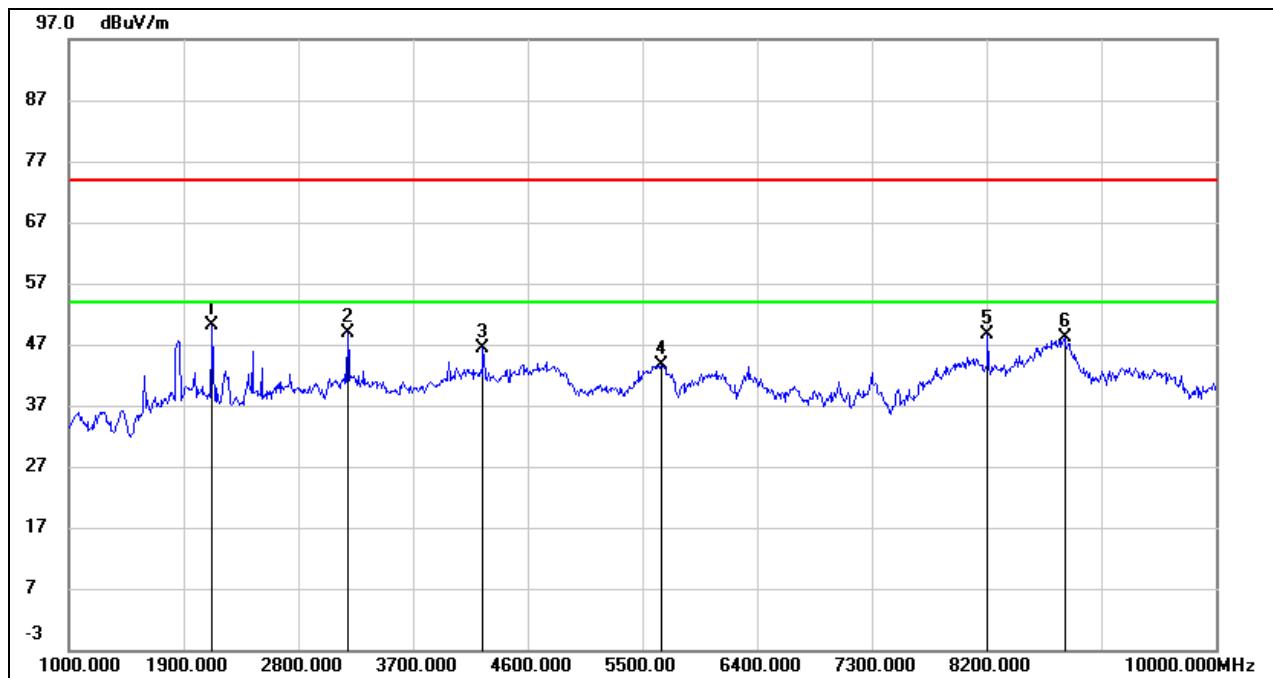
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 1.5 m above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: For the radiated restricted bandedge, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.


#### TEST ENVIRONMENT

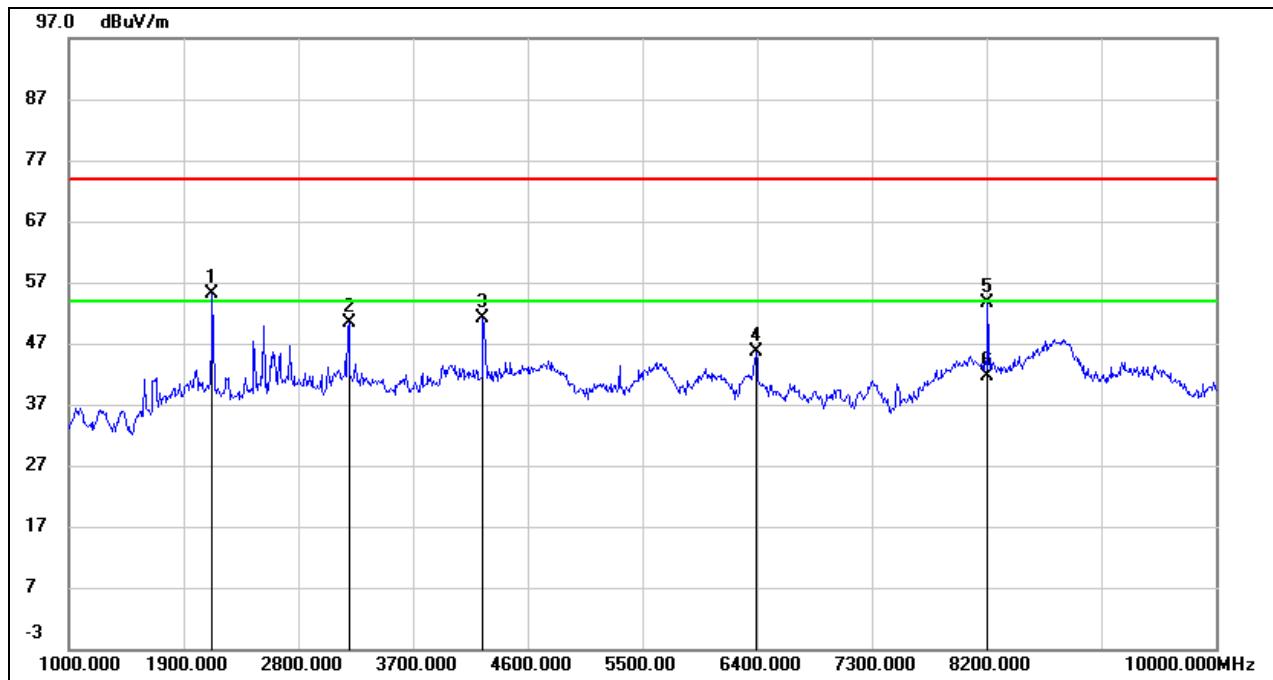
|                     |         |                   |        |
|---------------------|---------|-------------------|--------|
| Temperature         | 24.6 °C | Relative Humidity | 62 %   |
| Atmosphere Pressure | 101 kPa | Test Voltage      | DC 3 V |

#### RESULTS

## 8.1. SPURIOUS EMISSIONS (1 GHz ~ 10 GHz)

### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)




| No. | Frequency | Reading | Correct | Result   | Limit for Peak | Margin for Peak | Limit for AVG | Margin for AVG | Remark |
|-----|-----------|---------|---------|----------|----------------|-----------------|---------------|----------------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m)       | (dB)            | (dBuV/m)      | (dB)           |        |
| 1   | 2125.000  | 56.33   | -6.25   | 50.08    | 74.00          | -23.92          | 54.00         | -3.92          | peak   |
| 2   | 3187.000  | 52.41   | -3.41   | 49.00    | 74.00          | -25.00          | 54.00         | -5.00          | peak   |
| 3   | 4249.000  | 47.21   | -0.85   | 46.36    | 74.00          | -27.64          | 54.00         | -7.64          | peak   |
| 4   | 5644.000  | 42.26   | 1.36    | 43.62    | 74.00          | -30.38          | 54.00         | -10.38         | peak   |
| 5   | 8209.000  | 43.34   | 5.19    | 48.53    | 74.00          | -25.47          | 54.00         | -5.47          | peak   |
| 6   | 8812.000  | 40.71   | 7.35    | 48.06    | 74.00          | -25.94          | 54.00         | -5.94          | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. The measured result complies with AV limit, which is 54 dBuV/m.

