

FCC Test Report

(PART 24)

Report No.: RFBEHG-WTW-P21050666-4

FCC ID: 2AA5WKMP8S1AA

Test Model: NAR01 (Mobile Router)

Received Date: May 24, 2021

Test Date: Jul. 15 ~ Aug. 06, 2021

Issued Date: Sep. 30, 2021

Applicant: NEC Platforms, Ltd.

Address: 2-3, tsukasa-machi, kanda, chiyoda-ku, Tokyo 101-8532 Japan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City
33383, Taiwan

Test Location (2): B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231,
Taiwan

FCC Registration / 788550 / TW0003

Designation Number: 427177 / TW0011

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record	4
1 Certificate of Conformity	5
2 Summary of Test Results.....	6
2.1 Measurement Uncertainty.....	6
2.2 Test Site and Instruments	7
3 General Information	9
3.1 General Description of EUT	9
3.2 Configuration of System under Test.....	10
3.2.1 Description of Support Units.....	10
3.3 Test Mode Applicability and Tested Channel Detail	11
3.4 EUT Operating Conditions	11
3.5 General Description of Applied Standards and references.....	12
4 Test Types and Results	13
4.1 Output Power Measurement	13
4.1.1 Limits of Output Power Measurement.....	13
4.1.2 Test Procedures.....	13
4.1.3 Test Setup.....	14
4.1.4 Test Results	15
4.2 Modulation Characteristics Measurement	16
4.2.1 Limits of Modulation Characteristics.....	16
4.2.2 Test Setup.....	16
4.2.3 Test Procedure	16
4.2.4 Test Results	17
4.3 Frequency Stability Measurement	18
4.3.1 Limits of Frequency Stability Measurement	18
4.3.2 Test Procedure	18
4.3.3 Test Setup.....	18
4.3.4 Test Results	19
4.4 Occupied Bandwidth Measurement.....	20
4.4.1 Test Procedure	20
4.4.2 Test Setup.....	20
4.4.3 Test Result	21
4.5 Band Edge Measurement.....	22
4.5.1 Limits of Band Edge Measurement	22
4.5.2 Test Setup.....	22
4.5.3 Test Procedures.....	22
4.5.4 Test Results	23
4.6 Peak to Average Ratio	24
4.6.1 Limits of Peak to Average Ratio Measurement	24
4.6.2 Test Setup.....	24
4.6.3 Test Procedures.....	24
4.6.4 Test Results	25
4.7 Conducted Spurious Emissions.....	26
4.7.1 Limits of Conducted Spurious Emissions Measurement.....	26
4.7.2 Test Setup.....	26
4.7.3 Test Procedure	26
4.7.4 Test Results	27
4.8 Radiated Emission Measurement.....	28
4.8.1 Limits of Radiated Emission Measurement	28
4.8.2 Test Procedure	28
4.8.3 Deviation from Test Standard	28
4.8.4 Test Setup.....	29
4.8.5 Test Results	30

5 Pictures of Test Arrangements.....	36
Appendix – Information of the Testing Laboratories	37

Release Control Record

Issue No.	Description	Date Issued
RFBEHG-WTW-P21050666-4	Original Release	Sep. 30, 2021

1 Certificate of Conformity

Product: NAR01 Mobile Router

Brand: NEC

Test Model: NAR01 (Mobile Router)

Sample Status: Engineering Sample

Applicant: NEC Platforms, Ltd.

Test Date: Jul. 15 ~ Aug .06, 2021

Standards: FCC Part 24, Subpart E

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : _____, **Date:** Sep. 30, 2021
Lena Wang / Specialist

Approved by : _____, **Date:** Sep. 30, 2021
Dylan Chiou / Senior Engineer

2 Summary of Test Results

Applied Standard: FCC Part 24 & Part 2			
FCC Clause	Test Item	Result	Remarks
2.1046 24.232	Effective Isotropic Radiated Power	Pass	Meet the requirement of limit.
2.1047	Modulation Characteristics	Pass	Meet the requirement.
24.232(d)	Peak to Average Ratio	Pass	Meet the requirement of limit.
2.1055 24.235	Frequency Stability	Pass	Meet the requirement of limit.
2.1049	Occupied Bandwidth	Pass	Meet the requirement of limit.
24.238	Band Edge Measurements	Pass	Meet the requirement of limit.
2.1051 24.238	Conducted Spurious Emissions	Pass	Meet the requirement of limit.
2.1053 24.238	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -31.21 dB at 3760.00 MHz.

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	9 kHz ~ 30 MHz	3.0400 dB
	30 MHz ~ 200 MHz	2.0153 dB
	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
	18 GHz ~ 40 GHz	1.1508 dB

2.2 Test Site and Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Aug. 24, 2020	Aug. 23, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 12, 2021	Apr. 11, 2022
HORN Antenna ETS-Lindgren	3117	00143293	Nov. 22, 2020	Nov. 21, 2021
BILOG Antenna SCHWARZBECK	VULB 9168	9168-616	Nov. 09, 2020	Nov. 08, 2021
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 13, 2021	Apr. 12, 2022
Preamplifier Agilent	310N	187226	Jun. 17, 2021	Jun. 16, 2022
Preamplifier Agilent	83017A	MY39501357	Jun. 17, 2021	Jun. 16, 2022
Preamplifier EMCI	EMC 184045	980116	Oct. 07, 2020	Oct. 06, 2021
Power Meter Anritsu	ML2495A	1012010	Sep. 01, 2020	Aug. 31, 2021
Power Sensor Anritsu	MA2411B	1315050	Sep. 01, 2020	Aug. 31, 2021
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(RFC-SMS-100-SMS-120+RFC-SMS-100-SMS-400)	Jun. 17, 2021	Jun. 16, 2022
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(RFC-SMS-100-SMS-24)	Jun. 17, 2021	Jun. 16, 2022
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower & Turn Table Controller MF	MF-7802	NA	NA	NA
MXG Vector signal generator Agilent	N5182B	MY53050430	Nov. 25, 2020	Nov. 24, 2021
Radio Communication Analyzer Anritsu	MT8820C	6201300640	Aug. 19, 2019	Aug. 18, 2021

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HsinTien Chamber 1.

