

FCC Radio Test Report

FCC ID:2AAAH-SPO001

This report concerns (check one): ⊠Original Grant □Class II Change

Project No. : 1411212
Equipment : Overflow
Model Name : Overflow
Applicant : Quirky, Inc.

Address : 606 W. 28th St. Floor 7 New York New York 10001

United States

Date of Receipt : Nov. 27, 2014

Date of Test : Nov. 27, 2014~ Dec. 19, 2014

Issued Date : Dec. 22, 2014

Tested by : BTL Inc.

Testing Engineer

(Gary Chou)

Technical Manager

Authorized Signatory

(**S**eff Yang

BTL INC

B1, No.37, Lane 365, Yang Guang St., Nei-Hu District, Taipei City 114, Taiwan.

TEL:+886-2-2657-3299 FAX: +886-2-2657-3331

Report No.: BTL-FCCP-1-1411212 Page 1 of 54

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**, or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: BTL-FCCP-1-1411212 Page 2 of 54

Table of Contents	Page
1. CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	11
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TE	STED 12
3.5 DESCRIPTION OF SUPPORT UNITS	12
4 . EMC EMISSION TEST	13
4.1 RADIATED EMISSION MEASUREMENT	13
4.1.1 RADIATED EMISSION LIMITS 4.1.2 TEST PROCEDURE	13 14
4.1.3 DEVIATION FROM TEST STANDARD	14
4.1.4 TEST SETUP	15
4.1.5 EUT OPERATING CONDITIONS 4.1.6 EUT TEST CONDITIONS	16 16
4.1.7 TEST RESULTS (9KHZ TO 30MHZ)	16
4.1.8 TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ)	17
4.1.9 TEST RESULTS (ABOVE 1000 MHZ)	17
5 . BANDWIDTH TEST	18
5.1 APPLIED PROCEDURES / LIMIT	18
5.1.1 TEST PROCEDURE 5.1.2 DEVIATION FROM STANDARD	18 18
5.1.3 TEST SETUP	18
5.1.4 EUT OPERATION CONDITIONS	18
5.1.5 EUT TEST CONDITIONS 5.1.6 TEST RESULTS	18 18
6 . MAXIMUM OUTPUT POWER TEST	19
6.1 APPLIED PROCEDURES / LIMIT	19
6.1.1 TEST PROCEDURE	19
6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP	19 19
6.1.4 EUT OPERATION CONDITIONS	19
6.1.5 EUT TEST CONDITIONS	19
6.1.6 TEST RESULTS	19

Report No.: BTL-FCCP-1-1411212 Page 3 of 54

Table of Contents P	age
7 . ANTENNA CONDUCTED SPURIOUS EMISSION	20
7.1 APPLIED PROCEDURES / LIMIT	20
7.1.1 TEST PROCEDURE 7.1.2 DEVIATION FROM STANDARD	20 20
7.1.2 DEVIATION FROM STANDARD 7.1.3 TEST SETUP	20
7.1.4 EUT OPERATION CONDITIONS	20
7.1.5 EUT OPERATION CONDITIONS	20
7.1.6 TEST RESULTS	20
8 . POWER SPECTRAL DENSITY TEST	21
8.1 APPLIED PROCEDURES / LIMIT	21
8.1.1 TEST PROCEDURE	21
8.1.2 DEVIATION FROM STANDARD	21
8.1.3 TEST SETUP 8.1.4 EUT OPERATION CONDITIONS	21 21
8.1.5 EUT TEST CONDITIONS	21
8.1.6 TEST RESULTS	21
9 . MEASUREMENT INSTRUMENTS LIST	22
10 . EUT TEST PHOTO	23
ATTACHMENT A - RADIATED EMISSION (9KHZ TO 30MHZ)	26
ATTACHMENT B - RADIATED EMISSION BETWEEN (30MHZ TO 1000MHZ	2) 28
ATTACHMENT C - RADIATED EMISSION (ABOVE 1000MHZ)	31
ATTACHMENT D - BANDWIDTH	44
ATTACHMENT E - MAXIMUM OUTPUT POWER TEST	47
ATTACHMENT F - ANTENNA CONDUCTED SPURIOUS EMISSION	48
ATTACHMENT G - POWER SPECTRAL DENSITY TEST	52

Report No.: BTL-FCCP-1-1411212 Page 4 of 54

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1411212	Original Issue.	Dec. 22, 2014

Report No.: BTL-FCCP-1-1411212 Page 5 of 54

1. CERTIFICATION

Equipment : Overflow Brand Name: Quirky+GE Model Name: Overflow Applicant : Quirky, Inc.

Manufacturer: SERCOMM CORP

Address : 3F 81 YUYI RD CHU-NAN MIAO-LI, 350 TAIWAN

Factory : SERCOMM CORP Address : 3F 81 YUYI RD CHU-NAN MIAO-LI, 350 TAIWAN

Date of Test : Nov. 27, 2014~ Dec. 19, 2014 Test Sample: ENGINEERING SAMPLE

Standard(s): FCC Part15, Subpart C:2013 (15.247) / ANSI C63.4-2009

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCCP-1-1411212) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Report No.: BTL-FCCP-1-1411212 Page 6 of 54

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247) , Subpart C				
Standard(s) Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	N/A		
15.247(d)	Antenna conducted Spurious Emission	PASS		
15.247(a)(2)	6dB Bandwidth	PASS		
15.247(b)(3)	Peak Output Power	PASS		
15.247(e)	Power Spectral Density	PASS		
15.203	Antenna Requirement	PASS		
15.209/15.205	Transmitter Radiated Emissions	PASS		

NOTE:

- (1)" N/A" denotes test is not applicable to this device.
- (2) The test follows FCC KDB Publication No. 558074 D01 DTS Meas Guidance v03r02 (Measurement Guidelines of DTS)

Report No.: BTL-FCCP-1-1411212 Page 7 of 54

2.1TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

Radiated emission Test (Below 1 GHz):

CB08: FCC RN: 614388; FCC DN: TW1054

1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

Radiated emission Test (Above 1 GHz):

CB08: FCC RN: 614388; FCC DN: TW1054

1F., No. 61, Ln. 77, Sing-ai Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

2.2MEASUREMENT UNCERTAINTY

The measurement uncertainty is not specified by FCC/Industry Canada rules and for reference only.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95%.

The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2.