3. Peak: Peak detector.

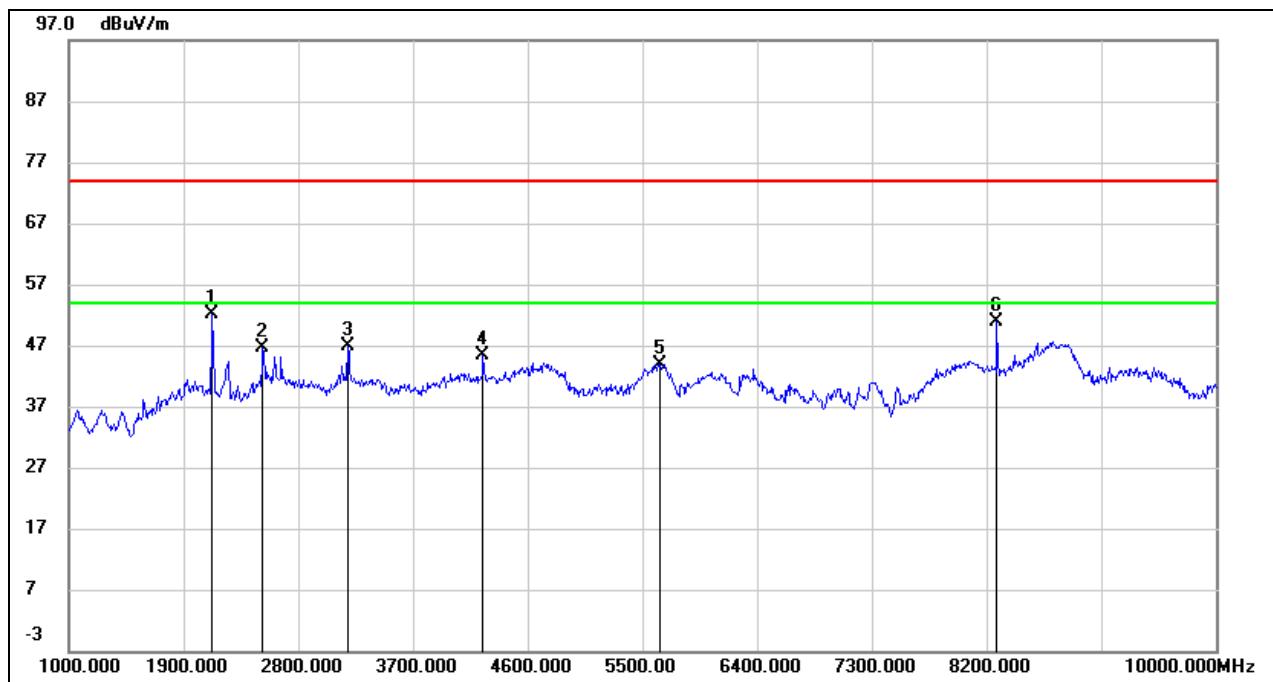
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

**HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)**


| No. | Frequency | Reading | Correct | Result   | Limit for Peak | Margin for Peak | Limit for AVG | Margin for AVG | Remark |
|-----|-----------|---------|---------|----------|----------------|-----------------|---------------|----------------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m)       | (dB)            | (dBuV/m)      | (dB)           |        |
| 1*  | 2125.000  | 61.36   | -6.25   | 55.11    | /              | /               | /             | /              | peak   |
| 2   | 3196.000  | 53.64   | -3.38   | 50.26    | 74.00          | -23.74          | 54.00         | -3.74          | peak   |
| 3   | 4249.000  | 51.96   | -0.85   | 51.11    | 74.00          | -22.89          | 54.00         | -2.89          | peak   |
| 4   | 6391.000  | 44.00   | 1.66    | 45.66    | 74.00          | -28.34          | 54.00         | -8.34          | peak   |
| 5   | 8209.000  | 48.45   | 5.19    | 53.64    | 74.00          | -20.36          | /             | /              | peak   |
| 6   | 8209.000  | 36.50   | 5.19    | 41.69    | /              | /               | 54.00         | -12.31         | AVG    |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. The measured result complies with AV limit, which is 54 dBuV/m.


3. Peak: Peak detector.

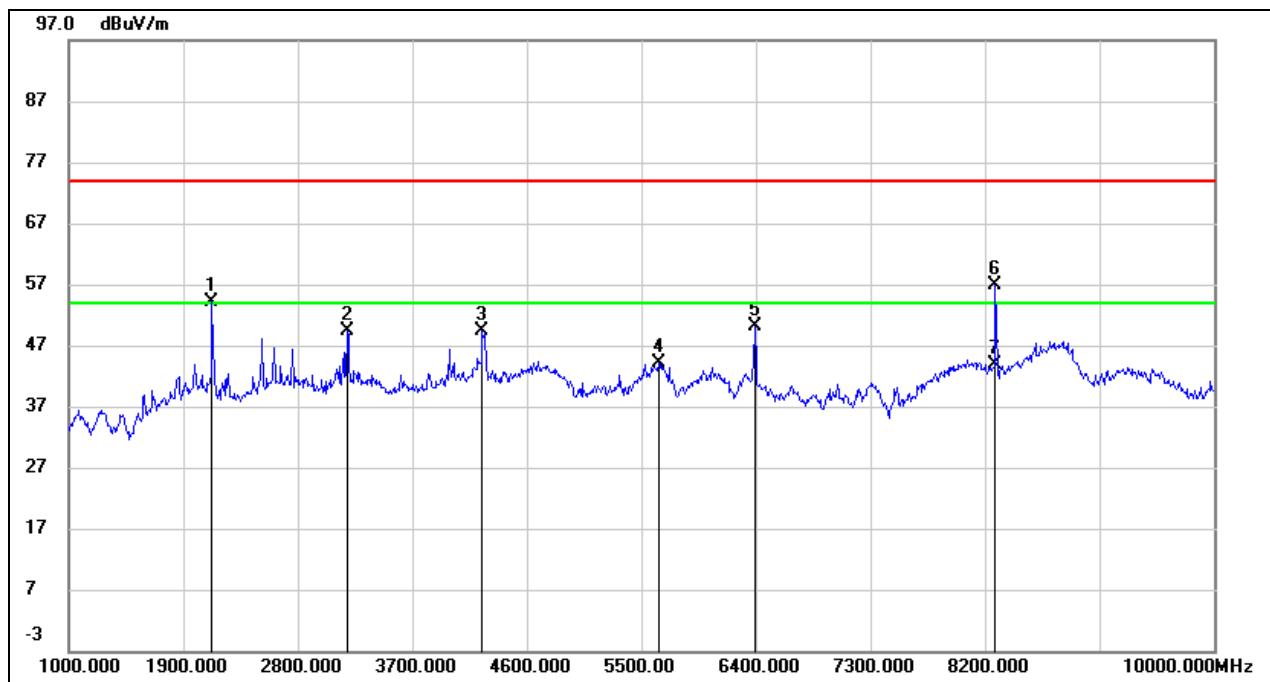
4. AVG: VBW=1/Ton where: ton is transmit duration.

5. For transmit duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7.\*-indicates frequency is out of the restricted bands and the limit is referring to 15.247 (d) and RSS-247 clause 5.5. We had already performed the conducted non-restricted bands test, please refer to clause 7.5.

**HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)**



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>(dB/m) | Result<br>(dBuV/m) | Limit for<br>Peak<br>(dBuV/m) | Margin<br>for<br>Peak<br>(dB) | Limit for<br>AVG<br>(dBuV/m) | Margin<br>for AVG<br>(dB) | Remark |
|-----|--------------------|-------------------|-------------------|--------------------|-------------------------------|-------------------------------|------------------------------|---------------------------|--------|
| 1   | 2125.000           | 58.43             | -6.25             | 52.18              | 74.00                         | -21.82                        | 54.00                        | -1.82                     | peak   |
| 2   | 2521.000           | 51.69             | -5.16             | 46.53              | 74.00                         | -27.47                        | 54.00                        | -7.47                     | peak   |
| 3   | 3187.000           | 50.28             | -3.41             | 46.87              | 74.00                         | -27.13                        | 54.00                        | -7.13                     | peak   |
| 4   | 4249.000           | 46.26             | -0.85             | 45.41              | 74.00                         | -28.59                        | 54.00                        | -8.59                     | peak   |
| 5   | 5635.000           | 42.44             | 1.47              | 43.91              | 74.00                         | -30.09                        | 54.00                        | -10.09                    | peak   |
| 6   | 8281.000           | 45.35             | 5.56              | 50.91              | 74.00                         | -23.09                        | 54.00                        | -3.09                     | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. The measured result complies with AV limit, which is 54 dBuV/m.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

**HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)**

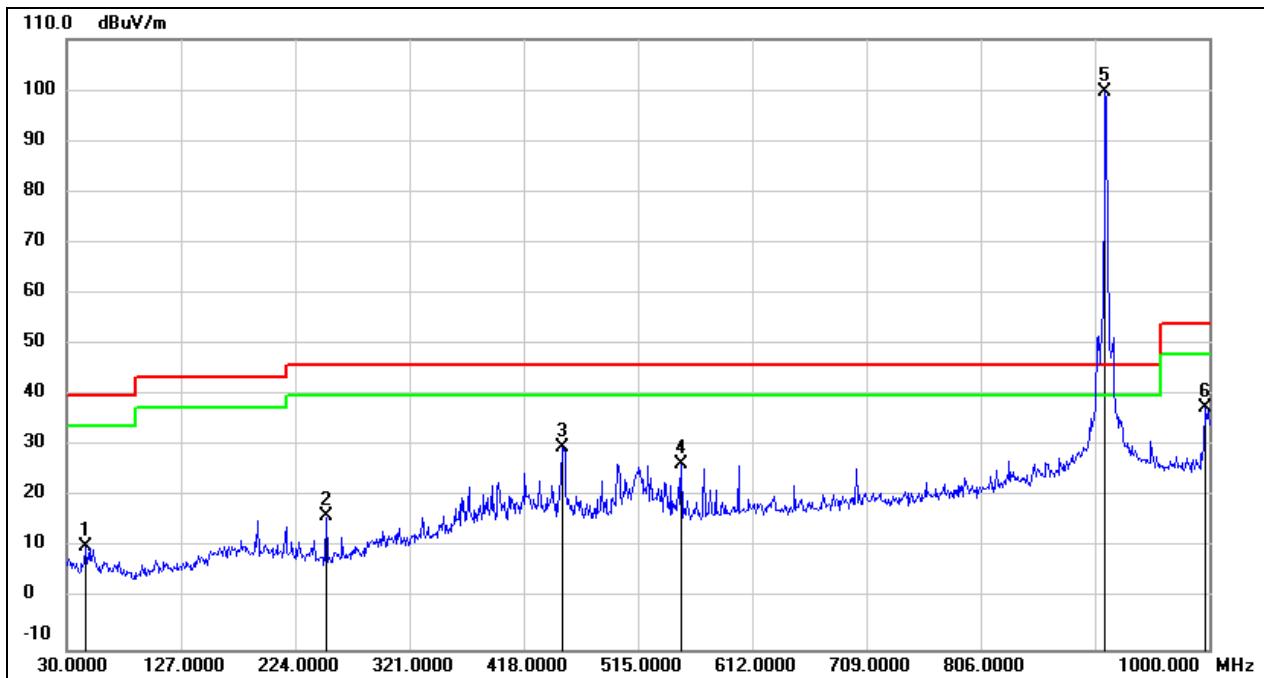

| No. | Frequency | Reading | Correct | Result   | Limit for Peak | Margin for Peak | Limit for AVG | Margin for AVG | Remark |
|-----|-----------|---------|---------|----------|----------------|-----------------|---------------|----------------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV/m) | (dBuV/m)       | (dB)            | (dBuV/m)      | (dB)           |        |
| 1*  | 2125.000  | 60.27   | -6.25   | 54.02    | /              | /               | /             | /              | peak   |
| 2   | 3187.000  | 52.80   | -3.41   | 49.39    | 74.00          | -24.61          | 54.00         | -4.61          | peak   |
| 3   | 4249.000  | 50.14   | -0.85   | 49.29    | 74.00          | -24.71          | 54.00         | -4.71          | peak   |
| 4   | 5635.000  | 42.78   | 1.47    | 44.25    | 74.00          | -29.75          | 54.00         | -9.75          | peak   |
| 5   | 6391.000  | 48.51   | 1.66    | 50.17    | 74.00          | -23.83          | 54.00         | -3.83          | peak   |
| 6   | 8281.000  | 51.29   | 5.56    | 56.85    | 74.00          | -17.15          | /             | /              | peak   |
| 7   | 8281.000  | 38.32   | 5.56    | 43.88    | /              | /               | 54.00         | -10.12         | AVG    |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. The measured result complies with AV limit, which is 54 dBuV/m.

3. Peak: Peak detector.

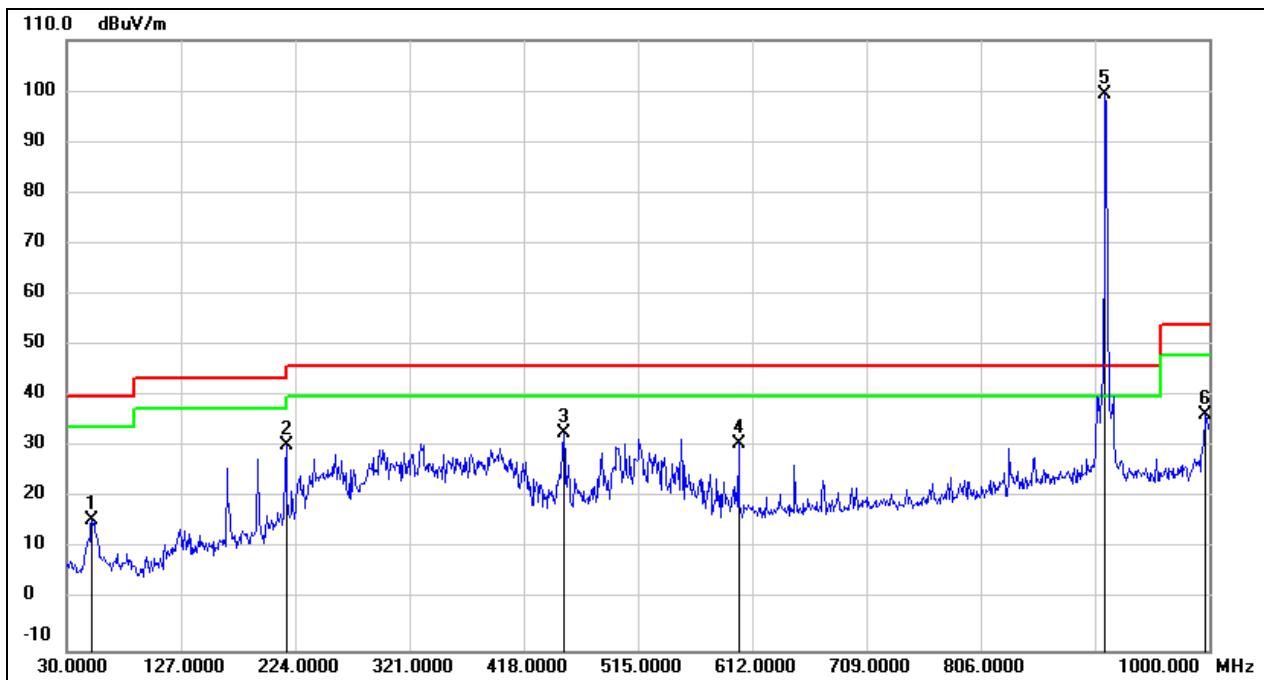
4. AVG: VBW=1/Ton where: ton is transmit duration.


5. For transmit duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7.\*-indicates frequency is out of the restricted bands and the limit is referring to 15.247 (d) and RSS-247 clause 5.5. We had already performed the conducted non-restricted bands test, please refer to clause 7.5.

