

FCC / ISED – TEST REPORT

Report Number	: 60.790.24.079.01R02	Date of Issue: <u>November 25, 2024</u>
Model/HVIN	: <u>Bluetooth CAM Lock, Bluetooth Plunger Lock</u>	
Product Type	: <u>Twist Lock</u>	
Applicant	: <u>Mobile Technologies Inc.</u>	
Address	: <u>2345 NE Overlook Drive, Hillsboro OR 97006 United States of America.</u>	
Production Facility (1)	: <u>Shenzhen Maxway Technology CO., LTD</u>	
Address	: <u>3F, Building 4, Section A, 3rd Industrial Zone of Tangtou, Shiyan Town, Bao'an District, Shenzhen, China.</u>	
Production Facility (2)	: <u>Well Star Precision Technology Limited</u>	
Address	: <u>24 Bao Ta Road, Bao Tang Community, Hou Jie Town, Dongguan City, Guangdong Province, China</u>	
Production Facility (3)	: <u>VIETNAM IBE LASER TECHNOLOGY COMPANY LIMITED</u>	
Address	: <u>lot CN-34 and Lot CN-39, Thuan Thanh II industrial zone, An Binh & Mao Dien commune, Thuan Thanh district, Bac Ninh province, Vietnam</u>	
Test Result	: <input checked="" type="radio"/> n Positive <input type="radio"/> Negative	
Total pages including Appendices	: <u>27</u>	

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems Test Configuration	10
9	Technical Requirement	11
9.1	Conducted Emission	11
9.2	20 dB Bandwidth	12
9.3	99% bandwidth	14
9.4	Spurious Radiated Emissions for Transmitter	16
10	Test Equipment List	26
11	System Measurement Uncertainty	27

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu, Nantou, Nanshan District
Shenzhen 518052
P.R. China

Telephone: 86 755 8828 6998

Fax: 86 755 8828 5299

FCC Registration No.: 514049

FCC Designation No.: CN5009

IC Registration No.: 10320A

ISED CAB Identifier: CN0077

3 Description of the Equipment Under Test

Description of the Equipment Under Test

Product:	Twist Lock
Model no.:	Bluetooth CAM Lock, Bluetooth Plunger Lock
Hardware Version Identification No.	Bluetooth CAM Lock, Bluetooth Plunger Lock (HVIN)
Product Marketing Name (PMN)	Twist Lock
Brand name:	N/A
FCC ID:	2AA2X-15000333V2
IC:	24439-15000333V2
Rating:	3.0 VDC (CR2477 Button Cell)
RF Transmission Frequency:	125 kHz
No. of Operated Channel:	1
Modulation:	AM
Antenna Type:	Coil Antenna
Antenna	Gain: 0 dBi
Description of the EUT:	<p>The Equipment Under Test (EUT) is a Twist Lock which support Bluetooth (BLE) function, Zigbee function and 125 kHz near field card access function.</p> <p>Only 125 kHz measurement included in this report.</p>

NOTE:

1. The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4 Summary of Test Standards

Test Standards	
FCC Part 15 Subpart C 10-1-2023 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators
RSS-Gen Issue 5 April 2018 + Amendment 1 March 2019 + Amendment 2 February 2021	General Requirements for Compliance of Radio Apparatus
RSS-210 Issue 11 June 2024	Licence-Exempt Radio Apparatus: Category I Equipment

All the test methods were according to ANSI C63.10-2020.

5 Summary of Test Results

Technical Requirements						
Test Condition		Test Site	Test Result			Test Environment
			Pass	Fail	N/A	
§15.207 & RSS-GEN 8.8	Conducted emission AC power port	Site 1	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	T: 24.8°C H: 53.7%
§15.215 & RSS-GEN 6.7	20dB bandwidth and 99% Occupied Bandwidth	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	T: 24.8°C H: 53.7%
§15.205 & §15.209 & RSS-210 8.3 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	T: 24.7°C H: 49.3%
§15.203 & RSS-Gen 6.8	Antenna requirement	See note 2	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	--

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a Coil antenna, which gain is 0 dBi. In accordance to §15.203 & RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section.

Note 3: T :Temperature, H: Humidity

6 General Remarks

Remarks

Applicant informs that the model **Bluetooth Plunger Lock** has the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction, with **Twist Lock, Bluetooth CAM Lock**.

The difference lies only in outlook / mechanical switch activation of the different models.

All modes & voltage had been performed to determine the worst case shown.

All the test result of this report is based on the sample of main model: **Bluetooth CAM Lock**.

This submittal(s) (test report) is intended for **FCC ID: 2AA2X-15000333V2, IC: 24439-15000333V2**, complies with Section 15.209, 15.215 of the FCC Part 15, Subpart C rules and RSS-210, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed

- **Not** Performed

The Equipment under Test

- **Fulfills** the general approval requirements.