3 General Information

3.1 General Description of EUT

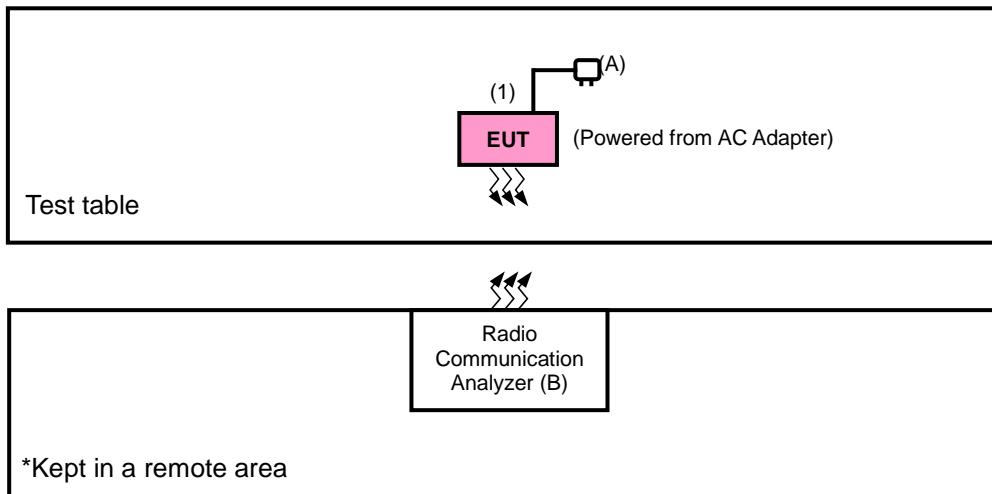
Product	NAR01 Mobile Router		
Brand	NEC		
Test Model	NAR01 (Mobile Router)		
Status of EUT	Engineering Sample		
Power Supply Rating	5.0 Vdc (adapter) 3.8 Vdc (Battery)		
Modulation Type	WCDMA		QPSK
Frequency Range	WCDMA		1852.4 ~ 1907.6 MHz
Max. EIRP Power	WCDMA		355.63 mW
Emission Designator	WCDMA		4M17F9W
Antenna Type	Refer to Note as below		
Accessory Device	N/A		
Data Cable Supplied	N/A		

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Battery	NEC	GXE-005945	3.8 Vdc, Rated 4000mAh, 16Wh

2. The EUT uses following antennas.


Antenna Type		Inverted L (Omni-directional)			
Band		WCDMA		LTE	
		II	V	5	17
Gain	Ant. 1 (TX/RX)	1.7	-	-	-
	Ant. 2 (TX/RX)	-	-0.8	-0.8	-4.8

*Ant. 1 & Ant. 2 is diversity.

3. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
5. WLAN 2.4G & WWAN technology can transmit at same time.
6. Spurious emission of the simultaneous operation (WLAN2.4G & WWAN) has been evaluated and no non-compliance was found.

3.2 Configuration of System under Test

<Radiated Emission Test> & <E.I.R.P. Test>

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
A	Adapter	N/A	TC U250	N/A	N/A
B	Radio Communication Analyzer	Anritsu	MT8820C	6201300640	N/A

No.	Signal Cable Description Of The Above Support Units
1.	Type C Cable: 1M, Provided by client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports.

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	EIRP	Radiated Emission
WCDMA	X-plane	X-plane

WCDMA

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Mode
-	EIRP	9262 to 9538	9262, 9400, 9538	WCDMA
-	Modulation Characteristics	9262 to 9538	9400	WCDMA
-	Frequency Stability	9262 to 9538	9262, 9538	WCDMA
-	Occupied Bandwidth	9262 to 9538	9262, 9400, 9538	WCDMA
-	Band Edge	9262 to 9538	9262, 9538	WCDMA
-	Peak to Average Ratio	9262 to 9538	9262, 9400, 9538	WCDMA
-	Conducted Emission	9262 to 9538	9262, 9400, 9538	WCDMA
-	Radiated Emission	9262 to 9538	9262, 9400, 9538	WCDMA

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
EIRP	26 deg. C, 58 % RH	120 Vac, 60 Hz	Wayne Lin
Modulation Characteristics	26 deg. C, 58 % RH	120 Vac, 60 Hz	Wayne Lin
Frequency Stability	26 deg. C, 58 % RH	3.8 Vdc	Wayne Lin
Occupied Bandwidth	26 deg. C, 58 % RH	120 Vac, 60 Hz	Wayne Lin
Band Edge	26 deg. C, 58 % RH	120 Vac, 60 Hz	Wayne Lin
Peak to Average Ratio	26 deg. C, 58 % RH	120 Vac, 60 Hz	Wayne Lin
Conducted Emission	26 deg. C, 58 % RH	120 Vac, 60 Hz	Wayne Lin
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC 47 CFR Part 2

FCC 47 CFR Part 24

ANSI 63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 971168 D01 Power Meas License Digital Systems v03r01

ANSI/TIA/EIA-603-E 2016

NOTE: All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Mobile / Portable station are limited to 2 watts e.i.r.p.

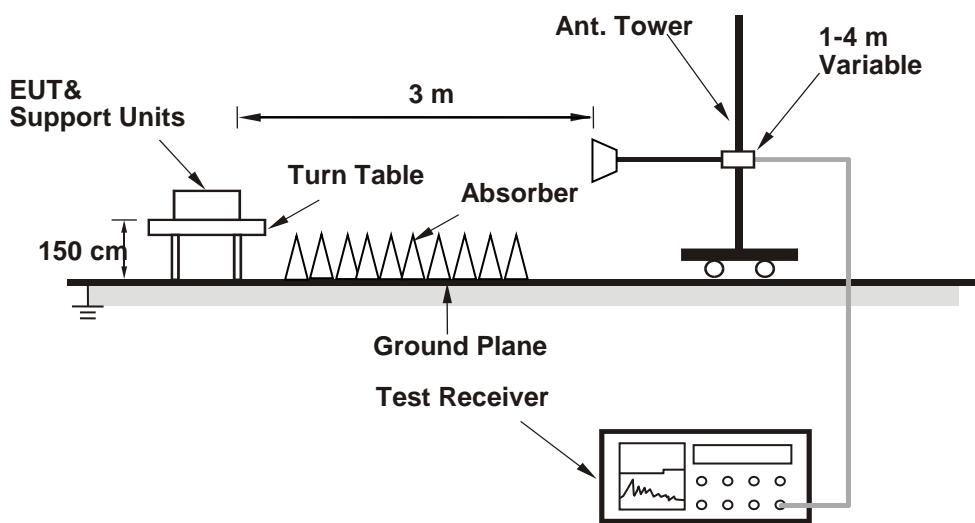
4.1.2 Test Procedures

EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW is 5 MHz for WCDMA mode, and VBW \geq 3 x RBW.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn. E.R.P power can be calculated from E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15 dB.


Conducted Power Measurement:

The EUT was set up for the maximum power with WCDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.