A. Radiated emission test:

Test Site	Item	Measurement Frequency Range		Uncertainty	NOTE
			30 - 200MHz	3.35 dB	
		Horizontal	200 - 1000MHz	3.11 dB	
	Dadiated	Polarization	1 - 18GHz	3.97 dB	
CB08	Radiated emission at		18 - 40GHz	4.01 dB	
CBUO	3m		30 - 200MHz	3.22 dB	
	3111	Vertical	200 - 1000MHz	3.24 dB	
		Polarization	1 - 18GHz	4.05 dB	
			18 - 40GHz	4.04 dB	

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR} , as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz: 3.6 dB

Radiated Disturbance (electric field strength on an open area test site or alternative test site) - 30 MHz - 1000 MHz: 5.2 dB

It can be seen that our U_{lab} values are smaller than U_{CISPR} .

If U_{lab} is less than or equal to U_{CISPR} , then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{CISPR} , then:

- compliance is deemed to occur if no measured disturbance level, increased by (U_{lab} U_{CISPR}), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{CISPR}), exceeds the disturbance limit.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Overflow		
Brand Name	Quirky+GE		
Model Name	Overflow		
Model Difference	N/A		
	Operation Frequency	2405~2480 MHz	
Product Description	Modulation Technology	OQPSK	
1 Toddot Boodingson	Bit Rate of Transmitter	250Kbps	
	Output Power (Max.)	3.53 dBm	
Power Source	Supplied from AA Battery*2		
Power Rating	DC 3V		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	19	2445
12	2410	20	2450
13	2415	21	2455
14	2420	22	2460
15	2425	23	2465
16	2430	24	2470
17	2435	25	2475
18	2440	26	2480

3.

Ant	Brand	Model Name	Antenna Type Co	Connector	Gain
	Brand	Woder Name	Antenna Type		(dBi)
1	SERCOM	SZ-WTD02	Internal	N/A	3.51

Report No.: BTL-FCCP-1-1411212 Page 9 of 54

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode NOTE (1)

For Radiated Test		
Final Test Mode	Description	
Mode 1	TX Mode NOTE (1)	

Note:

(1) The measurements are performed at the high, middle, low available channels.

Report No.: BTL-FCCP-1-1411212 Page 10 of 54

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test Software Version	N/A		
Frequency (MHz)	2405	2445	2480
-	0	0	0

Report No.: BTL-FCCP-1-1411212 Page 11 of 54

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED **EUT** 3.5 DESCRIPTION OF SUPPORT UNITS The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. Equipment Mfr/Brand Model/Type No. FCC ID/IC Series No. Item Note

Note:

Item

Shielded Type

Ferrite Core

(1) For detachable type I/O cable should be specified the length in m in <code>[Length]</code> column.

Length

Note

Report No.: BTL-FCCP-1-1411212 Page 12 of 54

4. EMC EMISSION TEST

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 RADIATED EMISSION LIMITS

20dB in any 100 KHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) & RSS-210 section 2.2& Annex 8 (A8.5), then the 15.209(a)& RSS-Gen limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9KHz-1000MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)	
Frequency (MHZ)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

 Measurement Value = Reading Level + Correct Factor

 Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

 Margin Level = Measurement Value Limit Value

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency 1000 MHz	
Stop Frequency	10th carrier harmonic
RBW / VBW RBW 1MHz VBW 3MHz peak detector for F	
(Emission in restricted band) RMS detector for AV value	

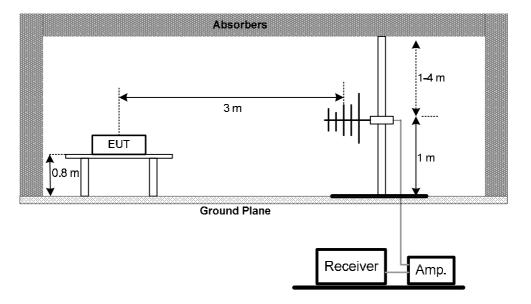
Report No.: BTL-FCCP-1-1411212 Page 13 of 54

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency 90KHz~110KHz for QP detector	
Start ~ Stop Frequency 110KHz~490KHz for PK/AVG detector	
Start ~ Stop Frequency 490KHz~30MHz for QP detector	
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

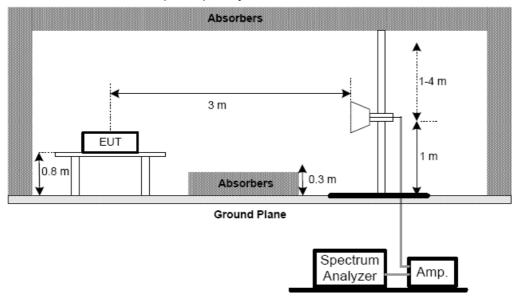
4.1.2 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

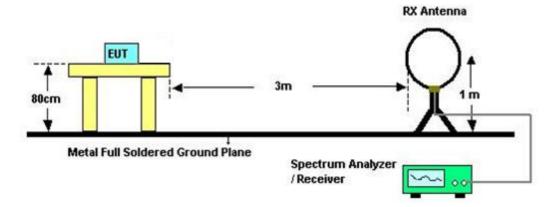

No deviation

Report No.: BTL-FCCP-1-1411212 Page 14 of 54



4.1.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz


(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

Report No.: BTL-FCCP-1-1411212 Page 15 of 54

(C) For radiated emissions below 30MHz

4.1.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.5 Unless** otherwise a special operating condition is specified in the follows during the testing.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% **Test Voltage**: DC 3V

4.1.7TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment A.

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

Report No.: BTL-FCCP-1-1411212 Page 16 of 54

4.1.8TEST RESULTS (BETWEEN 30MHZ TO 1000 MHZ) Please refer to the Attachment B.

Remark:

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; SPA setting in RBW=120KHz, VBW =120KHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

4.1.9TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment C.

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (4) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (5) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna
- (6) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Report No.: BTL-FCCP-1-1411212 Page 17 of 54

5. BANDWIDTH TEST

5.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit		Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2405~2480 MHz	PASS

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

5.1.6 TEST RESULTS

Please refer to the Attachment D.

Report No.: BTL-FCCP-1-1411212 Page 18 of 54

6. MAXIMUM OUTPUT POWER TEST

6.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm	2405~2480 MHz	PASS

6.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance v03r02.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

EUT	Power Meter
	1 Ower weter

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

Transmit output power was measured while the host equipment supply voltage was varied from 85 % to 115 % of the nominal rated supply voltage. No change in transmit output power was observed.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

6.1.6 TEST RESULTS

Please refer to the Attachment E.