## 8.2. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)


### SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)



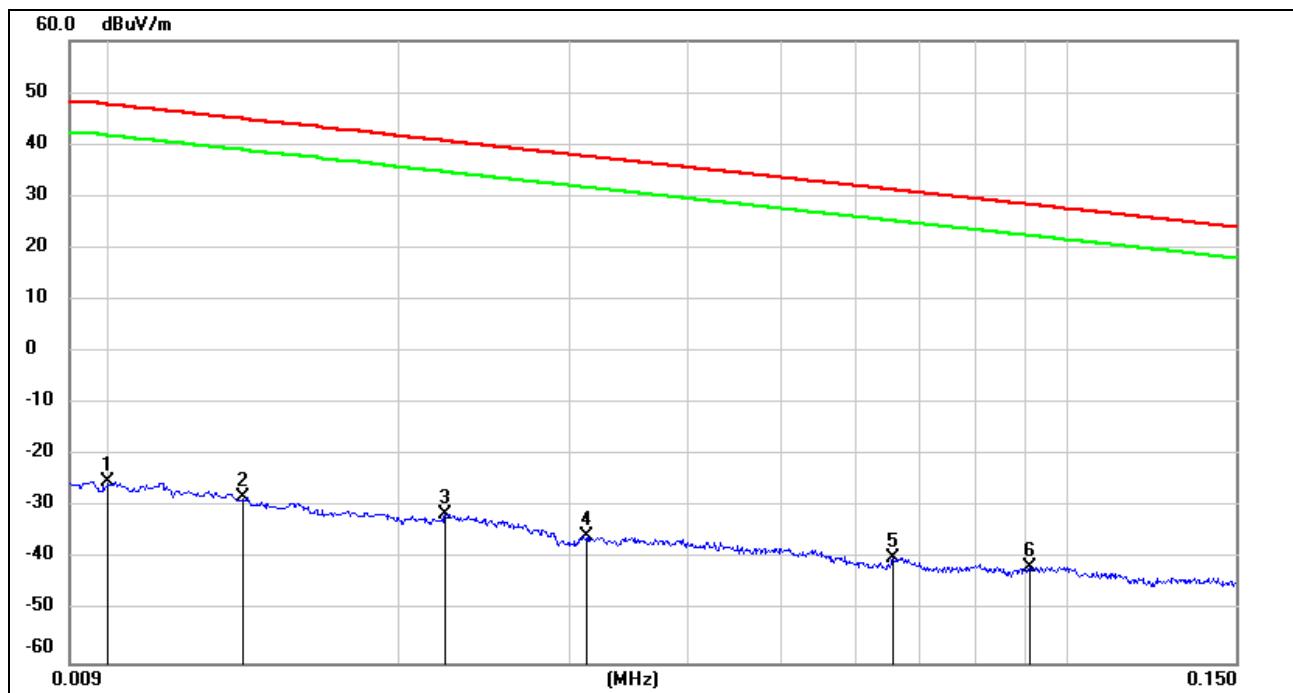
| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark      |
|-----|--------------------|-------------------|-------------------|--------------------|-------------------|----------------|-------------|
| 1   | 45.5200            | 25.25             | -14.94            | 10.31              | 40.00             | -29.69         | QP          |
| 2   | 250.1900           | 30.66             | -14.56            | 16.10              | 46.00             | -29.90         | QP          |
| 3   | 450.9800           | 37.76             | -8.13             | 29.63              | 46.00             | -16.37         | QP          |
| 4   | 551.8600           | 33.54             | -6.98             | 26.56              | 46.00             | -19.44         | QP          |
| 5   | 911.7300           | 100.13            | -0.54             | 99.59              | /                 | /              | fundamental |
| 6   | 996.1200           | 37.82             | -0.18             | 37.64              | 54.00             | -16.36         | QP          |

Note:

1. Result Level = Read Level + Correct Factor.
2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

**SPURIOUS EMISSIONS (LOW CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)**


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark      |
|-----|--------------------|-------------------|-------------------|--------------------|-------------------|----------------|-------------|
| 1   | 51.3400            | 30.86             | -15.07            | 15.79              | 40.00             | -24.21         | QP          |
| 2   | 216.2400           | 43.17             | -12.95            | 30.22              | 46.00             | -15.78         | QP          |
| 3   | 451.9500           | 40.89             | -8.13             | 32.76              | 46.00             | -13.24         | QP          |
| 4   | 600.3600           | 36.42             | -5.74             | 30.68              | 46.00             | -15.32         | QP          |
| 5   | 911.7300           | 99.81             | -0.54             | 99.27              | /                 | /              | fundamental |
| 6   | 996.1200           | 36.46             | -0.18             | 36.28              | 54.00             | -17.72         | QP          |

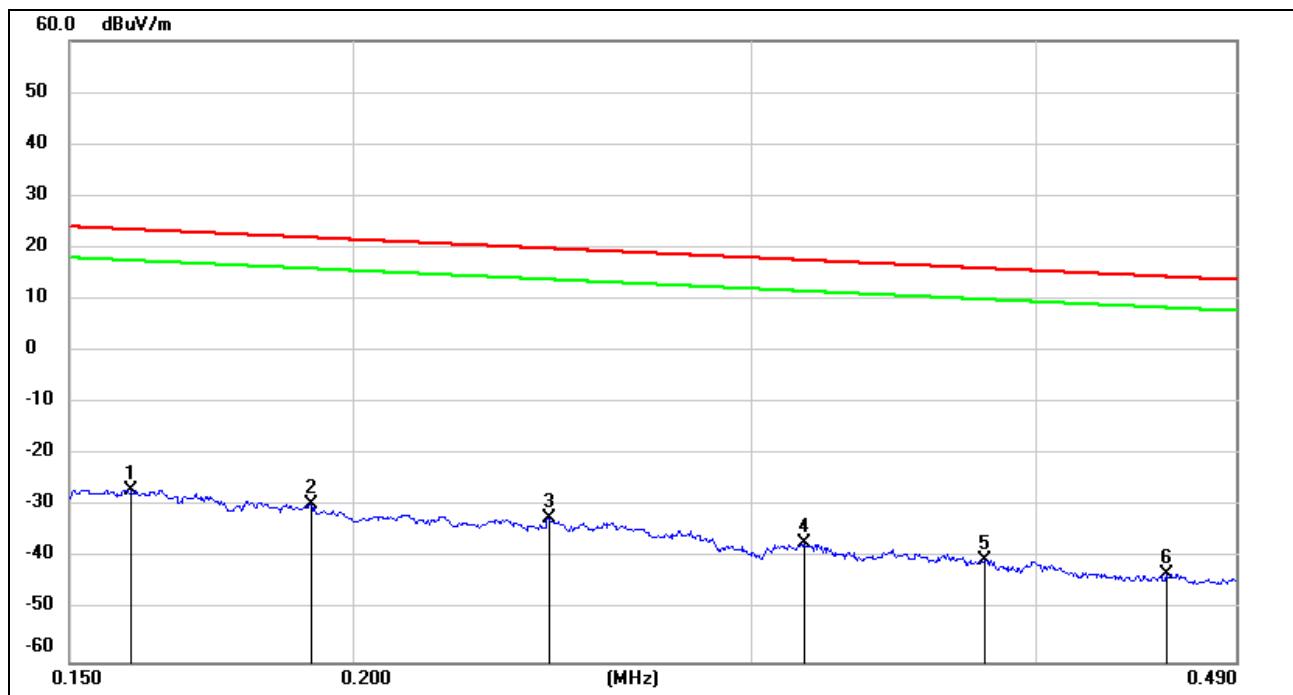

Note: 1. Result Level = Read Level + Correct Factor.  
 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.  
 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto  
 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.  
 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