4.1.3 Test Setup

EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Conducted Power Measurement:

4.1.4 Test Results

Conducted Output Power (dBm)

Band	WCDMA II		
Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
HSDPA Subtest-1	20.59	20.67	20.77
HSDPA Subtest-2	20.58	20.66	20.75
HSDPA Subtest-3	20.54	20.61	20.73
HSDPA Subtest-4	20.53	20.59	20.71
HSUPA Subtest-1	20.17	20.19	20.21
HSUPA Subtest-2	19.69	19.72	19.75
HSUPA Subtest-3	20.74	20.76	20.79
HSUPA Subtest-4	19.21	19.25	19.28
HSUPA Subtest-5	21.27	21.15	21.23

EIRP Power (dBm)

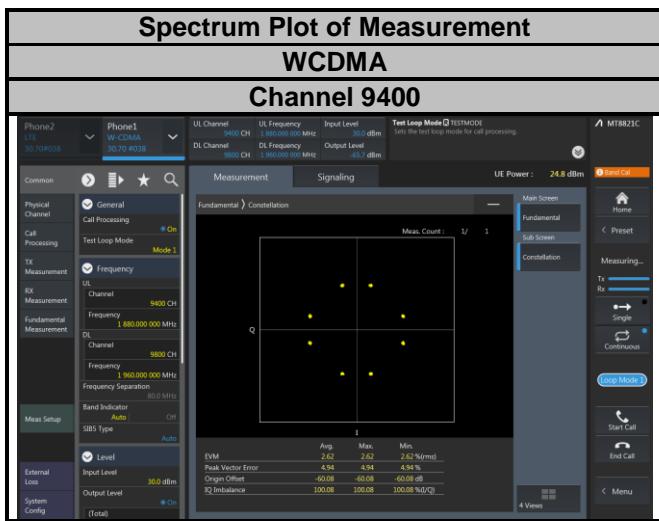
WCDMA							
Plane	Channel	Frequency (MHz)	Reading (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)
X	9262	1852.4	-12.68	38.19	25.51	355.63	H
	9400	1880.0	-13.42	38.70	25.28	337.29	
	9538	1907.6	-14.29	39.35	25.06	320.63	
	9262	1852.4	-18.36	38.48	20.12	102.80	V
	9400	1880.0	-18.70	38.59	19.89	97.50	
	9538	1907.6	-19.22	38.87	19.65	92.26	

Note: EIRP (dBm) = Reading (dBm) + Correction Factor (dB)

4.2 Modulation Characteristics Measurement

4.2.1 Limits of Modulation Characteristics

N/A


4.2.2 Test Setup

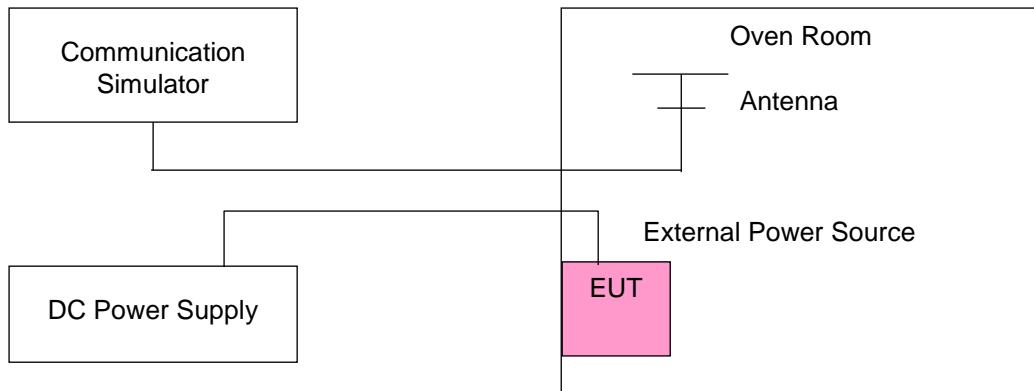
4.2.3 Test Procedure

Connect the EUT to Communication Simulator via the antenna connector. The frequency band is set as EUT supported Modulation and Channels, the EUT output is matched with 50 ohm load, the waveform quality and constellation of the EUT was tested.

4.2.4 Test Results

4.3 Frequency Stability Measurement

4.3.1 Limits of Frequency Stability Measurement


The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.3.2 Test Procedure

- Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}\text{C}$ during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.3.3 Test Setup

4.3.4 Test Results

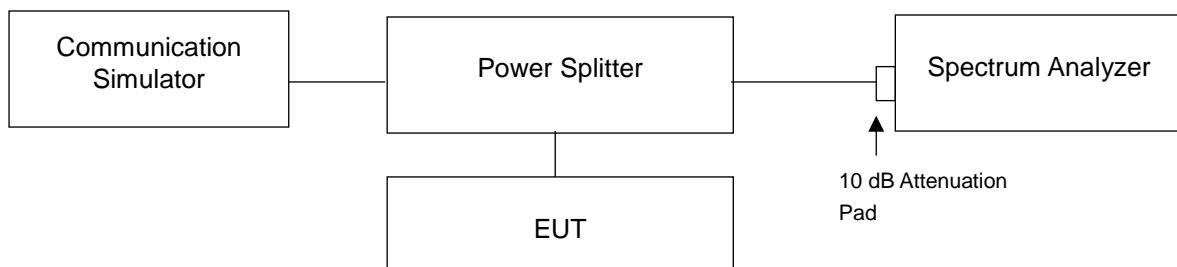
Frequency Error vs. Voltage

Voltage (Volts)	WCDMA			
	Low Channel		High Channel	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)
3.8	1852.399996	-0.002159	1907.600003	0.001573
3.4	1852.399995	-0.002699	1907.600010	0.005242
4.37	1852.399990	-0.005398	1907.599998	-0.001048

Note: The applicant defined the normal working voltage of the battery is from 3.4 Vdc to 4.37 Vdc.