Report No.: BTL-FCCP-1-1411212 Page 19 of 54

7. ANTENNA CONDUCTED SPURIOUS EMISSION

7.1 Applied procedures / limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 EUT OPERATION CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

7.1.6 TEST RESULTS

Please refer to the Attachment F.

Report No.: BTL-FCCP-1-1411212 Page 20 of 54

8. POWER SPECTRAL DENSITY TEST

8.1 Applied procedures / limit

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2405~2480 MHz	PASS

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3V

8.1.6 TEST RESULTS

Please refer to the Attachment G.

Report No.: BTL-FCCP-1-1411212 Page 21 of 54

9. MEASUREMENT INSTRUMENTS LIST

	Radiated Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 12, 2015		
2	Horn Antenna	Schwarzbeck	BBHA 9120	D-325	Jun. 12, 2015		
3	Microwave Pre_amplifier	Agilent	8449B	3008A01714	Apr. 15, 2015		
4	Microflex Cable	Harbour industries	27478LL142	1m	May. 12, 2015		
5	Microflex Cable	EMC	S104-SMA	8m	May. 14, 2015		
6	Microflex Cable	Harbour industries	27478LL142	3m	May. 12, 2015		
7	Test Cable	LMR	LMR-400	12m	May. 13, 2015		
8	Test Cable	LMR	LMR-400	3m	May. 13, 2015		
9	Pre-Amplifier	Anritsu	MH648A	M92649	Jun. 17, 2015		
10	Log-Bicon Antenna	Schwarzbeck	VULB9168-35 2	9168-352	July. 10, 2015		

	6dB Bandwidth Measurement					
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated until					
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 12, 2015	

	Peak Output Power Measurement									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Power Meter Sensor	Anritsu	MA2411B	1126001	Jul. 21, 2015					
2	Signal Generator	R&S	SMR40	100502	Mar,20, 2015					

	Anter	nna Conducted Spuri	ous Emissior	n Measurement	t
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 12, 2015

		Power Spectral De	ensity Measur	rement	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP-40	100129	Oct. 12, 2015

Remark: "N/A" denotes no model name, serial no. or calibration specified.

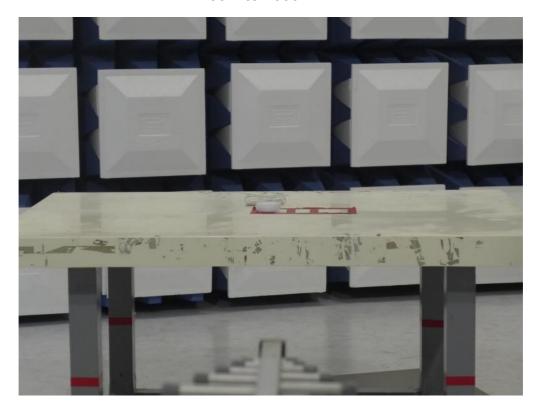
All calibration period of equipment list is one year.

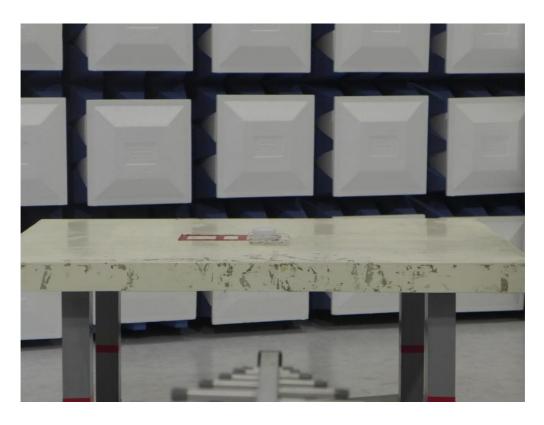
Report No.: BTL-FCCP-1-1411212 Page 22 of 54

