Shanghai Rogen Information

Technology Co.,LTD

HiFi Stone

Main Model: HBX10 Serial Model: N/A

November 01, 2013
Report No.: 13050042-FCC-H1
(This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:

William Long
Compliance Engineer

William Long
Technical Manager

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 2 of 8 www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC, RF/Wireless, Telecom	
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom	
Taiwan	BSMI, NCC, NIST EMC, RF, Telecom, Saf		
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom	
Australia	NATA, NIST	EMC, RF, Telecom, Safety	
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety	
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom	
Europe A2LA, NIST		EMC, RF, Telecom, Safety	

Accreditations for Product Certifications

Country/Region	Accreditation Body	Scope	
USA	FCC TCB, NIST	EMC, RF, Telecom	
Canada	IC FCB , NIST	EMC, RF, Telecom	
Singapore	iDA, NIST	EMC, RF, Telecom	
EU	NB	EMC & R&TTE Directive	
Japan	MIC, (RCB 208)	RF, Telecom	
Hong Kong	OFTA (US002)	RF, Telecom	

SIEMIC, INC.

Title: RF Exposure Evaluation Report for HiFi Stone
Main Model: HBX10
Serial Model: N/A
To: FCC 2.1091: 2012

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 3 of 8 www.siemic.com

This page has been left blank intentionally.

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 4 of 8 www.siemic.com

CONTENTS

1.	EXECUTIVE SUMMARY & EUT INFORMATION	5
2.	TECHNICAL DETAILS	6
3.	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7
FCC	C \$2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 5 of 8 www.siemic.com

1. EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programme was to demonstrate compliance of the Shanghai Rogen Information Technology Co.,LTD, HiFi Stone and model: HBX10 against the current Stipulated Standards. The HiFi Stone has demonstrated compliance with the FCC 2.1091: 2012.

EUT Information

EUT Description	: HiFi Stone
Main Model	: HBX10
Serial Model	N/A
Antenna Gain	0.1dBi
Input Power	: DC 4.75~5.25V
Maximum Conducted Peak Power to Antenna	802.11b:15.12 dBm : 802.11g:14.45 dBm 802.11n:12.60dBm
Classification Per Stipulated Test Standard	: FCC 2.1091: 2012

2. TECHNICAL DETAILS

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 6 of 8 www.siemic.com

2.	TECHNICAL DETAILS	
Purpose	Compliance testing of HiFi Stone with stipulated standard	
Applicant / Client	Shanghai Rogen Information Technology Co.,LTI The 9 floor, Building 1, No.401, Caobao Rd, Xuhui Distric Shanghai, P.R.Chin	
Manufacturer	Shanghai rogen information technology Co., Ltd The 9 floor, Building 1, No. 401, Caobao Rd, Xuhui District, Shanghai, P.R.China	
Laboratory performing the tests	SIEMIC (Nanjing-China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel: +86(25)86730128/86730129 Fax: +86(25)86730127 Email: China@siemic.com.cn	
Test report reference number	13050042-FCС-Н1	
Date EUT received	October 15, 2013	
Standard applied	FCC 2.1091: 2012	
Dates of test	October 24 to October 27, 2013	
No of Units	#1	
Equipment Category	DTS	
Trade Name	DOLRY	
RF Operating Frequency (ies)	WIFI: 802.11b/g/n: 2412-2462 MHz	
Number of Channels	802.11b/g /n: 11CH	
Modulation	CCK/OFDM	
FCC ID	2AA7JHBX10	

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 7 of 8 www.siemic.com

3. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FCC §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f2)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

Test Data

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

^{* =} Plane-wave equivalent power density

Report No: 13050042-FCC-H1 Issue Date: November 01, 2013 Page: 8 of 8 www.siemic.com

Note: base on different type antenna and their gain, the bellow result is the worst case.

802.11b:

Maximum peak output power at antenna input terminal: 15.12 (dBm) Maximum peak output power at antenna input terminal: 32.51 (mW)

Prediction distance: >20 (cm) Predication frequency: 2412 (MHz) Antenna Gain (typical): 0.1 (dBi) Antenna Gain (typical): 1.023 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.007 (mW/cm2) MPE limit for general population exposure at prediction frequency: 1.0 (mW/cm2)

0.007 (mW/cm2) < 1.0 (mW/cm2)

802.11g:

Maximum peak output power at antenna input terminal: 14.45 (dBm) Maximum peak output power at antenna input terminal: 35.08 (mW)

Prediction distance: >20 (cm) Predication frequency: 2412 (MHz) Antenna Gain (typical):0.1 (dBi) Antenna Gain (typical): 1.023 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.006 (mW/cm2) MPE limit for general population exposure at prediction frequency:1.0 (mW/cm2)

0.006(mW/cm2) < 1.0(mW/cm2)

802.11n:

Maximum peak output power at antenna input terminal: 12.60 (dBm) Maximum peak output power at antenna input terminal: 18.20(mW)

Prediction distance: >20 (cm) Predication frequency: 2412 (MHz) Antenna Gain (typical):0.1 (dBi) Antenna Gain (typical): 1.023 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.004 (mW/cm2) MPE limit for general population exposure at prediction frequency: 1.0 (mW/cm2)

0.004 (mW/cm2) < 1.0 (mW/cm2)

Result: Pass