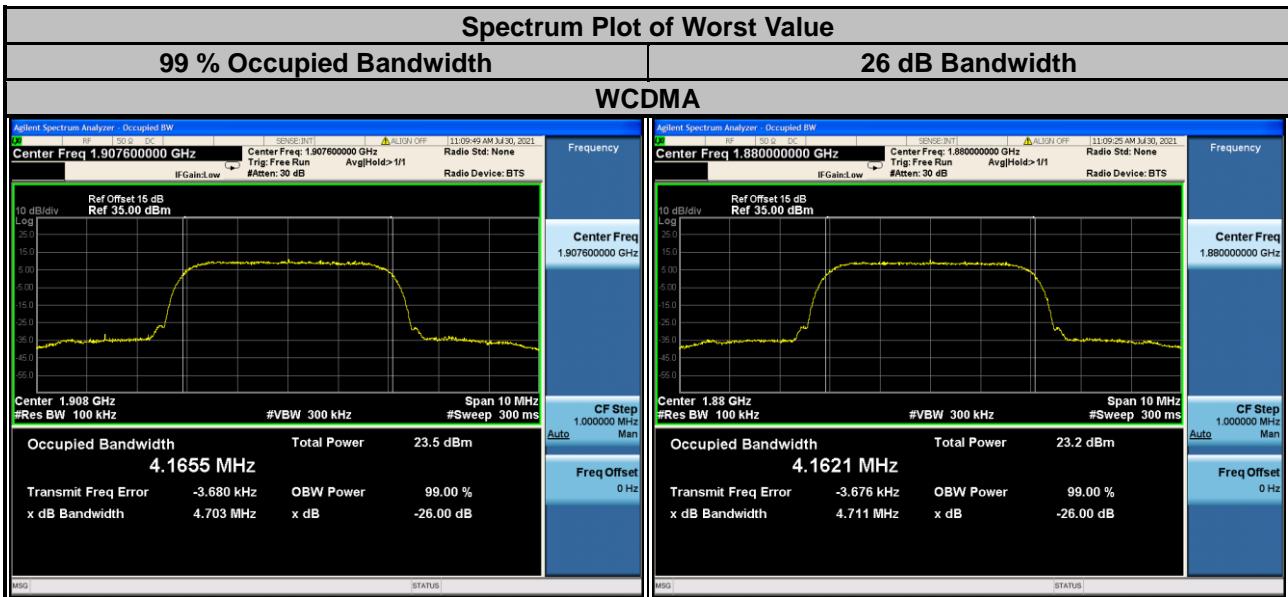
Frequency Error vs. Temperature

Temp. (°C)	WCDMA			
	Low Channel		High Channel	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)
-30	1852.400001	0.000540	1907.600002	0.001048
-20	1852.399990	-0.005398	1907.600009	0.004718
-10	1852.400006	0.003239	1907.599998	-0.001048
0	1852.399996	-0.002159	1907.600005	0.002621
10	1852.400003	0.001620	1907.600002	0.001048
20	1852.399996	-0.002159	1907.600003	0.001573
30	1852.400002	0.001080	1907.599990	-0.005242
40	1852.399992	-0.004319	1907.600003	0.001573
50	1852.400006	0.003239	1907.599997	-0.001573
55	1852.399999	-0.000540	1907.600004	0.002097


Note: The applicant declared that the normal operating temperature of the EUT is from -30°C to 55°C.

4.4 Occupied Bandwidth Measurement

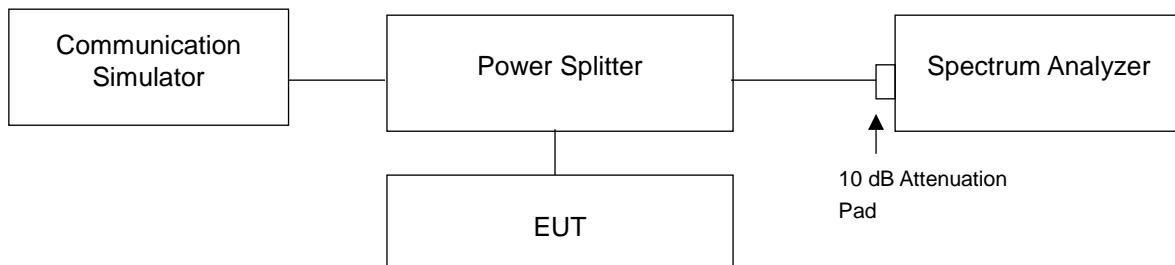
4.4.1 Test Procedure


The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.4.2 Test Setup

4.4.3 Test Result

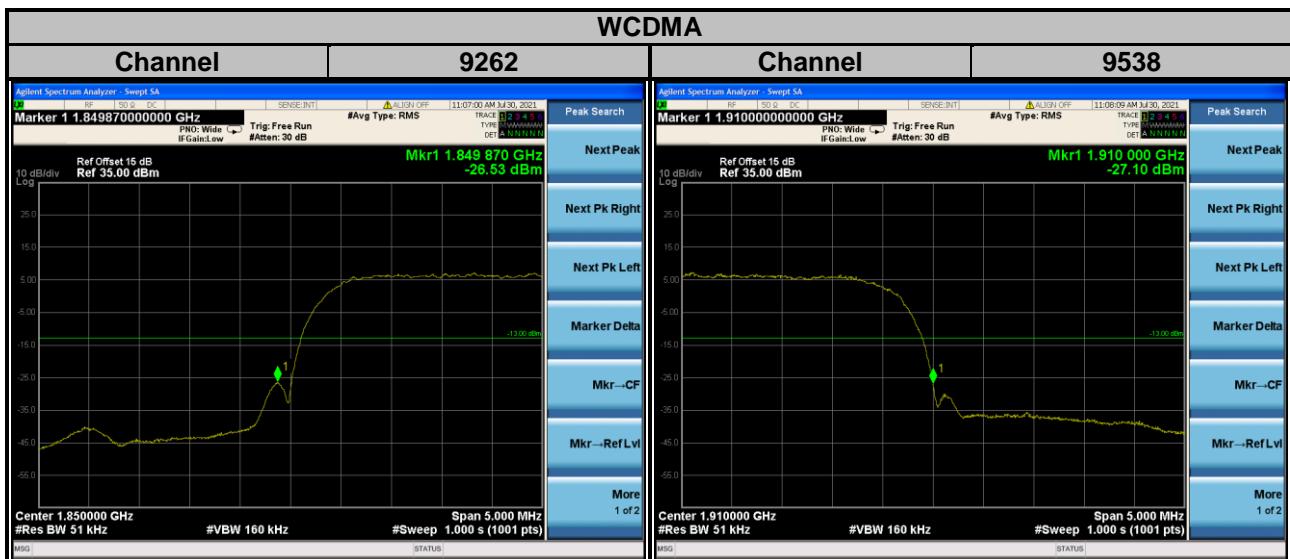
WCDMA			
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
9262	1852.4	4.16	4.69
9400	1880.0	4.16	4.71
9538	1907.6	4.17	4.70



4.5 Band Edge Measurement

4.5.1 Limits of Band Edge Measurement

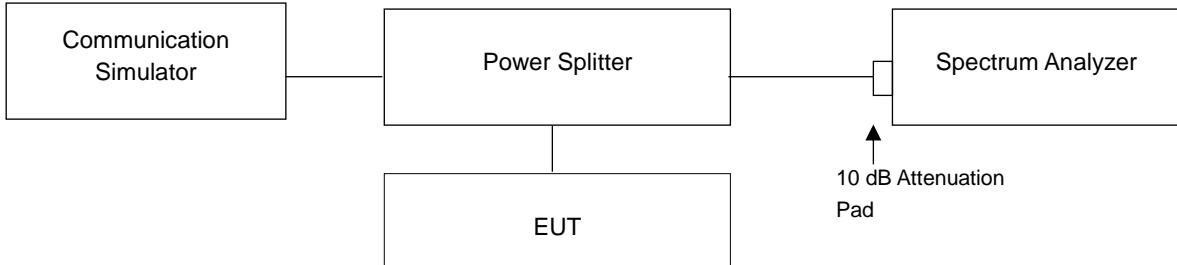
Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


4.5.2 Test Setup

4.5.3 Test Procedures

- All measurements were done at low and high operational frequency range.
- The center frequency of spectrum is the band edge frequency and span is 5 MHz. RB of the spectrum is 51 kHz and VB of the spectrum is 160 kHz (WCDMA).
- Record the max trace plot into the test report.