10. EUT TEST PHOTO

Radiated Measurement Photos

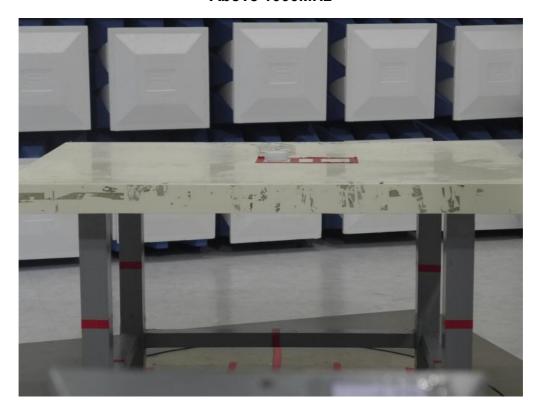
9KHz to 30MHz




Report No.: BTL-FCCP-1-1411212 Page 23 of 54

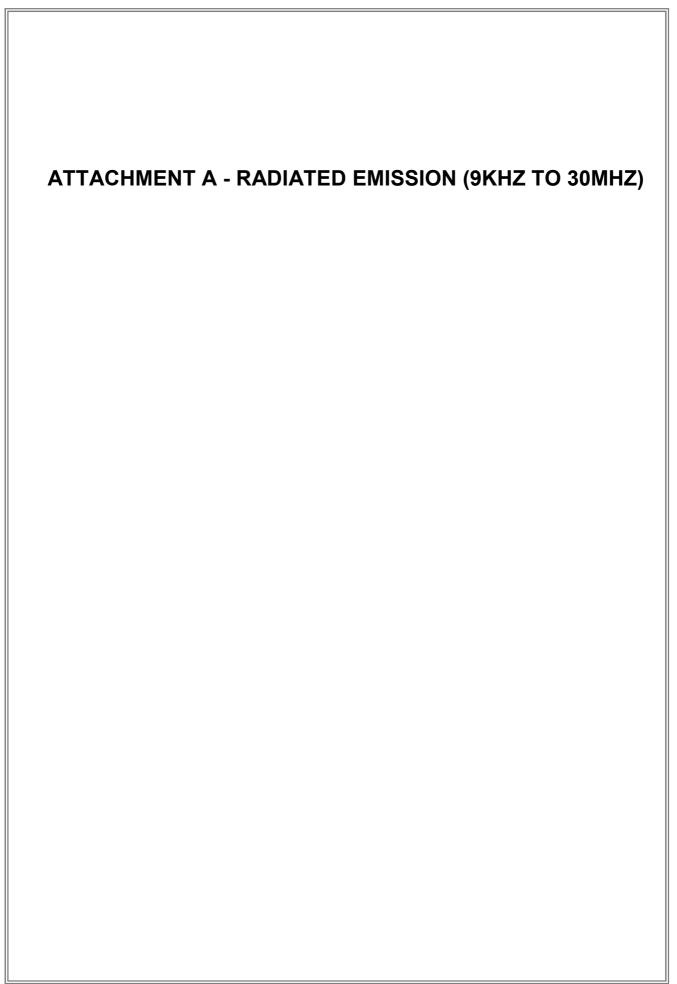
Radiated Measurement Photos

30M to 1000MHz



Report No.: BTL-FCCP-1-1411212 Page 24 of 54

Radiated Measurement Photos


Above 1000MHz

Report No.: BTL-FCCP-1-1411212 Page 25 of 54

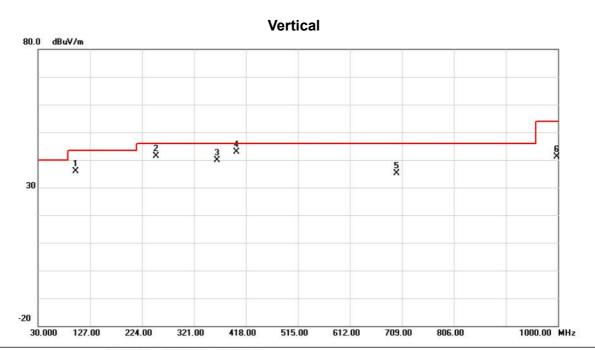
Report No.: BTL-FCCP-1-1411212 Page 26 of 54

Test Mode: TX Mode

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOIC
0.0092	0°	76.12	19.73	95.85	108.33	-12.47	AVG
0.0092	0°	82.13	19.73	101.86	128.33	-26.46	PK
0.0235	0°	56.37	16.27	72.64	100.18	-27.55	AVG
0.0235	0°	59.23	16.27	75.50	120.18	-44.69	PK
0.0316	0°	57.44	14.74	72.18	97.61	-25.43	AVG
0.0316	0°	58.32	14.74	73.06	117.61	-44.55	PK
0.0427	0°	59.12	13.79	72.91	95.00	-22.08	AVG
0.0427	0°	63.42	13.79	77.21	115.00	-37.78	PK
0.4916	0°	17.23	11.21	28.44	73.77	-45.33	QP
1.7652	0°	18.34	11.65	29.99	69.54	-39.55	QP

1		1					
Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Note
0.0094	90°	76.31	19.62	95.93	108.18	-12.25	AVG
0.0094	90°	82.21	19.62	101.83	128.18	-26.35	PK
0.0233	90°	56.23	16.31	72.54	100.26	-27.72	AVG
0.0233	90°	59.12	16.31	75.43	120.26	-44.83	PK
0.0319	90°	57.26	14.72	71.98	97.53	-25.55	AVG
0.0319	90°	58.78	14.72	73.50	117.53	-44.03	PK
0.0442	90°	59.33	13.67	73.00	94.70	-21.70	AVG
0.0442	90°	63.06	13.67	76.73	114.70	-37.97	PK
0.4912	90°	17.58	11.21	28.79	73.78	-44.98	QP
1.7156	90°	18.22	11.63	29.85	69.54	-39.69	QP

Report No.: BTL-FCCP-1-1411212 Page 27 of 54



ATTACHMENT B - RADIATED EMISSION BETWEEN (30MHZ TO 1000MHZ)

Report No.: BTL-FCCP-1-1411212 Page 28 of 54

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	100.3250	54.70	-18.77	35.93	43.50	-7.57	peak	
	250.6750	56.47	-15.10	41.37	46.00	-4.63	peak	
	364.6500	51.97	-11.97	40.00	46.00	-6.00	peak	
* 4	401.0250	53.84	-11.07	42.77	46.00	-3.23	peak	
(599.3000	40.49	-5.44	35.05	46.00	-10.95	peak	
(997.5750	42.45	-1.30	41.15	54.00	-12.85	peak	
	* /	MHz 100.3250 250.6750 364.6500	MHz dBuV 100.3250 54.70 250.6750 56.47 364.6500 51.97 * 401.0250 53.84 699.3000 40.49	MHz dBuV dB 100.3250 54.70 -18.77 250.6750 56.47 -15.10 364.6500 51.97 -11.97 * 401.0250 53.84 -11.07 699.3000 40.49 -5.44	MHz dBuV dB dBuV/m 100.3250 54.70 -18.77 35.93 250.6750 56.47 -15.10 41.37 364.6500 51.97 -11.97 40.00 * 401.0250 53.84 -11.07 42.77 699.3000 40.49 -5.44 35.05	MHz dBuV dB dBuV/m dBuV/m dBuV/m 100.3250 54.70 -18.77 35.93 43.50 250.6750 56.47 -15.10 41.37 46.00 364.6500 51.97 -11.97 40.00 46.00 * 401.0250 53.84 -11.07 42.77 46.00 699.3000 40.49 -5.44 35.05 46.00	MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dB dBuV/m dB dB </td <td>MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m</td>	MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m

Report No.: BTL-FCCP-1-1411212 Page 29 of 54

Test Mode: TX 2445MHz -CH19

Horizontal 80.0 dBuV/m 30 X X X X X

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
8	124.5750	56.44	-15.80	40.64	43.50	-2.86	peak	
*	199.7500	57.46	-16.72	40.74	43.50	-2.76	peak	
- 1	699.3000	41.46	-5.44	36.02	46.00	-9.98	peak	
8	750.2250	43.34	-5.01	38.33	46.00	-7.67	peak	
3	873.9000	40.00	-3.36	36.64	46.00	-9.36	peak	
	997.5750	41.70	-1.30	40.40	54.00	-13.60	peak	
	*	MHz 124.5750	Mk. Freq. Level MHz dBuV 124.5750 56.44 * 199.7500 57.46 699.3000 41.46 750.2250 43.34 873.9000 40.00	Mk. Freq. Level Factor MHz dBuV dB 124.5750 56.44 -15.80 * 199.7500 57.46 -16.72 699.3000 41.46 -5.44 750.2250 43.34 -5.01 873.9000 40.00 -3.36	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 124.5750 56.44 -15.80 40.64 * 199.7500 57.46 -16.72 40.74 699.3000 41.46 -5.44 36.02 750.2250 43.34 -5.01 38.33 873.9000 40.00 -3.36 36.64	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 124.5750 56.44 -15.80 40.64 43.50 * 199.7500 57.46 -16.72 40.74 43.50 699.3000 41.46 -5.44 36.02 46.00 750.2250 43.34 -5.01 38.33 46.00 873.9000 40.00 -3.36 36.64 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 124.5750 56.44 -15.80 40.64 43.50 -2.86 * 199.7500 57.46 -16.72 40.74 43.50 -2.76 699.3000 41.46 -5.44 36.02 46.00 -9.98 750.2250 43.34 -5.01 38.33 46.00 -7.67 873.9000 40.00 -3.36 36.64 46.00 -9.36	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 124.5750 56.44 -15.80 40.64 43.50 -2.86 peak * 199.7500 57.46 -16.72 40.74 43.50 -2.76 peak 699.3000 41.46 -5.44 36.02 46.00 -9.98 peak 750.2250 43.34 -5.01 38.33 46.00 -7.67 peak 873.9000 40.00 -3.36 36.64 46.00 -9.36 peak