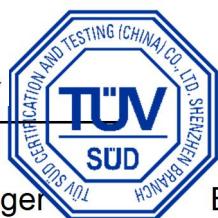
- **Does not** fulfill the general approval requirements.

Sample Received Date: October 10, 2024

Testing Start Date: October 10, 2024

Testing End Date: November 18, 2024

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -


Reviewed by:

Prepared by:

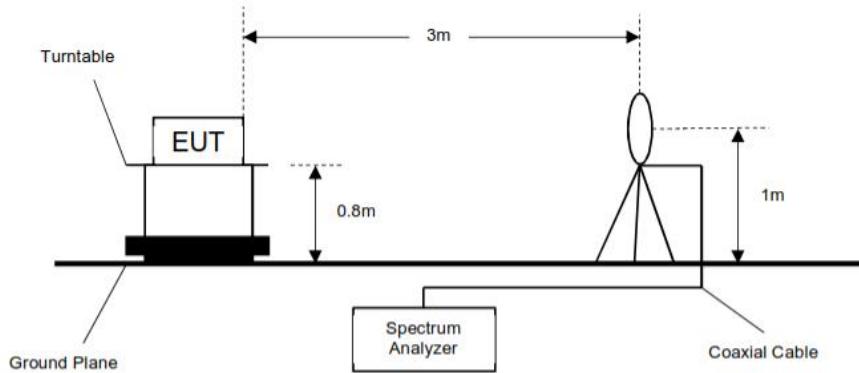
Tested by:

Eric Li

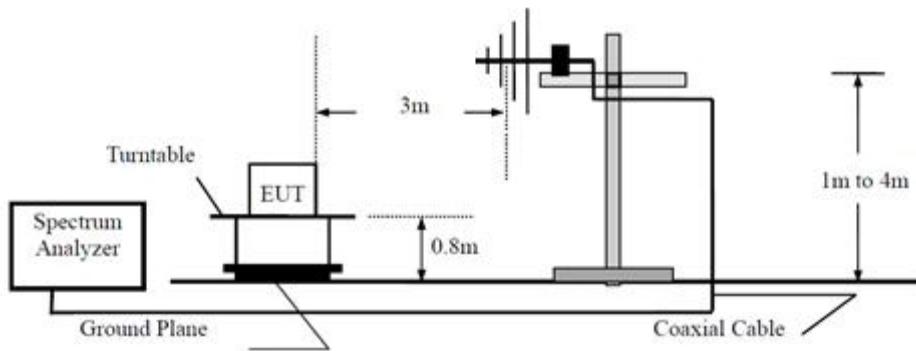
Eric Li
Section Manager

Kevin

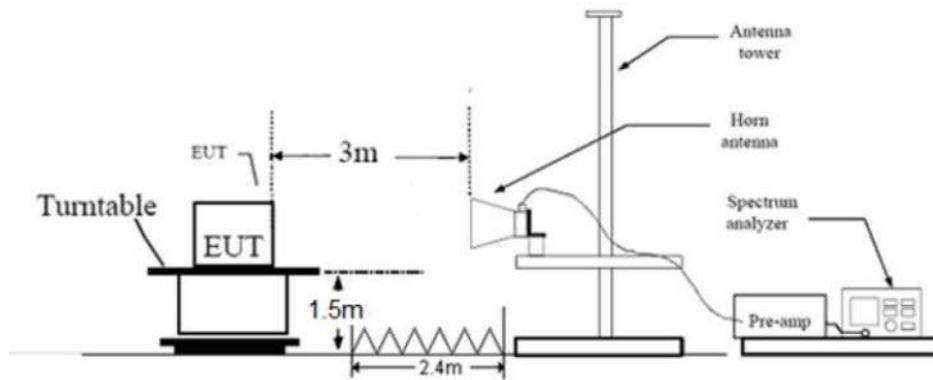
Kevin DU
EMC Project Engineer


Carry Cai

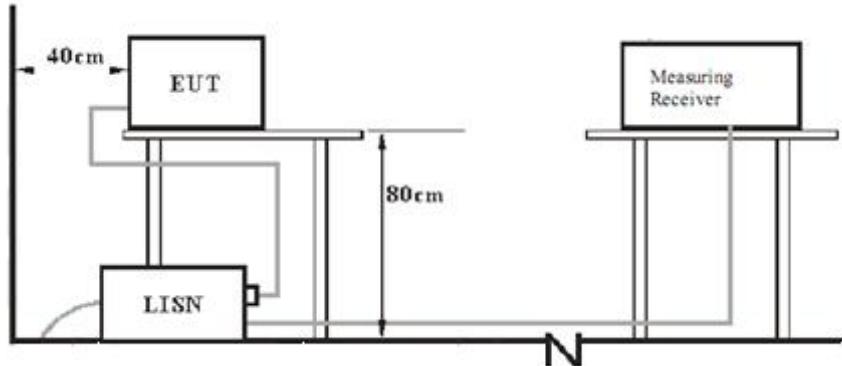
Carry Cai
Test Engineer


7 Test Setups

7.1 Radiated test setups


9kHz - 30MHz

30MHz - 1GHz


Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Systems Test Configuration

Auxiliary Equipment Used during Test:

