

RF Exposure Requirements - MPE

Project #:	G101207197	Test Area:	Intertek Louisville
Test Method:	FCC CFR47 Part 1.1310	Test Date:	09/25/2013
EUT Model #:	M9		
EUT Serial #:	FCC1		
Manufacturer:	GE Analytical		
EUT Description:	TOC Analyzer		
Notes:	13.56MHz RFID Reader		

The following limit is from table 1 (B) Limits for General Population/Uncontrolled Exposure in FCC part 1.1310:

Power Density Limit for 13.56MHz: $180/f^2(\text{mW/cm}^2) = 180/183.874 = 0.979 \text{ mW/cm}^2$

The following calculation was used to determine compliance to the above limit. The calculation is from FCC OET bulletin 65.

Power Density(S) = $PG/4\pi R^2$ or $S = EIRP/4\pi R^2$

Where:

S = power density (in appropriate units, e.g. mW/cm^2)

P = power input to the antenna (mW).

G = numeric power gain of the antenna in the direction of interest relative to an isotropic radiator.

R = distance to the center of radiation of the antenna (cm)

In this case, 20cm will be used.

13.56MHz RFID Radio

Maximum measured radiated field strength at 3-meters = 49.01 dBuV/m

Maximum typical gain declared by the manufacturer = +1.0 dBi = 1.26 (numeric gain)

Production Tolerance declared = +/- 1.85dB

Calculated power input to the antenna = Measured Field Strength – Antenna Gain + Production Tolerance

$49.01 \text{ dBuV/m} - (+1.0 \text{ dBi}) + 1.85 \text{ dB} = 49.86 \text{ dBuV/m} = \text{EIRP } -45.37 \text{ dBm} = 0.00002905 \text{ mW}$

Power Density

Power (mW)	Gain (dbi)	Gain numeric	Distance (cm)	Power Density (mW/cm^2)
0.00002905	+1.0	1.26	20	0.0000000728

Therefore: Power Density Margin (Δ Limit) = $0.0000000728 - 0.979 = -0.978999993 \text{ mW/cm}^2$

Reference Conversion Equations:

1. Gain numeric = $10^{(\text{dBi}/10)}$
2. Gain (dBi) = $10 \log(\text{Gain numeric})$
3. dBm to Watts (W) = $10^{((\text{dBm} - 30)/10)}$
5. E (dBuV/m) = EIRP (dBm) – 20log D + 104.8