515.00

612.00

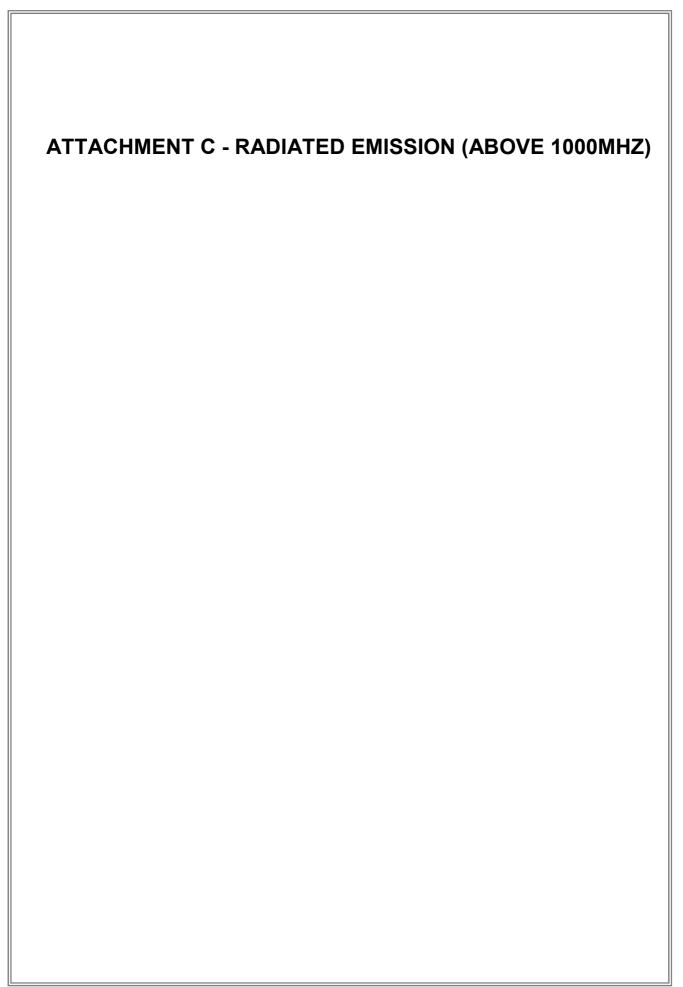
709.00

806.00

1000.00 MHz

30.000

127.00

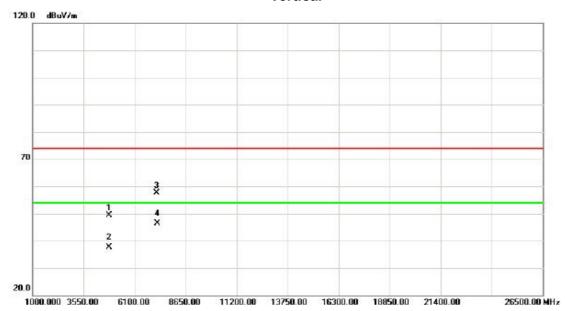

224.00

321.00

418.00

Report No.: BTL-FCCP-1-1411212 Page 30 of 54

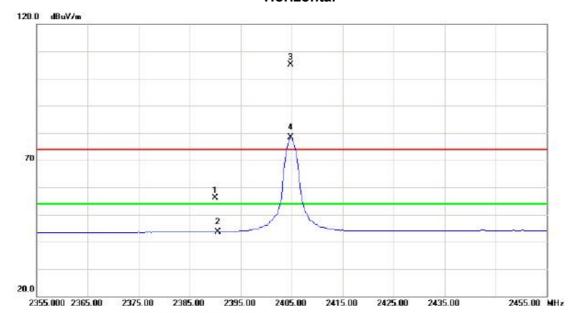
Report No.: BTL-FCCP-1-1411212 Page 31 of 54


Vertical 120.0 dBuV/m 70 20.0 2355.000 2365.00 2375.00 2385.00 2395.00 2405.00 2415.00 2425.00 2435.00 2455.00 MHz

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2390.000	23.44	31.02	54.46	74.00	-19.54	peak		
2		2390.000	12.65	31.02	43.67	54.00	-10.33	AVG		
3	*	2405.000	71.18	31.09	102.27	74.00	28.27	peak	no limit	
4	X	2405.000	44.66	31.09	75.75	54.00	21.75	AVG	no limit	

Report No.: BTL-FCCP-1-1411212 Page 32 of 54

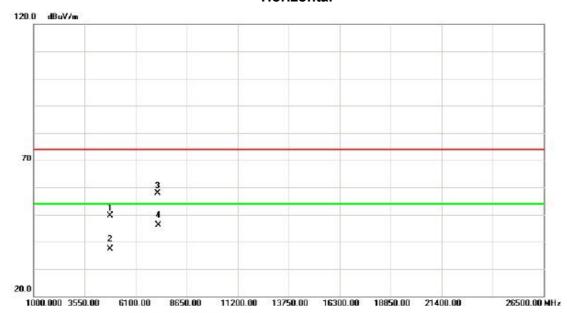
Vertical



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4809.885	42.50	6.78	49.28	74.00	-24.72	peak		
2		4809.885	30.79	6.78	37.57	54.00	-16.43	AVG		
3		7214.970	42.62	15.06	57.68	74.00	-16.32	peak		
4	*	7214.970	31.21	15.06	46.27	54.00	-7.73	AVG		

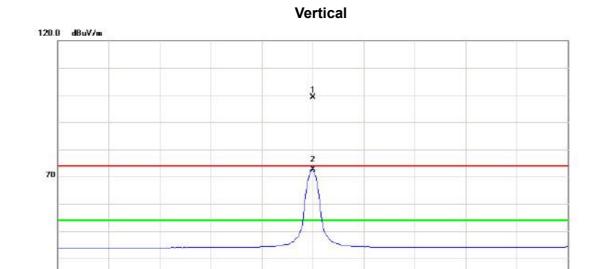
Report No.: BTL-FCCP-1-1411212 Page 33 of 54