4.5.4 Test Results

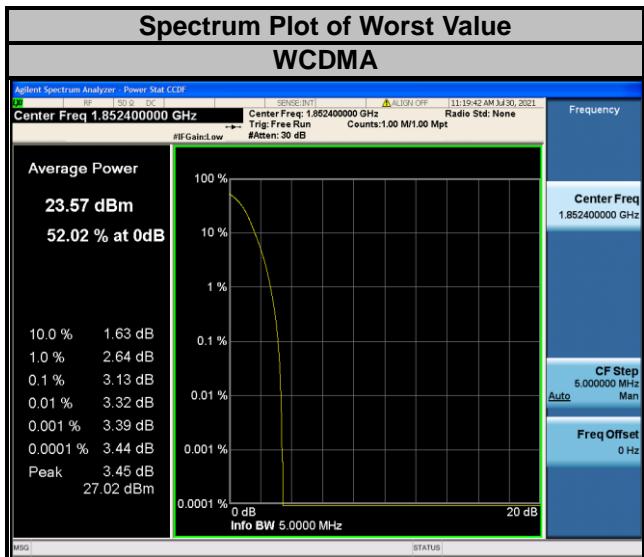


4.6 Peak to Average Ratio

4.6.1 Limits of Peak to Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.6.2 Test Setup

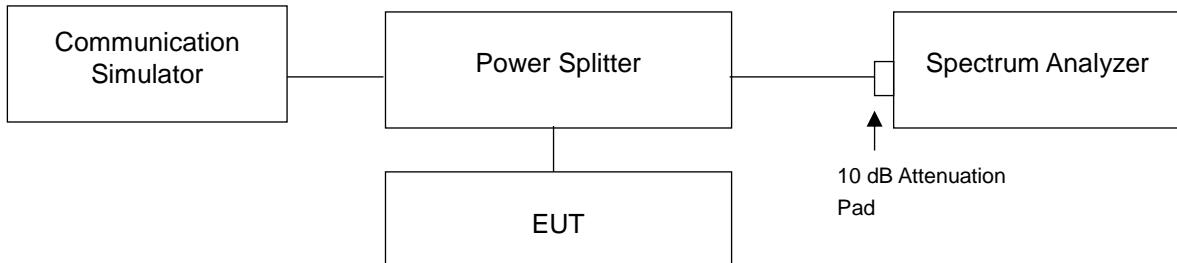


4.6.3 Test Procedures

1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
2. Set the number of counts to a value that stabilizes the measured CCDF curve;
3. Record the maximum PAPR level associated with a probability of 0.1 %.

4.6.4 Test Results

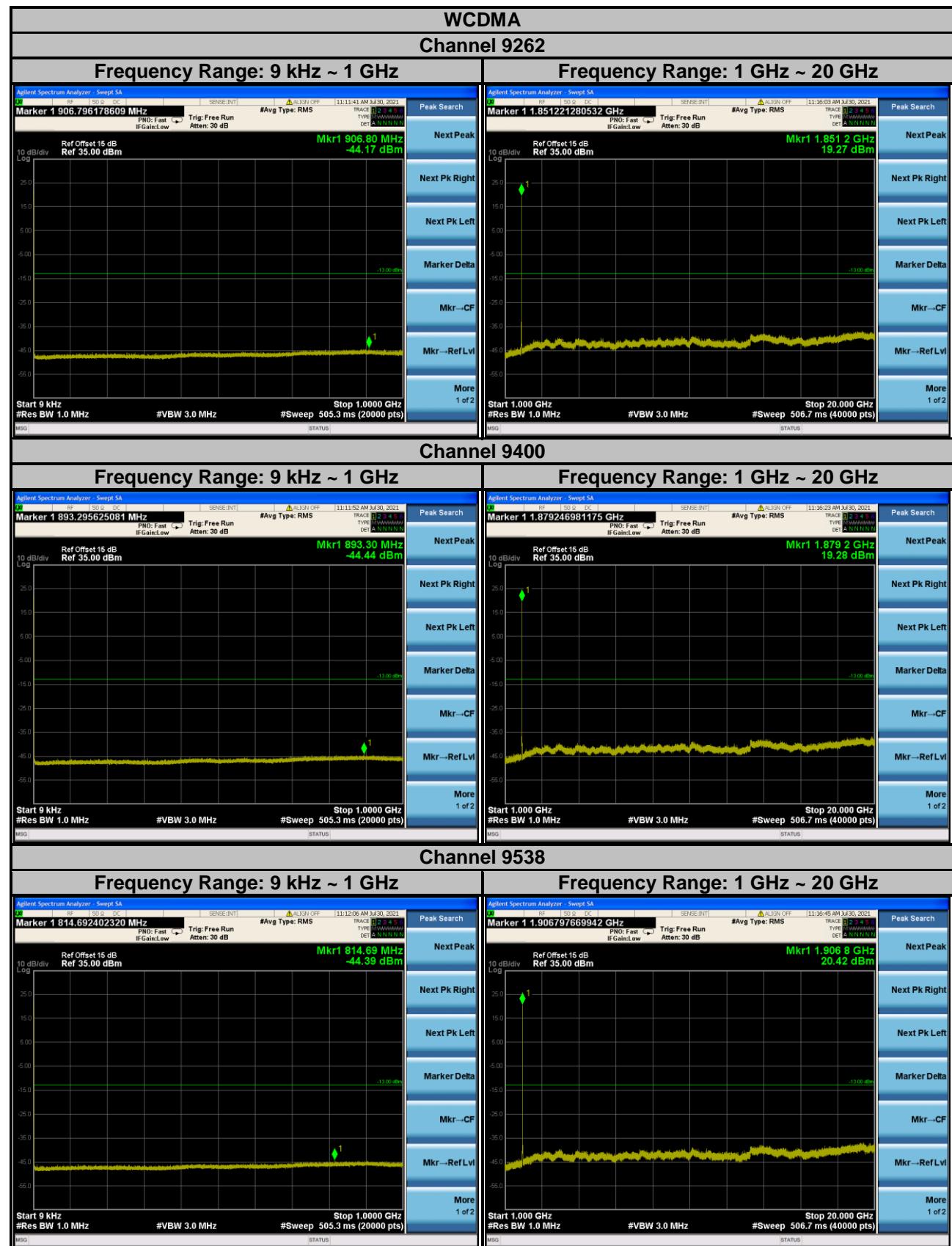
Channel	Frequency (MHz)	Peak to Average Ratio (dB)
		WCDMA
9262	1852.4	3.13
9400	1880.0	2.87
9538	1907.6	2.80



4.7 Conducted Spurious Emissions

4.7.1 Limits of Conducted Spurious Emissions Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit equal to -13 dBm.


4.7.2 Test Setup

4.7.3 Test Procedure

- The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 9 kHz to 1 GHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz is used for conducted emission measurement.
- Measuring frequency range is from 1 GHz to 20 GHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz is used for conducted emission measurement.