Description	Manufacturer	Model NO.	Remark
Laptop	Lenovo	X220	0A72168
MTI Connect HUB	MTI	---	System Monitoring

Cables Used During Test:

Cable	Length	Shielded/unshielded	With / without ferrite
---	---	---	---

The system was configured to single testing channel.

Only the worst case transmitter rate data mode is recorded in the report.

9 Technical Requirement

9.1 Conducted Emission

Test Method

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. Both sides of AC line were checked for maximum conducted interference.
6. The frequency range from 150 kHz to 30 MHz was searched.
7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency MHz	QP Limit dB μ V	AV Limit dB μ V
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

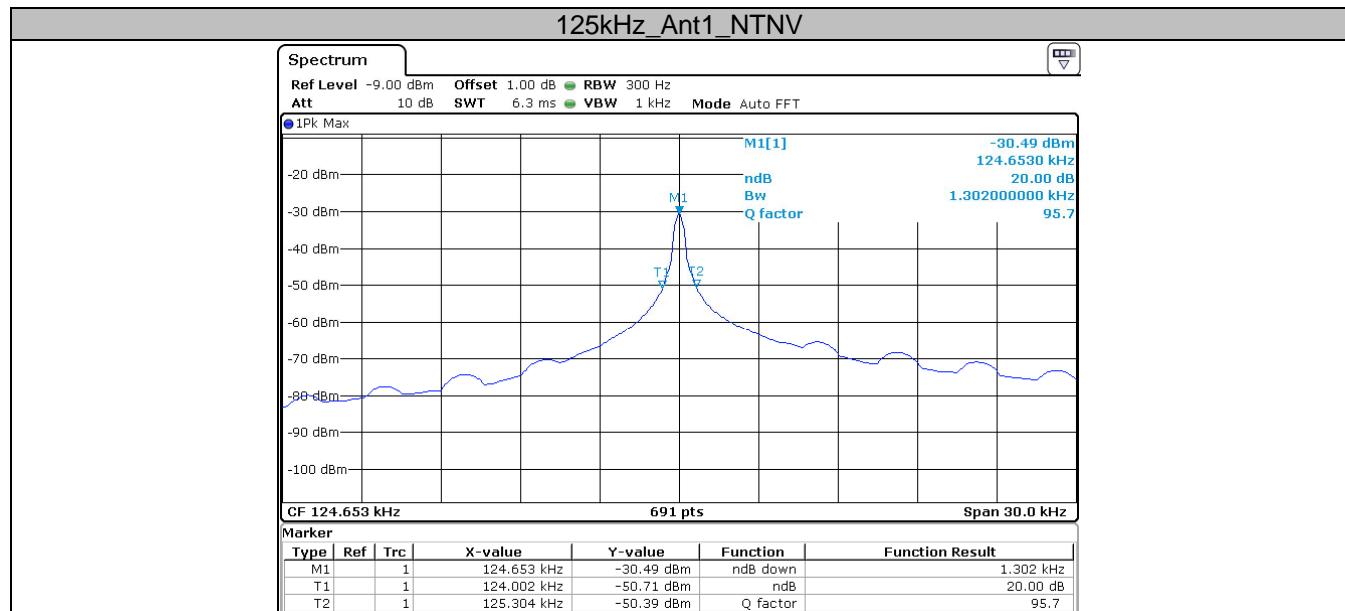
*Decreasing linearly with logarithm of the frequency

Test result: Test Not Applicable for the Battery-Operated Device.

9.2 20 dB Bandwidth

Test Method

1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously. Use the following test receiver settings:
RBW = 1% to 5% of the OBW, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Use the 99 % power bandwidth function of the instrument. Record the frequency difference as the emission bandwidth. Record the results.