Horizontal



M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
	239	90.000	25.07	31.02	56.09	74.00	-17.91	peak		
	239	90.000	12.72	31.02	43.74	54.00	-10.26	AVG		
*	240	04.750	73.93	31.09	105.02	74.00	31.02	peak	no limit	
X	240	04.750	47.28	31.09	78.37	54.00	24.37	AVG	no limit	
	*	239 * 240	MHz 2390.000 2390.000	Mk. Freq. Level MHz dBuV 2390.000 25.07 2390.000 12.72 * 2404.750 73.93	Mk. Freq. Level Factor MHz dBuV dB 2390.000 25.07 31.02 2390.000 12.72 31.02 * 2404.750 73.93 31.09	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2390.000 25.07 31.02 56.09 2390.000 12.72 31.02 43.74 * 2404.750 73.93 31.09 105.02	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 2390.000 25.07 31.02 56.09 74.00 2390.000 12.72 31.02 43.74 54.00 * 2404.750 73.93 31.09 105.02 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 2390.000 25.07 31.02 56.09 74.00 -17.91 peak 2390.000 12.72 31.02 43.74 54.00 -10.26 AVG * 2404.750 73.93 31.09 105.02 74.00 31.02 peak	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB uV/m dB Detector Comment 2390.000 25.07 31.02 56.09 74.00 -17.91 peak 2390.000 12.72 31.02 43.74 54.00 -10.26 AVG * 2404.750 73.93 31.09 105.02 74.00 31.02 peak no limit

Report No.: BTL-FCCP-1-1411212 Page 34 of 54


Horizontal

No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4809.975	42.95	6.78	49.73	74.00	-24.27	peak		
2	4809.975	30.68	6.78	37.46	54.00	-16.54	AVG		
3	7214.960	42.91	15.06	57.97	74.00	-16.03	peak		
4 *	7214.960	31.18	15.06	46.24	54.00	-7.76	AVG		
	1111								

Report No.: BTL-FCCP-1-1411212 Page 35 of 54

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2445.000	67.78	31.28	99.06	74.00	25.06	peak	no limit	
2	X	2445.000	41.38	31.28	72.66	54.00	18.66	AVG	no limit	

2445.00

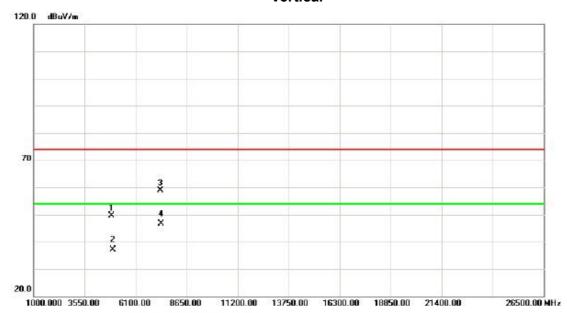
2455.00 2465.00

2475.00

2495.00 MHz

20.0

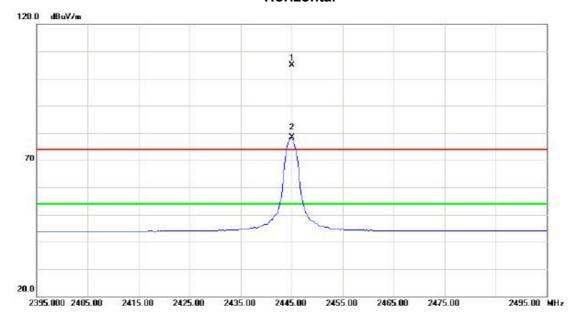
2395.000 2405.00 2415.00


2425.00

2435.00

Report No.: BTL-FCCP-1-1411212 Page 36 of 54

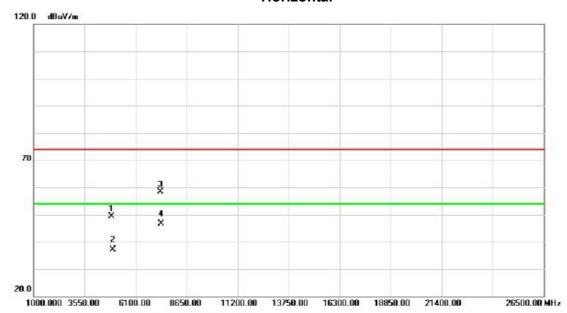
Vertical



No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4890.080	42.93	6.77	49.70	74.00	-24.30	peak		
2	4890.080	30.46	6.77	37.23	54.00	-16.77	AVG		
3	7334.855	43.07	15.71	58.78	74.00	-15.22	peak		
4 *	7334.855	30.99	15.71	46.70	54.00	-7.30	AVG		

Report No.: BTL-FCCP-1-1411212 Page 37 of 54

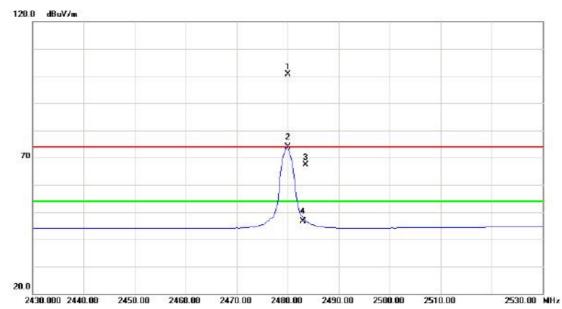
Horizontal



No.	Mk	c. Freq.		Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2445.000	73.70	31.28	104.98	74.00	30.98	peak	no limit	
2	X	2445.000	47.04	31.28	78.32	54.00	24.32	AVG	no limit	