### 8.3. SPURIOUS EMISSIONS BELOW 30 MHz

#### SPURIOUS EMISSIONS (LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

9 kHz~ 150 kHz

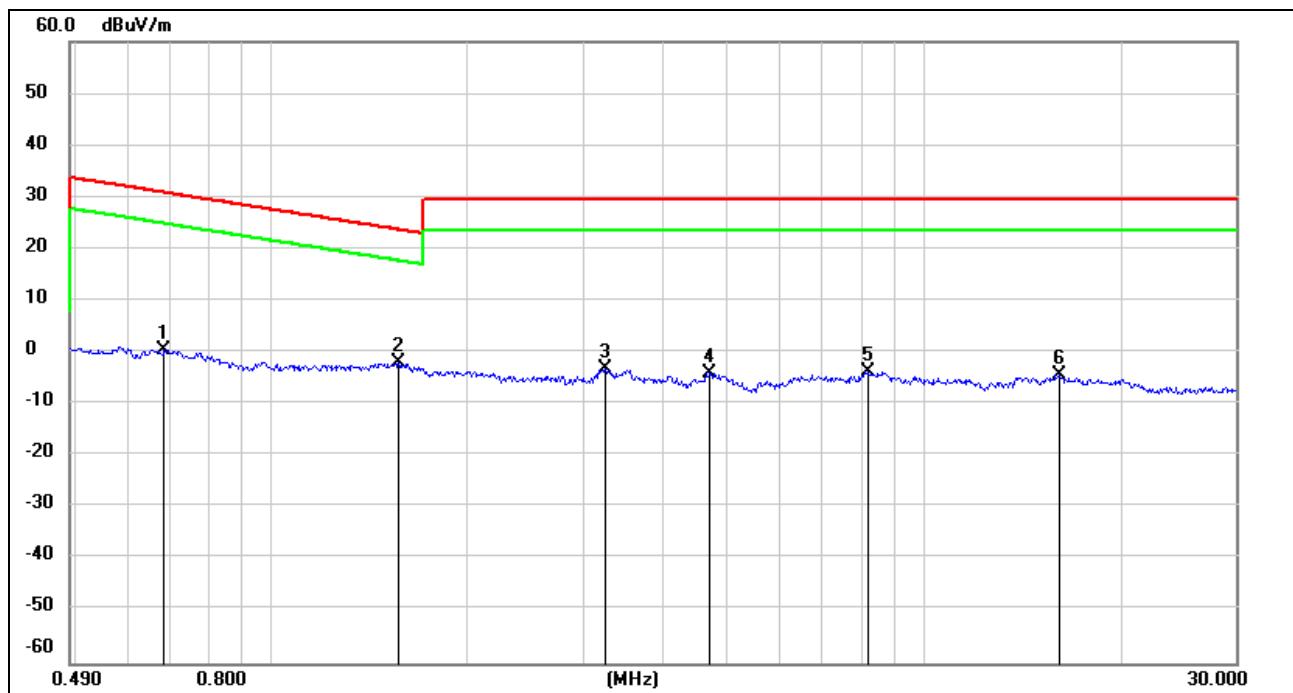



| No. | Frequency (MHz) | Reading (dBuV) | Correct (dB/m) | Result (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Remark |
|-----|-----------------|----------------|----------------|-----------------|----------------|-------------|--------|
| 1   | 0.0100          | 76.22          | -101.40        | -25.18          | 47.60          | -72.78      | peak   |
| 2   | 0.0137          | 73.36          | -101.38        | -28.02          | 44.87          | -72.89      | peak   |
| 3   | 0.0223          | 70.07          | -101.35        | -31.28          | 40.63          | -71.91      | peak   |
| 4   | 0.0313          | 65.70          | -101.39        | -35.69          | 37.69          | -73.38      | peak   |
| 5   | 0.0656          | 61.86          | -101.55        | -39.69          | 31.26          | -70.95      | peak   |
| 6   | 0.0912          | 60.22          | -101.73        | -41.51          | 28.40          | -69.91      | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.


150 kHz ~ 490 kHz


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
|-----|--------------------|-------------------|-------------------|--------------------|-------------------|----------------|--------|
| 1   | 0.1597             | 74.85             | -101.65           | -26.80             | 23.54             | -50.34         | peak   |
| 2   | 0.1917             | 72.04             | -101.70           | -29.66             | 21.95             | -51.61         | peak   |
| 3   | 0.2442             | 69.53             | -101.79           | -32.26             | 19.85             | -52.11         | peak   |
| 4   | 0.3163             | 64.70             | -101.87           | -37.17             | 17.60             | -54.77         | peak   |
| 5   | 0.3800             | 61.52             | -101.94           | -40.42             | 16.01             | -56.43         | peak   |
| 6   | 0.4566             | 59.04             | -102.02           | -42.98             | 14.41             | -57.39         | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

490 kHz ~ 30 MHz


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
|-----|--------------------|-------------------|-------------------|--------------------|-------------------|----------------|--------|
| 1   | 0.6834             | 62.71             | -62.11            | 0.60               | 30.91             | -30.31         | peak   |
| 2   | 1.5625             | 59.96             | -62.02            | -2.06              | 23.73             | -25.79         | peak   |
| 3   | 3.2389             | 58.34             | -61.53            | -3.19              | 29.54             | -32.73         | peak   |
| 4   | 4.6905             | 57.32             | -61.44            | -4.12              | 29.54             | -33.66         | peak   |
| 5   | 8.1920             | 57.17             | -61.05            | -3.88              | 29.54             | -33.42         | peak   |
| 6   | 16.1598            | 56.61             | -60.97            | -4.36              | 29.54             | -33.90         | peak   |

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels have been tested, only the worst data was recorded in the report.

## 9. ANTENNA REQUIREMENTS

### APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

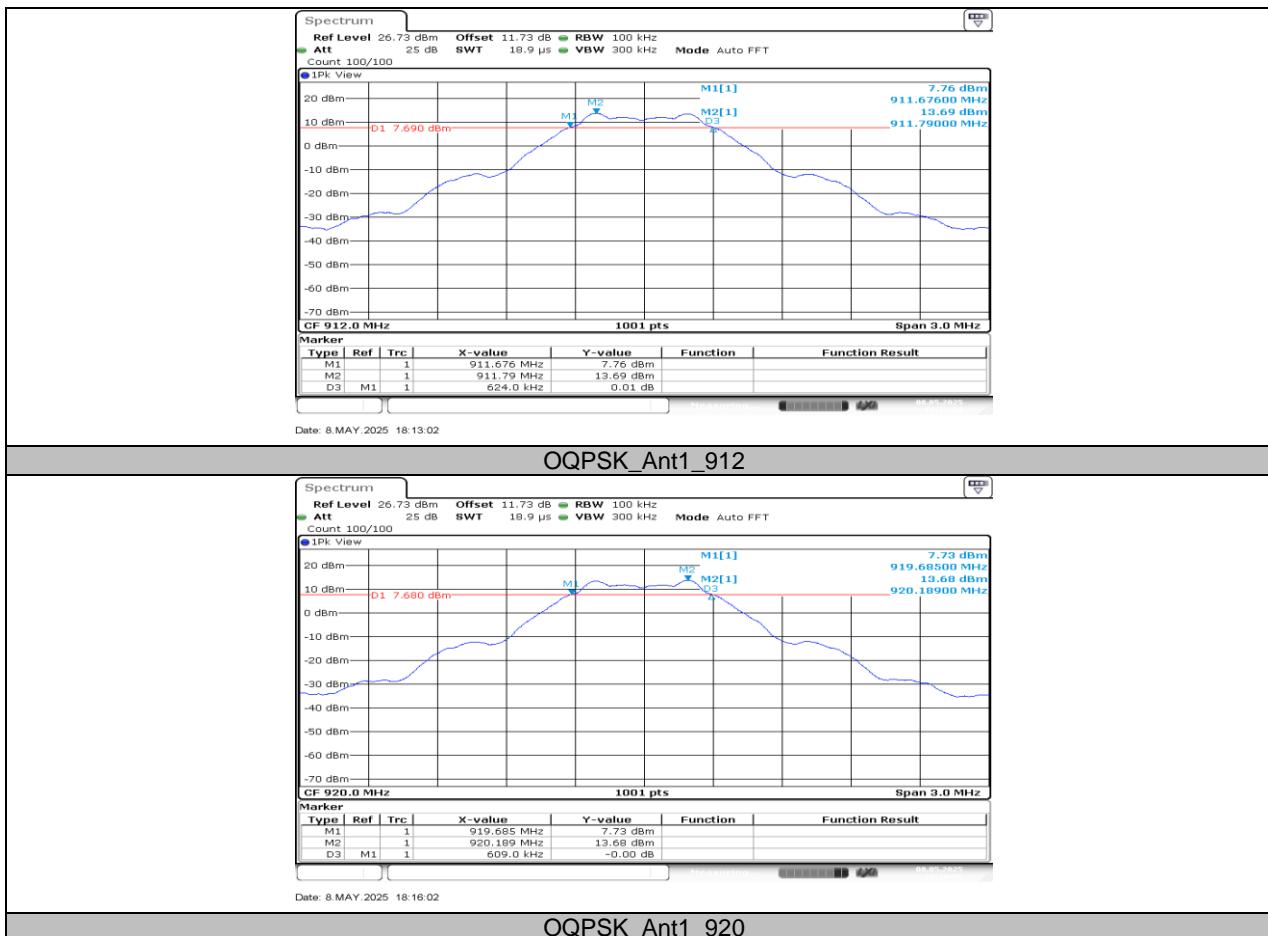
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### RESULTS