Limit

According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test result

Frequency	20dB bandwidth kHz	Result
125 kHz	1.302	Pass

Test Graphs as below:

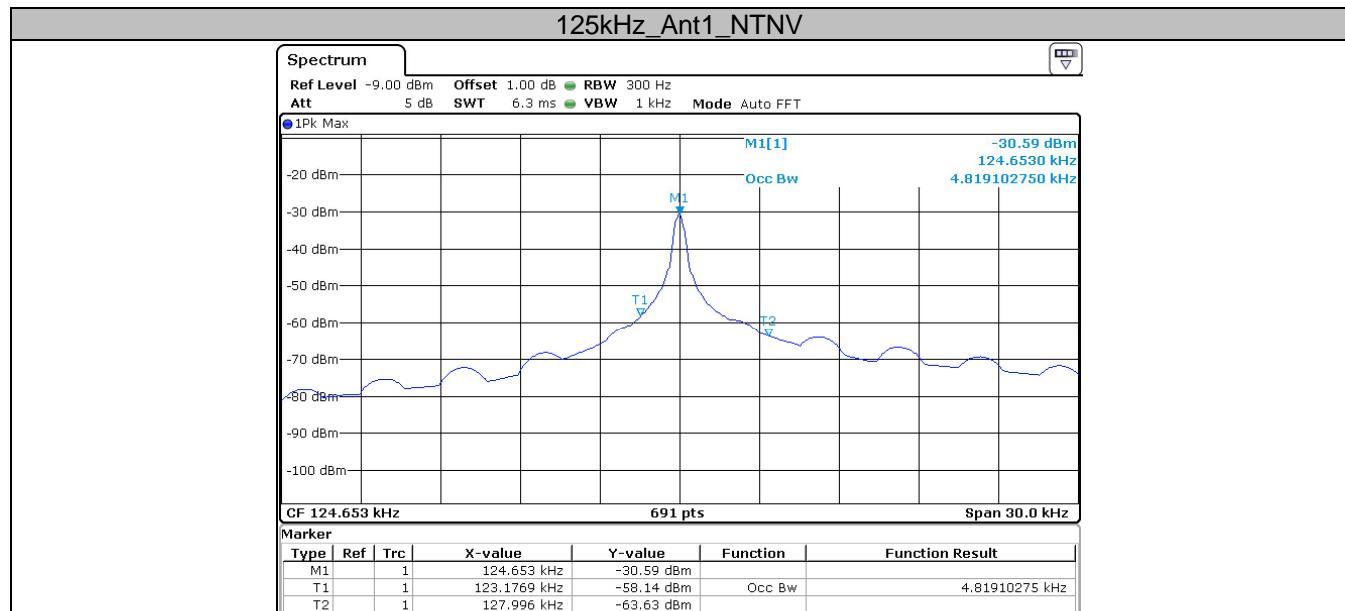
9.3 99% bandwidth

Test Method

1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously. Use the following test receiver settings:
RBW = 1% to 5% of the OBW, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the 99 % power bandwidth function of the instrument. Record the frequency difference as the emission bandwidth. Record the results.

Limit

According to RSS-Gen 6.7, The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.


Limit [kHz]

--

Test result

Frequency	99% bandwidth kHz	Result
125 kHz	4.819	Pass

Test Graphs as below:

9.4 Spurious Radiated Emissions for Transmitter

Test Method

1. The EUT was place on a turn table which is 0.8m above ground plane. The table was rotated 360 degrees to determine the position of the highest radiation.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

Use the following test receiver settings According to C63.10:

9kHz - 150kHz

RBW = 200Hz, VBW = 1kHz for peak measurement, Sweep = auto,
Detector function = peak, Trace = max hold.

150kHz - 30MHz

RBW = 10 kHz, VBW = 30 kHz for peak measurement, Sweep = auto,
Detector function = peak, Trace = max hold.

30MHz - 1GHz

RBW = 100 kHz, VBW = 300 kHz for peak measurement, Sweep = auto,
Detector function = peak, Trace = max hold.

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 1MHz, VBW \geq 3RBW for peak measurement, Sweep = auto, Detector function =
peak, Trace = max hold.

FCC Limit:

According to § 15.209, except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