Report No.: BTL-FCCP-1-1411212 Page 38 of 54

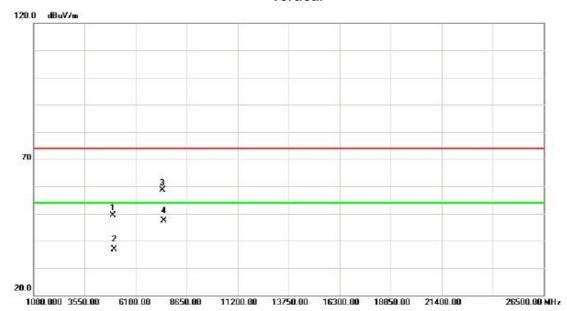
Horizontal



Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
90.525	42.55	6.77	49.32	74.00	-24.68	peak	
90.525	30.25	6.77	37.02	54.00	-16.98	AVG	
35.395	42.75	15.72	58.47	74.00	-15.53	peak	
35.395	31.02	15.72	46.74	54.00	-7.26	AVG	
3	5.395	5.395 31.02	5.395 31.02 15.72	5.395 31.02 15.72 46.74	5.395 31.02 15.72 46.74 54.00	5.395 31.02 15.72 46.74 54.00 -7.26	5.395 31.02 15.72 46.74 54.00 -7.26 AVG

Report No.: BTL-FCCP-1-1411212 Page 39 of 54

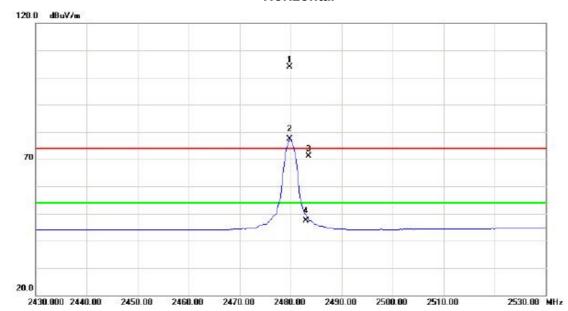
Vertical



Mi	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
*	2480.000	69.23	31.44	100.67	74.00	26.67	peak	no limit	
X	2480.000	42.34	31.44	73.78	54.00	19.78	AVG	no limit	
	2483.500	35.93	31.46	67.39	74.00	-6.61	peak		
	2483.500	15.16	31.46	46.62	54.00	-7.38	AVG		
	*	MHz * 2480.000 X 2480.000 2483.500	Mk. Freq. Level MHz dBuV * 2480.000 69.23 X 2480.000 42.34 2483.500 35.93	Mk. Freq. Level Factor MHz dBuV dB * 2480.000 69.23 31.44 X 2480.000 42.34 31.44 2483.500 35.93 31.46	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 2480.000 69.23 31.44 100.67 X 2480.000 42.34 31.44 73.78 2483.500 35.93 31.46 67.39	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 2480.000 69.23 31.44 100.67 74.00 X 2480.000 42.34 31.44 73.78 54.00 2483.500 35.93 31.46 67.39 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB * 2480.000 69.23 31.44 100.67 74.00 26.67 X 2480.000 42.34 31.44 73.78 54.00 19.78 2483.500 35.93 31.46 67.39 74.00 -6.61	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector * 2480.000 69.23 31.44 100.67 74.00 26.67 peak X 2480.000 42.34 31.44 73.78 54.00 19.78 AVG 2483.500 35.93 31.46 67.39 74.00 -6.61 peak	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB uV/m dB Detector Comment * 2480.000 69.23 31.44 100.67 74.00 26.67 peak no limit X 2480.000 42.34 31.44 73.78 54.00 19.78 AVG no limit 2483.500 35.93 31.46 67.39 74.00 -6.61 peak

Report No.: BTL-FCCP-1-1411212 Page 40 of 54

Vertical



No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4959.340	42.62	6.76	49.38	74.00	-24.62	peak		
2	4959.340	30.20	6.76	36.96	54.00	-17.04	AVG		
3	7440.535	42.42	16.28	58.70	74.00	-15.30	peak		
4 *	7440.535	31.21	16.28	47.49	54.00	-6.51	AVG		
									_

Report No.: BTL-FCCP-1-1411212 Page 41 of 54

Horizontal



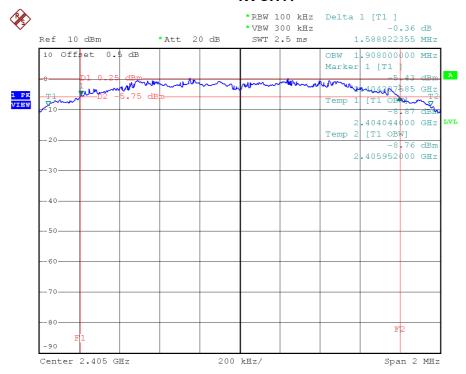
No.	M	k. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	lz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2479.7	50	72.48	31.44	103.92	74.00	29.92	peak	no limit	
2	X	2479.7	50	45.85	31.44	77.29	54.00	23.29	AVG	no limit	
3		2483.5	00	39.79	31.46	71.25	74.00	-2.75	peak		
4		2483.5	00	16.01	31.46	47.47	54.00	-6.53	AVG		

Report No.: BTL-FCCP-1-1411212 Page 42 of 54

Horizontal

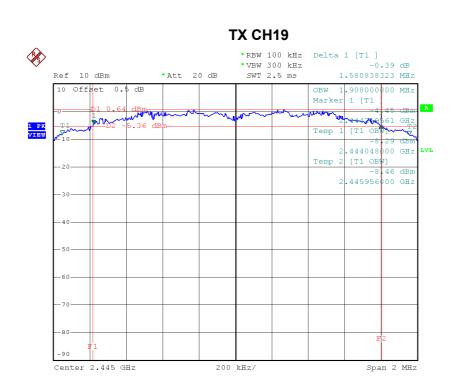
No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4960.095	42.73	6.76	49.49	74.00	-24.51	peak		
2	4960.095	30.01	6.76	36.77	54.00	-17.23	AVG		
3	7439.860	43.90	16.28	60.18	74.00	-13.82	peak		
4 *	7439.860	31.22	16.28	47.50	54.00	-6.50	AVG		

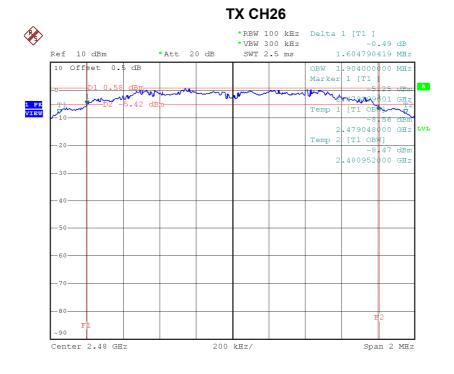
Report No.: BTL-FCCP-1-1411212 Page 43 of 54


ATTACHMENT D - BANDWIDTH

Report No.: BTL-FCCP-1-1411212 Page 44 of 54

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2405	1.589	1.908	500	Complies
2445	1.581	1.908	500	Complies
2480	1.605	1.904	500	Complies