Complies

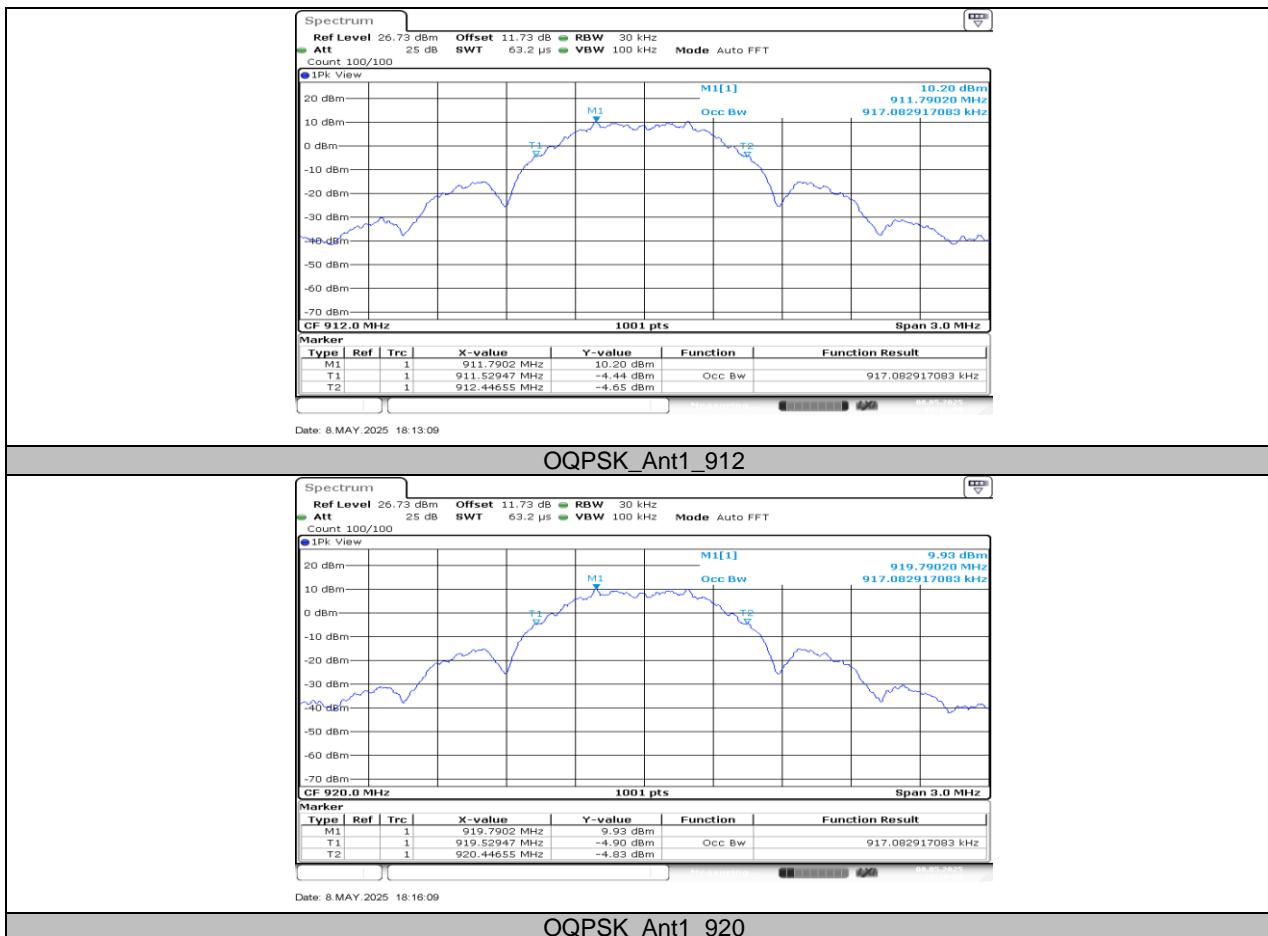

## 10. Appendix

### 10.1. Appendix A: DTS Bandwidth

#### 10.1.1. Test Result

| TestMode | Antenna | Freq(MHz) | DTS BW [MHz] | FL[MHz] | FH[MHz] | Limit[MHz] | Verdict |
|----------|---------|-----------|--------------|---------|---------|------------|---------|
| OQPSK    | Ant1    | 912       | 0.62         | 911.68  | 912.30  | $\geq 0.5$ | PASS    |
|          |         | 920       | 0.61         | 919.69  | 920.29  | $\geq 0.5$ | PASS    |

## 10.1.2. Test Graphs




## 10.2. Appendix B: Occupied Channel Bandwidth

### 10.2.1. Test Result

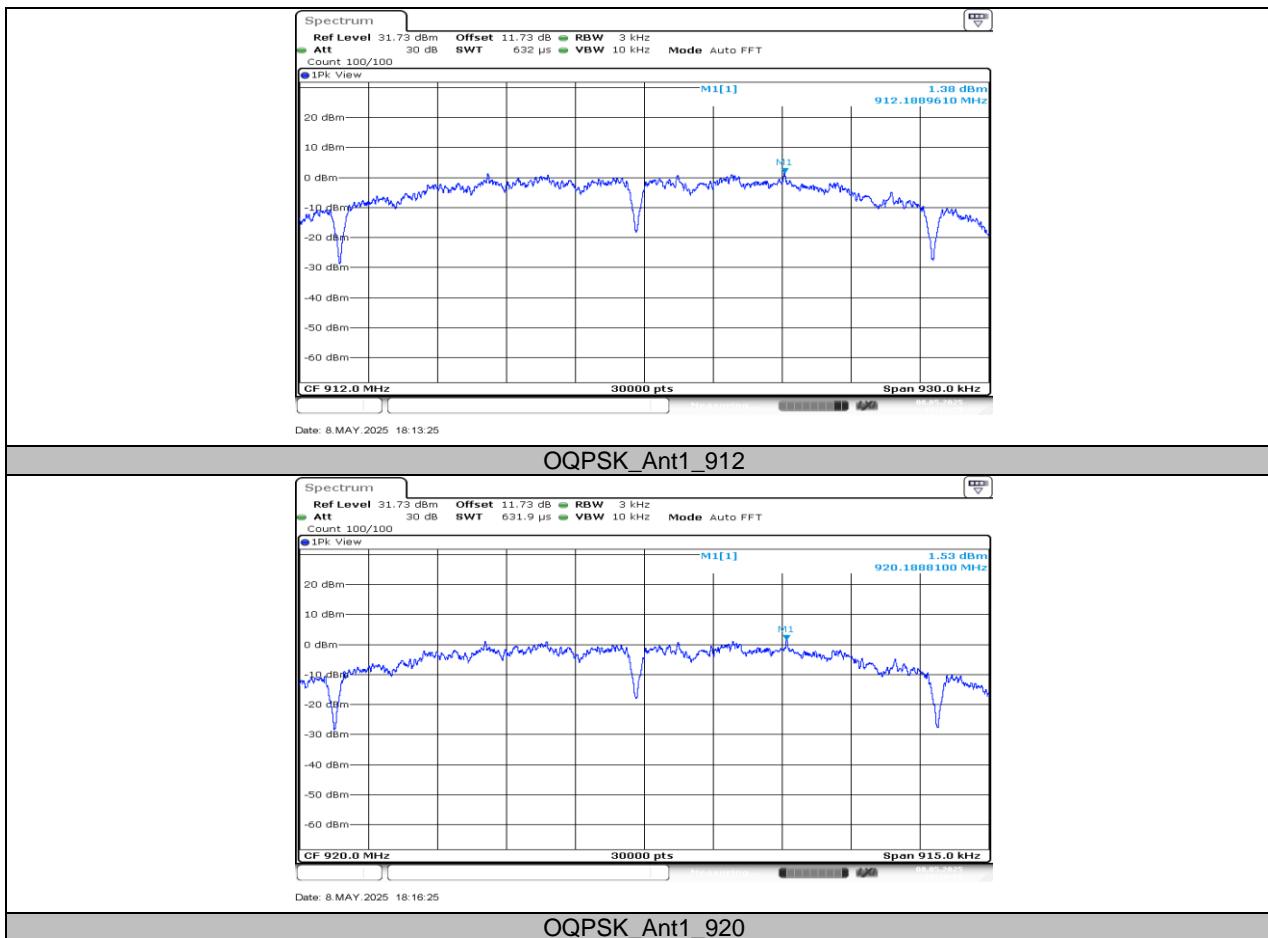
| TestMode | Antenna | Freq(MHz) | OCB [MHz] | FL[MHz]  | FH[MHz]  | Verdict |
|----------|---------|-----------|-----------|----------|----------|---------|
| OQPSK    | Ant1    | 912       | 0.917     | 911.5295 | 912.4466 | PASS    |
|          |         | 920       | 0.917     | 919.5295 | 920.4466 | PASS    |