4.7.4 Test Results

Note: The signal over the limit in 9 kHz is from spectrum analyzer.

4.8 Radiated Emission Measurement

4.8.1 Limits of Radiated Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. The emission limit is equal to -13 dBm.

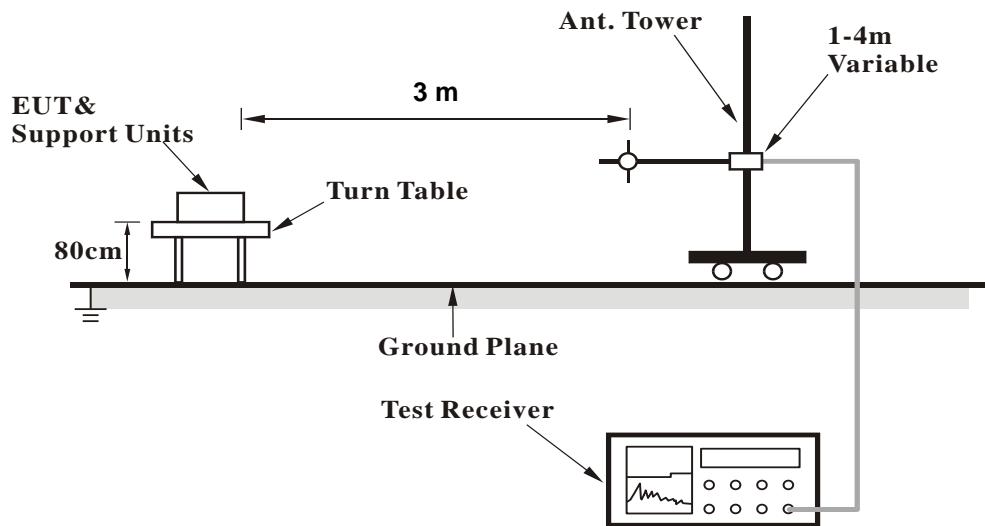
4.8.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
- c. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15 dB.

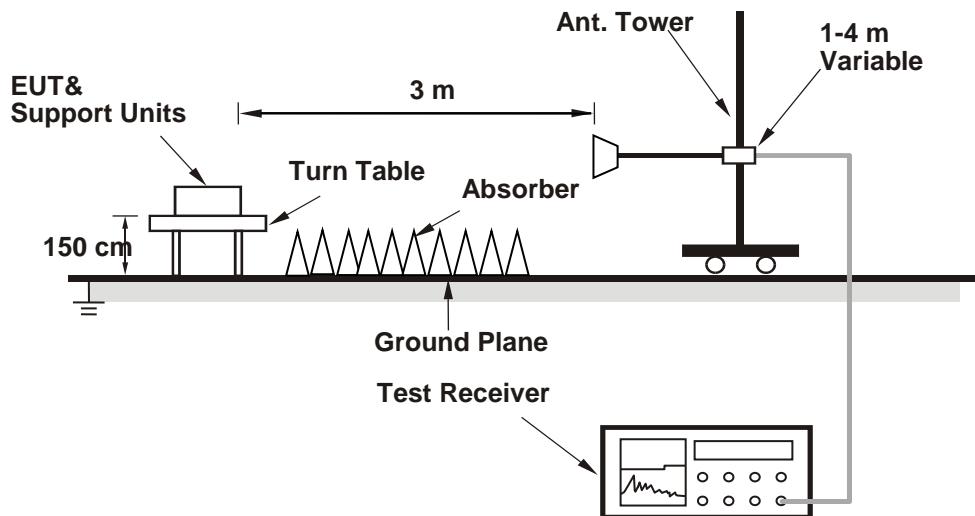
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz.

2. The emission levels were against the limit of frequency range 9 kHz ~ 30 MHz:


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

4.8.3 Deviation from Test Standard


No deviation.

4.8.4 Test Setup

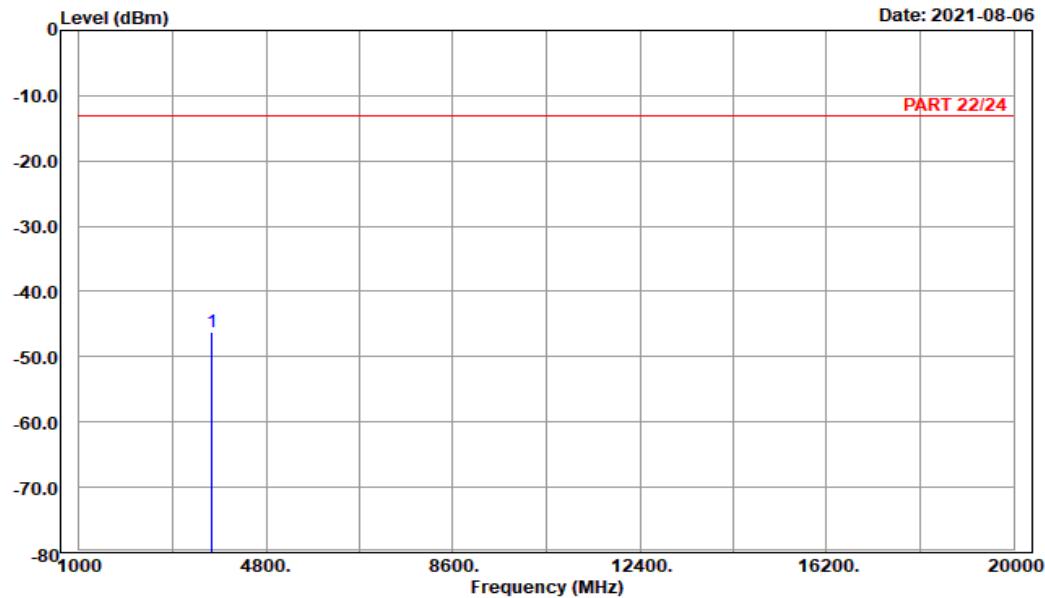
<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.8.5 Test Results

WCDMA:

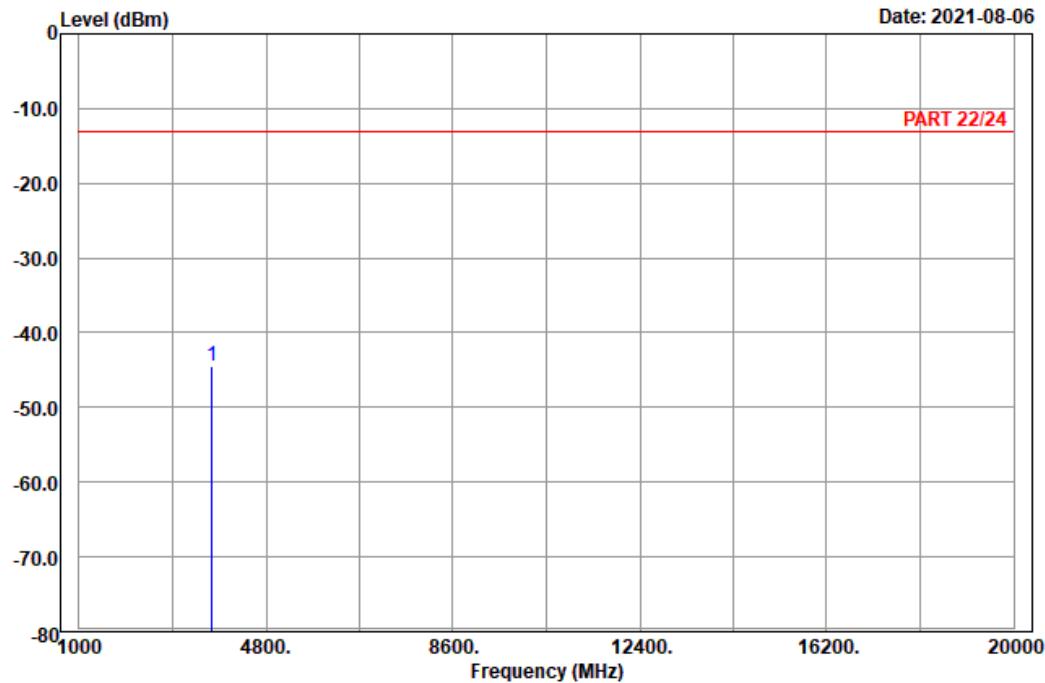

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 1

Site : 966 chamber 1
 Condition: PART 22/24 Horizontal
 Remark : Band II_Link_L-Ch
 Tested by: Charles Hsiao


Freq MHz	Level dBm	Read Level dBm	Limit Line dBm	Over Limit dB	Factor	Over
						Remark
1 pp	3704.80	-46.16	-62.04	-13.00	-33.16	15.88 Peak

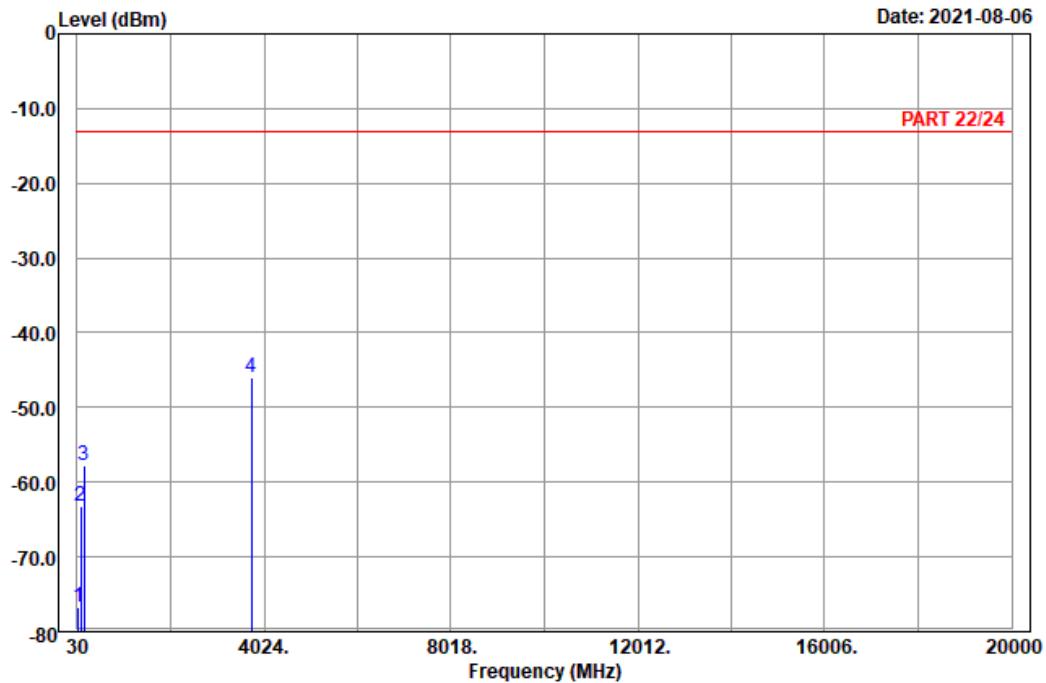
Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 2

Site : 966 chamber 1
Condition: PART 22/24 Vertical
Remark : Band II_Link_L-Ch
Tested by: Charles Hsiao

	Read	Limit	Over			
Freq	Level	Level	Line	Limit	Factor	Remark
MHz	dBm	dBm	dBm	dB	dB	
1 pp	3704.80	-44.51	-60.39	-13.00	-31.51	15.88 Peak

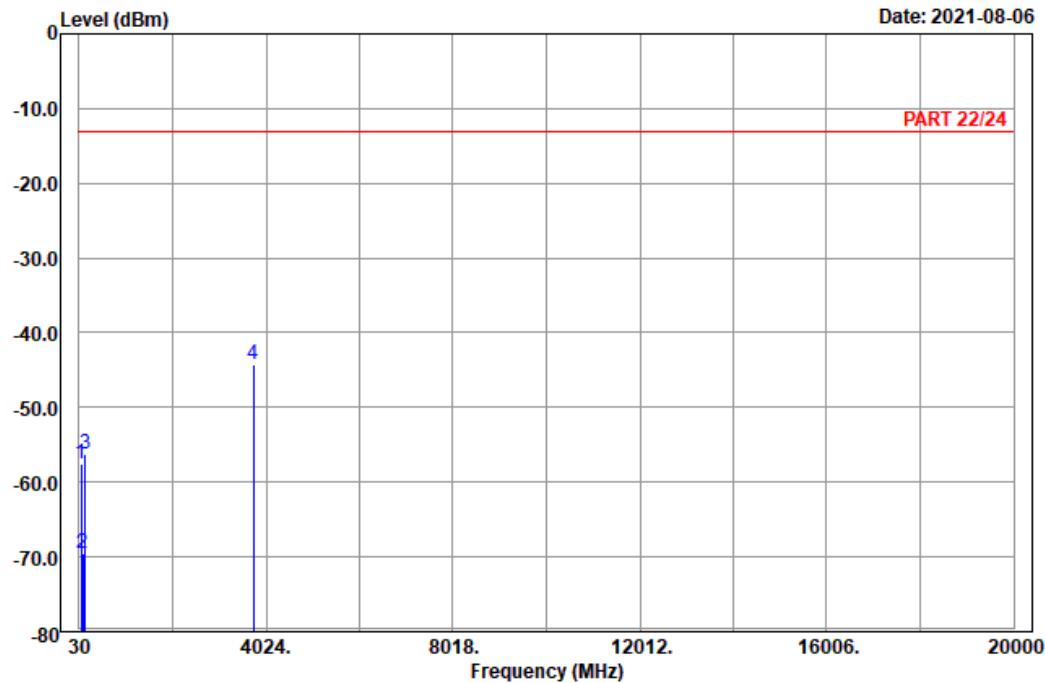

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 7

Site : 966 chamber 1
 Condition: PART 22/24 Horizontal
 Remark : Band II_Link_M-Ch
 Tested by: Charles Hsiao