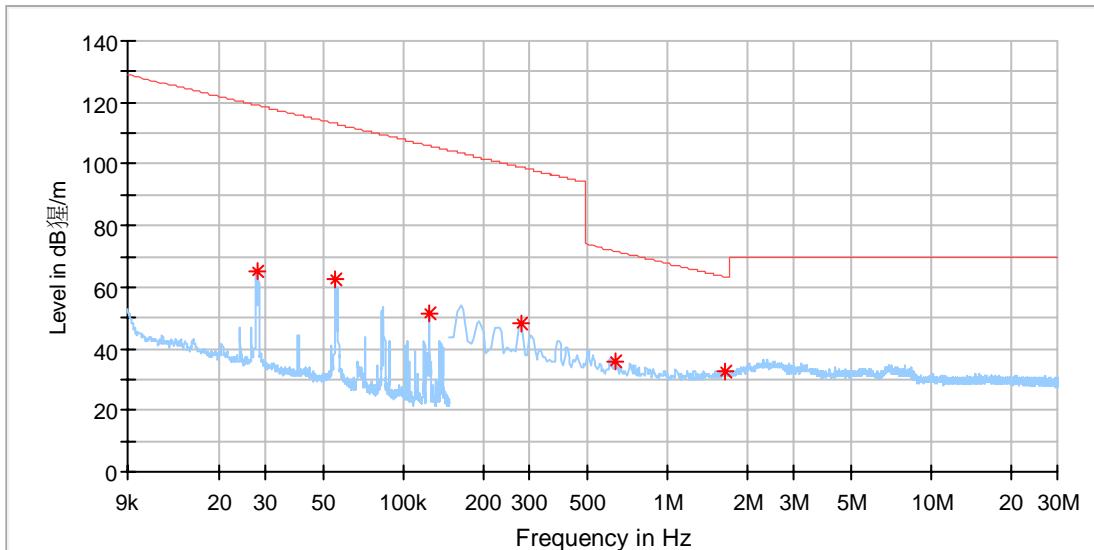
Frequency MHz	Field Strength µV/m	Field Strength dBµV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

ISED Limit:

According to RSS-Gen 8.9 field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Frequency MHz	Field Strength µA/m	Field Strength dBµA/m	Detector	Measurement distance meters
0.009-0.490	6.37/F(kHz)	77.00-42.28	AV	3
0.490-1.705	63.7/F(kHz)	22.27-11.45	AV	3
1.705-30	0.08	18.06	AV	3
Frequency MHz	Field Strength µV/m	Field Strength dBµV/m	Detector	Measurement distance meters
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

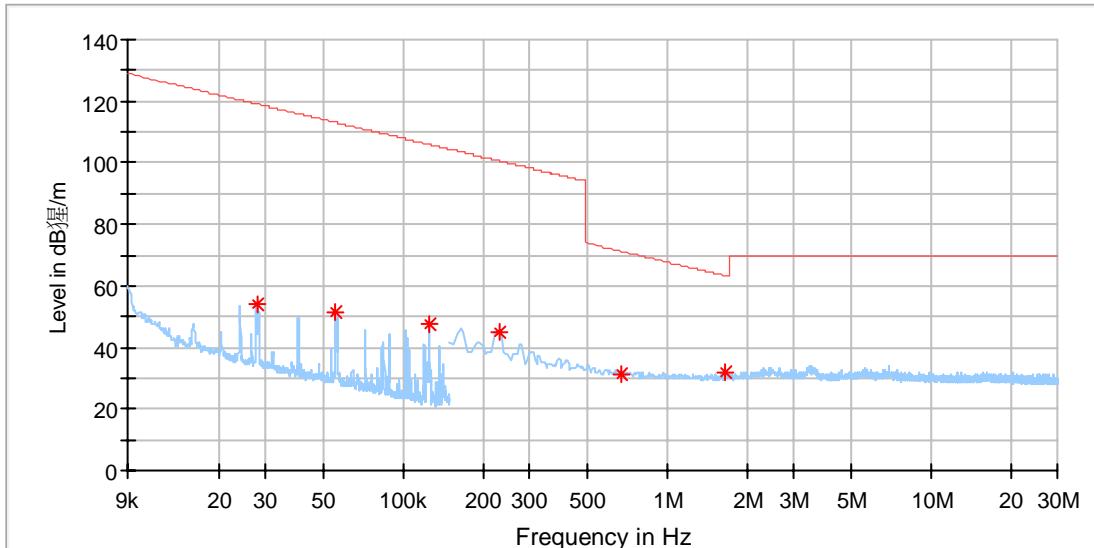
(a) The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.


Note 1: Limit $3m(\text{dB}\mu\text{V}/\text{m}) = \text{Limit } 300m(\text{dB}\mu\text{V}/\text{m}) + 40\log(300m/3m)$ (Below 30MHz)

Note 2: Limit $3m(\text{dB}\mu\text{V}/\text{m}) = \text{Limit } 30m(\text{dB}\mu\text{V}/\text{m}) + 40\log(30m/3m)$ (Below 30MHz)