## 10.2.2. Test Graphs



### 10.3. Appendix C: Maximum conducted output power

#### 10.3.1. Test Result

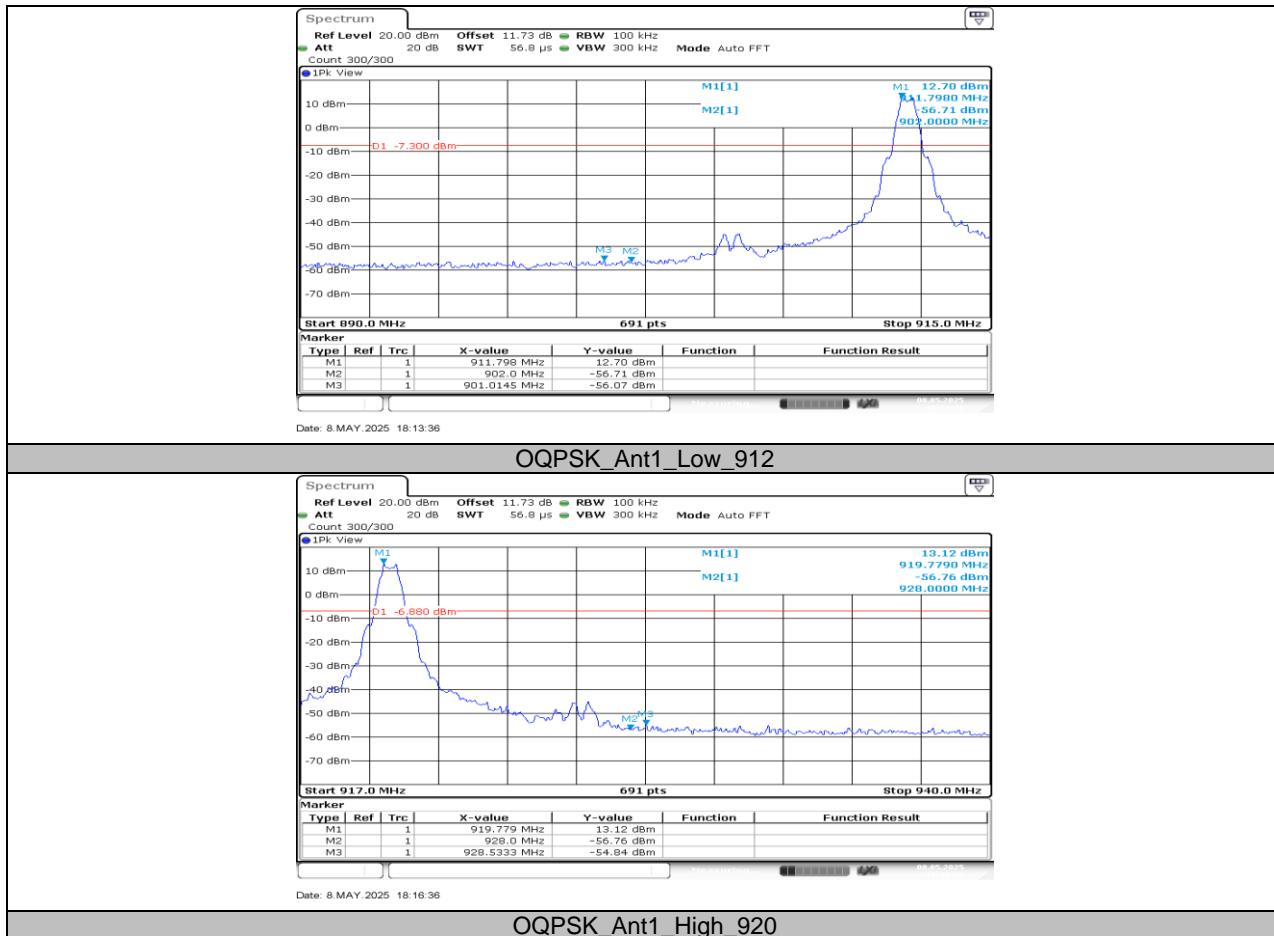

| Test Mode | Antenna | Frequency[MHz] | Result[dBm] | Limit[dBm] | Verdict |
|-----------|---------|----------------|-------------|------------|---------|
| OQPSK     | Ant1    | 912            | 14.01       | ≤30        | PASS    |
|           |         | 920            | 13.92       | ≤30        | PASS    |

## 10.4. Appendix D: Maximum power spectral density

### 10.4.1. Test Result

| TestMode | Antenna | Freq(MHz) | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|----------|---------|-----------|------------------|-----------------|---------|
| OQPSK    | Ant1    | 912       | 1.38             | ≤8.00           | PASS    |
|          |         | 920       | 1.53             | ≤8.00           | PASS    |