TX CH11


Date: 11.DEC.2014 13:51:36

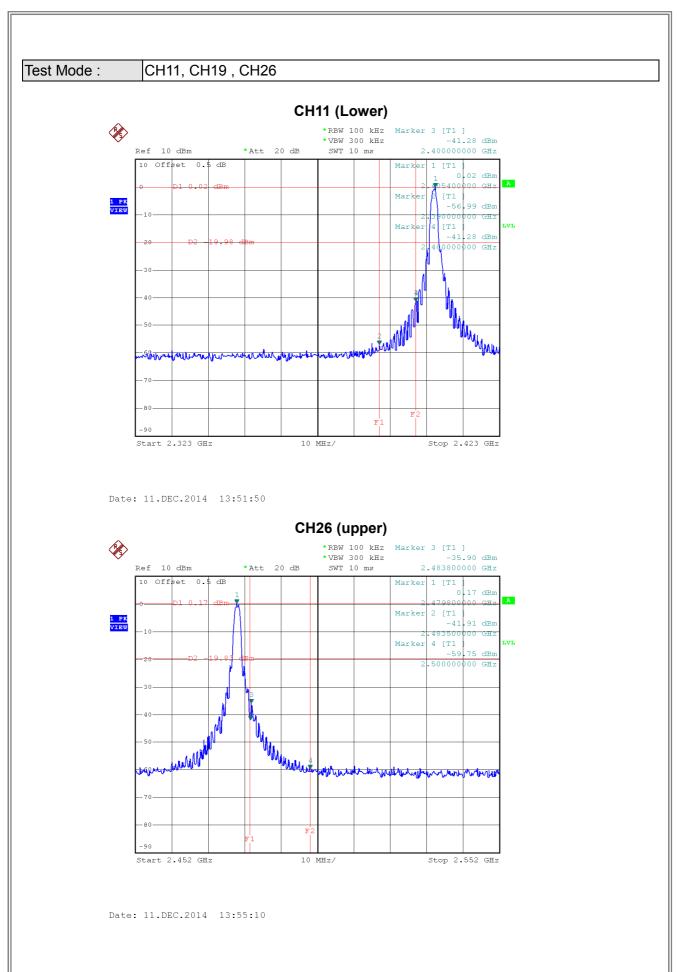
Report No.: BTL-FCCP-1-1411212 Page 45 of 54

Date: 11.DEC.2014 13:53:38

Date: 11.DEC.2014 13:55:00

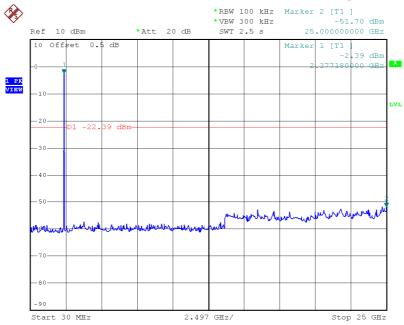
ATTACHMENT E - MAXIMUM OUTPUT POWER TEST

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (Watt)	Max. Limit (dBm)	Max. Limit (Watt)	Test Result
2405	2.67	0.0018	30.00	1.00	Complies
2445	2.58	0.0018	30.00	1.00	Complies
2480	3.53	0.0023	30.00	1.00	Complies

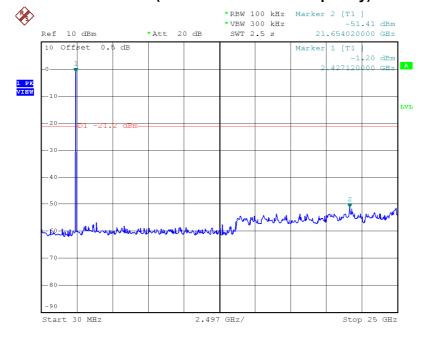

Report No.: BTL-FCCP-1-1411212 Page 47 of 54

ATTACHMENT F - ANTENNA CONDUCTED SPURIOUS EMISSION

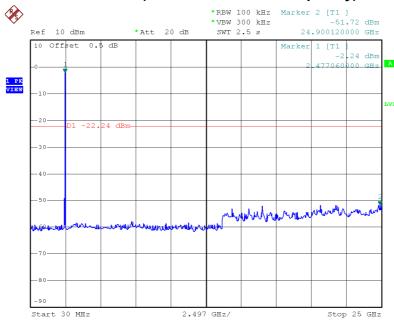
Report No.: BTL-FCCP-1-1411212 Page 48 of 54



Report No.: BTL-FCCP-1-1411212



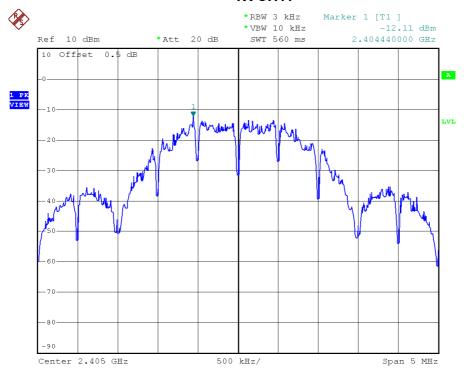
Date: 11.DEC.2014 13:51:13


CH19 (10 Harmonic of the frequency)

Date: 11.DEC.2014 13:53:03

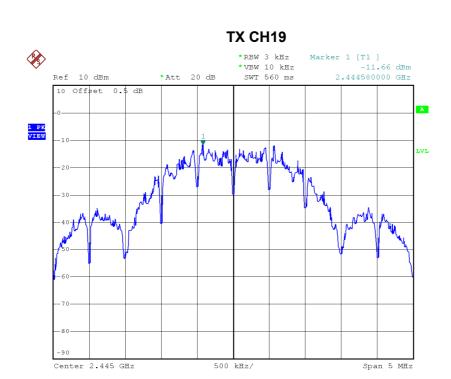
Date: 11.DEC.2014 13:54:39

Report No.: BTL-FCCP-1-1411212 Page 51 of 54


- i

Report No.: BTL-FCCP-1-1411212 Page 52 of 54

Frequency (MHz)	Power Density (dBm)	Max. Limit (dBm)	Result
2405	-12.11	8	Complies
2445	-11.66	8	Complies
2480	-12.54	8	Complies


TX CH11

Date: 11.DEC.2014 13:52:18

Report No.: BTL-FCCP-1-1411212 Page 53 of 54

Date: 11.DEC.2014 13:53:55

Date: 11.DEC.2014 13:55:26