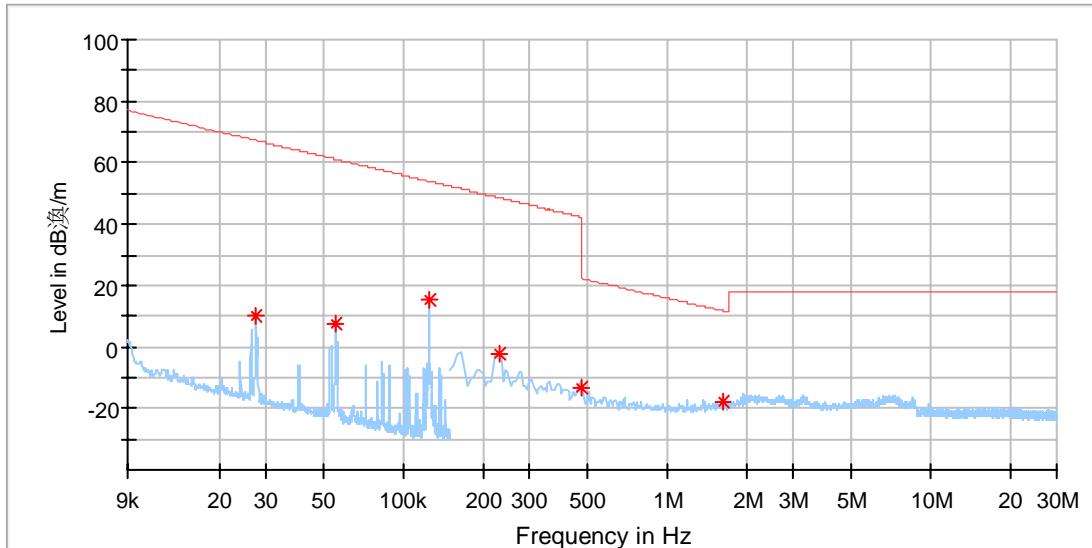
Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:


FCC Test Result
 Test data_9kHz to 30MHz
 Tx: 125k Hz

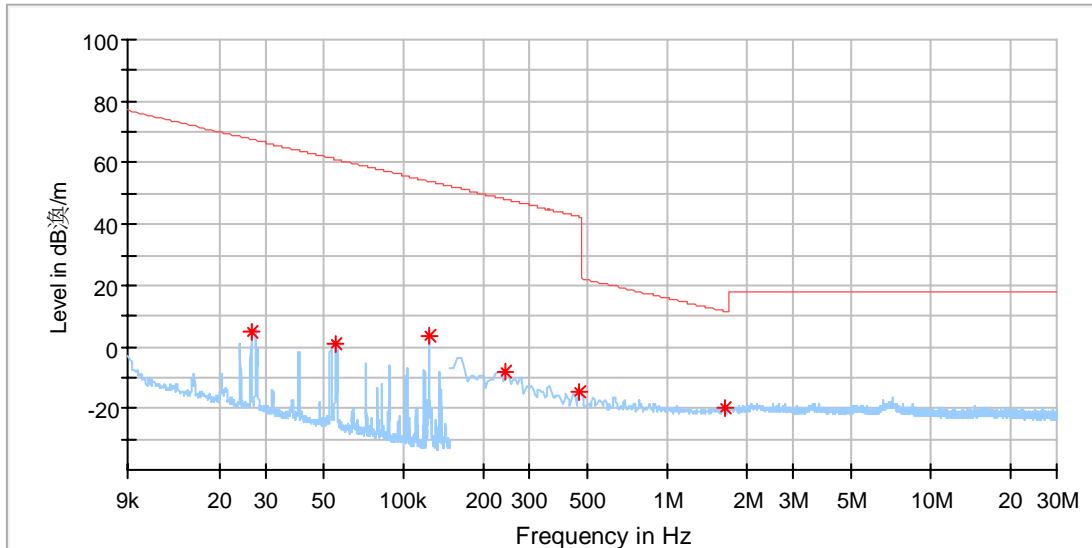
Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.027753	65.12	119.14	54.02	H	191.0	19.88
0.055530	62.83	113.07	50.24	H	81.0	19.92
0.124667	51.53	105.99	54.45	H	282.0	19.92
0.279350	48.22	98.92	50.70	H	0.0	19.90
0.637550	36.05	71.68	35.63	H	274.0	19.91
1.667375	32.28	63.20	30.92	H	2.0	20.02