## 10.4.2. Test Graphs

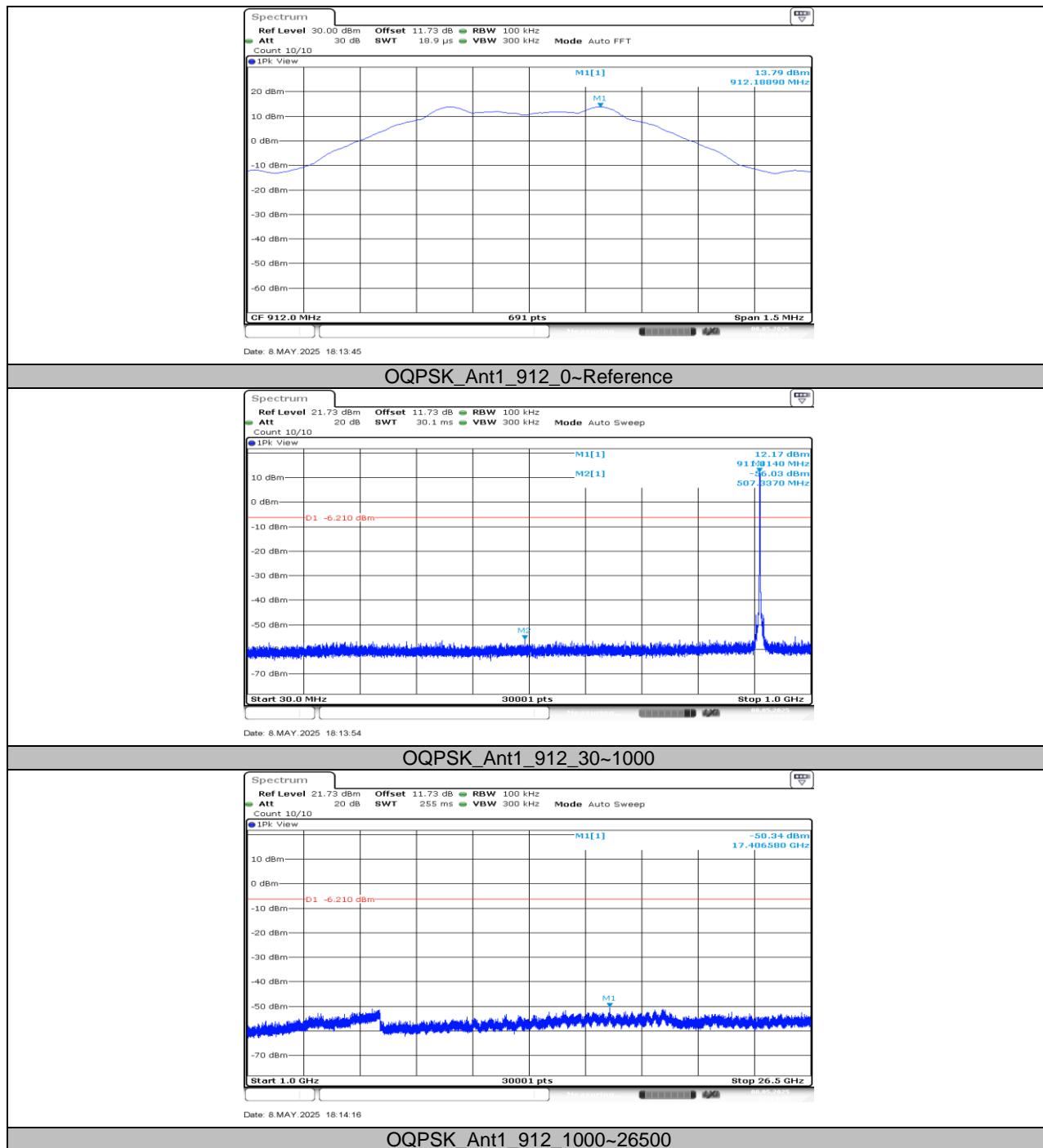


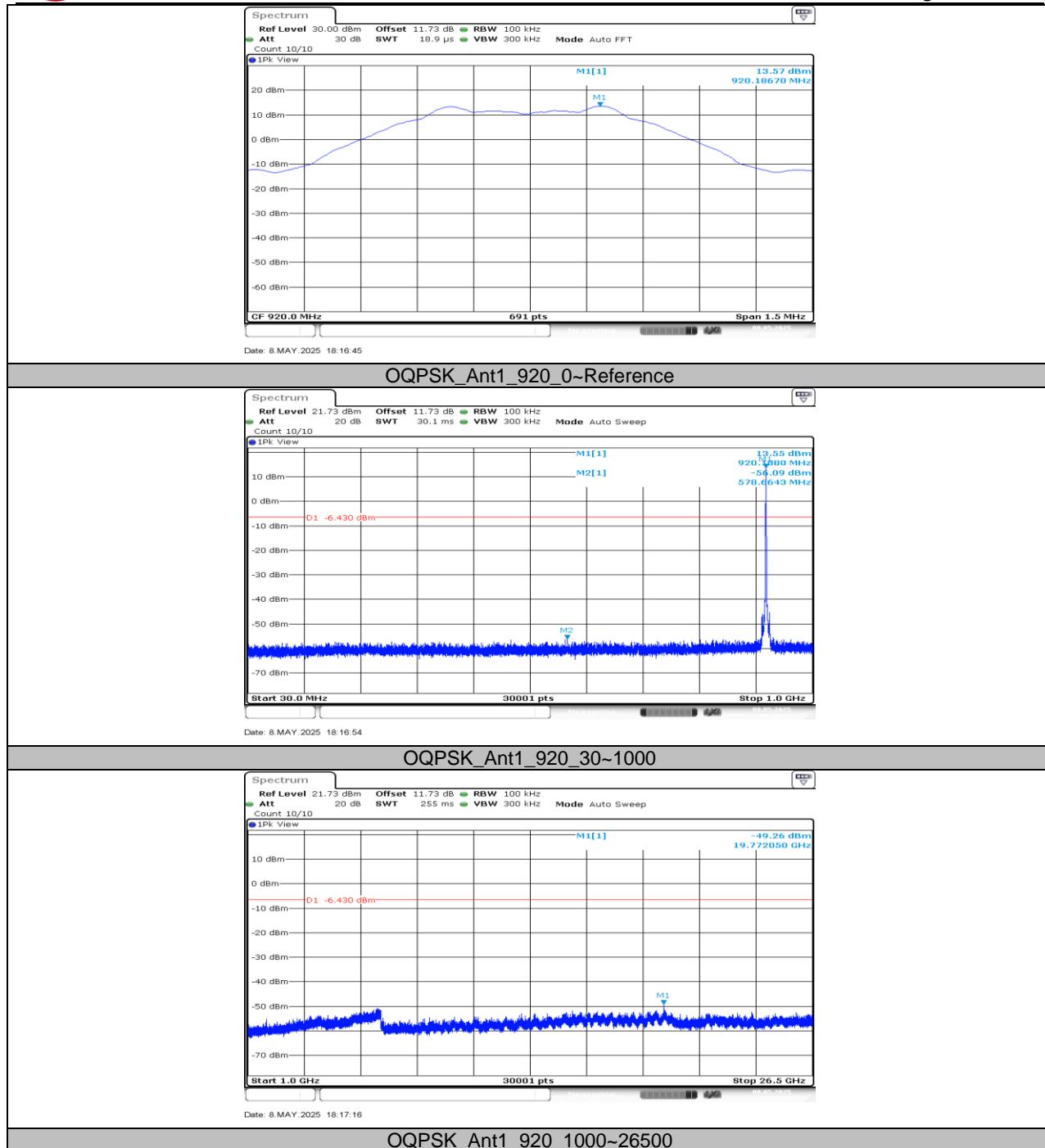

## 10.5. Appendix E: Band edge measurements

### 10.5.1. Test Result

| TestMode | Antenna | ChName | Freq (MHz) | RefLevel[dBm] | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|--------|------------|---------------|-------------|------------|---------|
| OQPSK    | Ant1    | Low    | 912        | 12.70         | -56.07      | ≤-7.3      | PASS    |
|          |         | High   | 920        | 13.12         | -54.84      | ≤-6.88     | PASS    |

## 10.5.2. Test Graphs





## 10.6. Appendix F: Conducted Spurious Emission

### 10.6.1. Test Result

| TestMode | Antenna | Freq(MHz) | FreqRange<br>[MHz] | RefLevel<br>[dBm] | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|-----------|--------------------|-------------------|-------------|------------|---------|
| OQPSK    | Ant1    | 912       | Reference          | 13.79             | 13.79       | ---        | PASS    |
|          |         |           | 30~1000            | 13.79             | -56.03      | ≤-6.21     | PASS    |
|          |         |           | 1000~26500         | 13.79             | -50.34      | ≤-6.21     | PASS    |
|          |         | 920       | Reference          | 13.57             | 13.57       | ---        | PASS    |
|          |         |           | 30~1000            | 13.57             | -56.09      | ≤-6.43     | PASS    |
|          |         |           | 1000~26500         | 13.57             | -49.26      | ≤-6.43     | PASS    |

## 10.6.2. Test Graphs





## 10.7. Appendix G: Duty Cycle

### 10.7.1. Test Result

| Test Mode | On Time (msec) | Period (msec) | Duty Cycle x (Linear) | Duty Cycle (%) | Duty Cycle Correction Factor (dB) | 1/T Minimum VBW (kHz) | Final setting For VBW (kHz) |
|-----------|----------------|---------------|-----------------------|----------------|-----------------------------------|-----------------------|-----------------------------|
| OQPSK     | 100            | 100           | 1.0000                | 100.00         | 0.00                              | 0.01                  | 0.01                        |

Note:


Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

### 10.7.2. Test Graphs



---

**END OF REPORT**