	Read Freq	Limit Level	Over Line	Over Limit	Over Factor	Remark
	MHz	dBm	dBm	dBm	dB	dB
1	47.55	-76.76	-63.65	-13.00	-63.76	-13.11 Peak
2	109.38	-63.23	-54.28	-13.00	-50.23	-8.95 Peak
3	176.61	-57.70	-51.71	-13.00	-44.70	-5.99 Peak
4 pp	3760.00	-46.10	-62.24	-13.00	-33.10	16.14 Peak

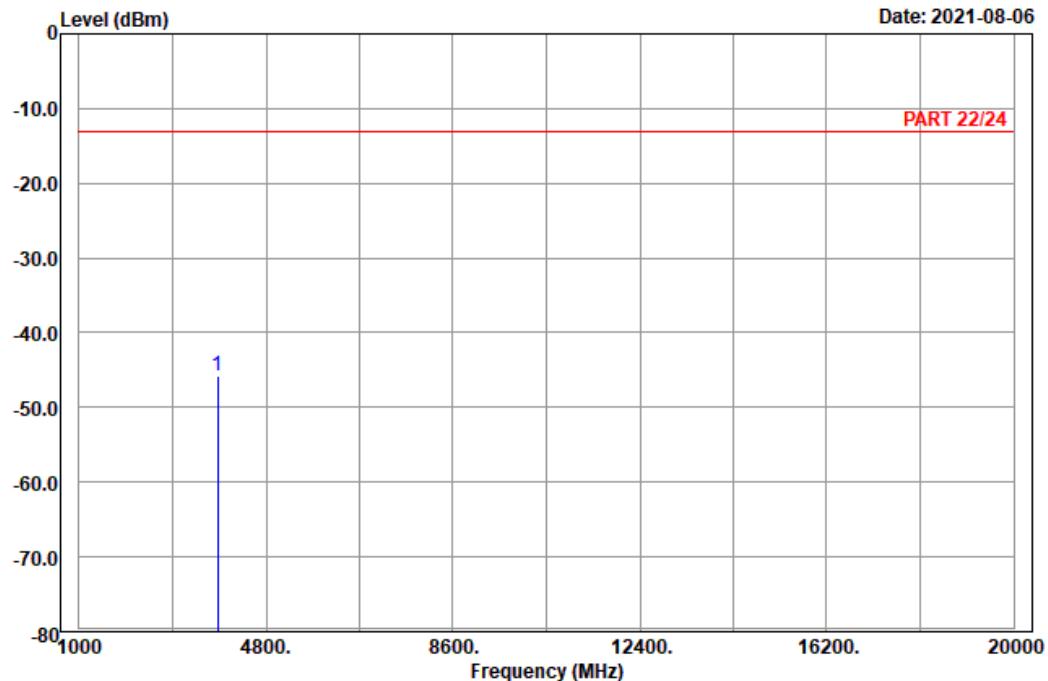
Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 8

Site : 966 chamber 1
 Condition: PART 22/24 Vertical
 Remark : Band II_Link_M-Ch
 Tested by: Charles Hsiao

Freq	Read	Limit	Over	Factor	Remark
	Level	Level	Line		
	MHz	dBm	dBm	dB	dB
1	69.96	-57.58	-44.90	-13.00	-44.58 -12.68 Peak
2	99.66	-69.55	-59.43	-13.00	-56.55 -10.12 Peak
3	160.41	-56.19	-48.52	-13.00	-43.19 -7.67 Peak
4 pp	3760.00	-44.21	-60.35	-13.00	-31.21 16.14 Peak

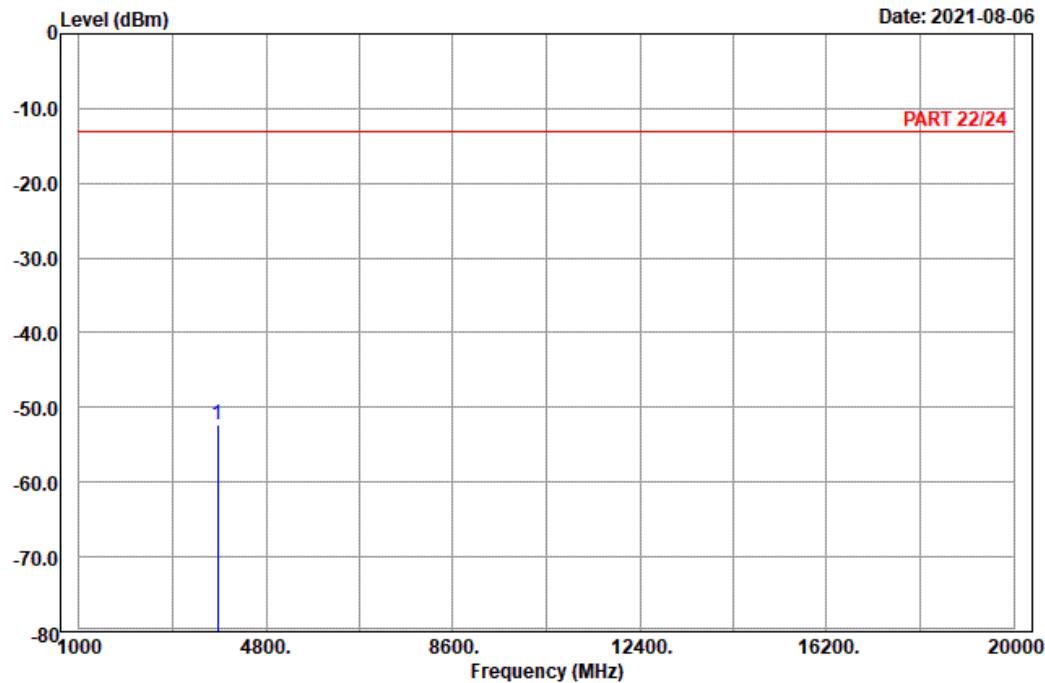

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 1

Site : 966 chamber 1
Condition: PART 22/24 Horizontal
Remark : Band II_Link_H-Ch
Tested by: Charles Hsiao


	Read	Limit	Over			
Freq	Level	Level	Line	Limit	Factor	Remark
MHz	dBm	dBm	dBm	dB	dB	
1 pp	3815.20	-45.82	-62.23	-13.00	-32.82	16.41 Peak

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

A D T

Data: 2

Site : 966 chamber 1

Condition: PART 22/24 Vertical

Remark : Band II_Link_H-Ch

Tested by: Charles Hsiao

Freq	Read Level	Limit Level	Over Line	Limit Factor	Remark
MHz	dBm	dBm	dBm	dB	dB

1 pp 3815.20 -52.38 -68.79 -13.00 -39.38 16.41 Peak

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---