FCC Test Result
 Test data_9kHz to 30MHz
 Tx: 125k Hz

Critical_Freqs

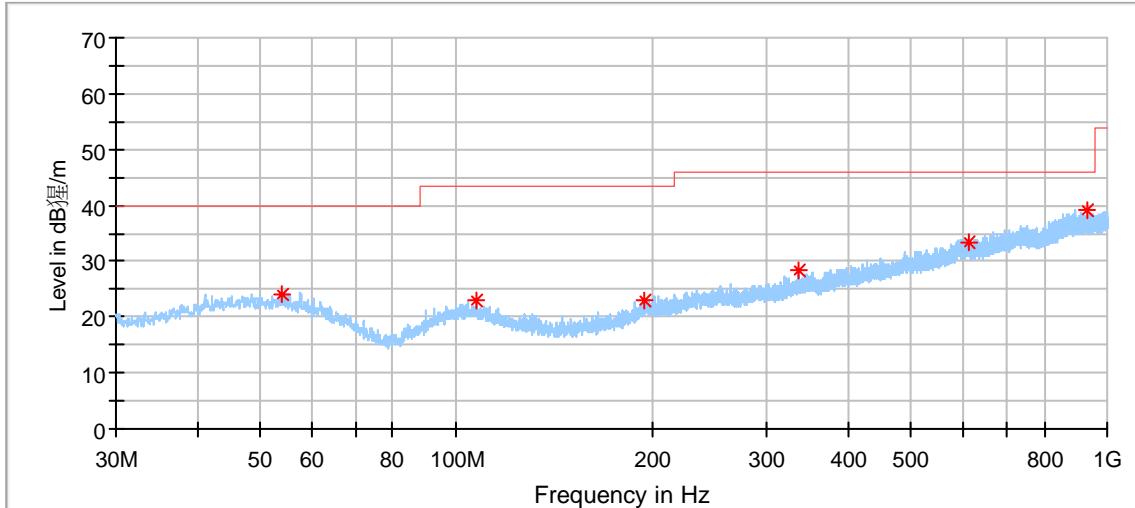
Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.027753	53.92	119.14	65.22	V	182.0	19.88
0.055530	51.21	113.07	61.85	V	254.0	19.92
0.124620	47.43	105.99	58.56	V	0.0	19.92
0.229600	44.85	100.64	55.79	V	16.0	19.88
0.667400	31.45	71.27	39.82	V	215.0	19.92
1.667375	31.68	63.20	31.51	V	169.0	20.02


ISED Test Result
 Test data_9kHz to 30MHz
 Tx: 125k Hz

Critical_Freqs

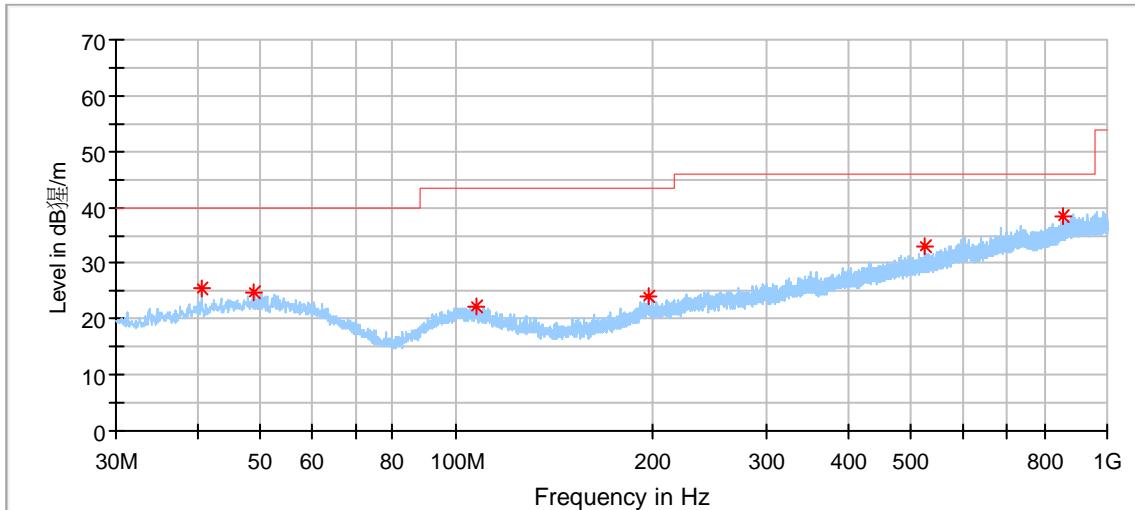
Frequency (MHz)	MaxPeak (dB μ A/m)	Limit (dB μ A/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.027565	10.26	67.17	56.91	H	221.0	-31.65
0.055154	7.32	61.08	53.76	H	77.0	-31.61
0.124902	15.10	53.91	38.81	H	133.0	-31.61
0.229600	-1.98	48.56	50.54	H	1.0	-31.65
0.473375	-13.17	22.21	35.38	H	1.0	-31.64
1.637525	-18.00	11.70	29.71	H	1.0	-31.52

ISED Test Result
 Test data_9kHz to 30MHz
 Tx: 125k Hz



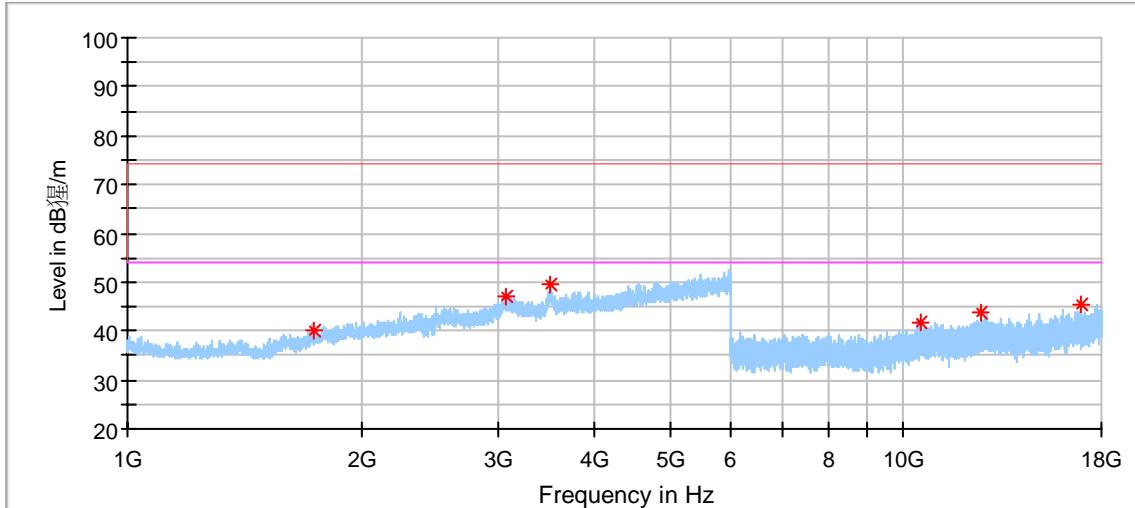
Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ A/m)	Limit (dB μ A/m)	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.026437	4.92	67.54	62.62	V	0.0	-31.66
0.055107	1.00	61.09	60.09	V	229.0	-31.61
0.124996	3.70	53.90	50.19	V	35.0	-31.61
0.244525	-7.88	48.01	55.88	V	282.0	-31.64
0.463425	-14.72	42.39	57.11	V	0.0	-31.64
1.652450	-19.58	11.63	31.20	V	29.0	-31.52


FCC and ISED Test Result
 Test data_30MHz to 1000MHz
 Tx: 125k Hz

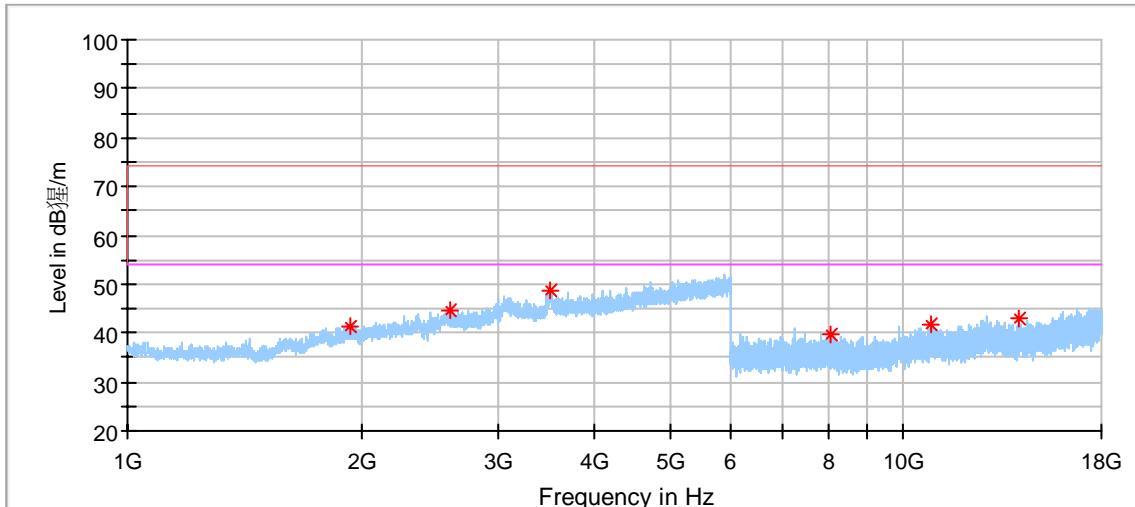
Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.088333	24.21	40.00	15.79	100.0	H	216.0	17.96
107.168889	22.84	43.50	20.66	100.0	H	207.0	15.83
195.277222	23.04	43.50	20.46	100.0	H	4.0	16.25
335.873333	28.36	46.00	17.64	100.0	H	345.0	19.59
612.646667	33.43	46.00	12.57	100.0	H	189.0	25.10
934.632778	39.14	46.00	6.86	100.0	H	0.0	29.51


FCC and ISED Test Result
 Test data_30MHz to 1000MHz
 Tx: 125k Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
40.670000	25.33	40.00	14.67	100.0	V	150.0	17.06
49.076667	24.64	40.00	15.36	100.0	V	357.0	18.24
107.168889	22.10	43.50	21.40	100.0	V	328.0	15.83
197.971667	23.99	43.50	19.51	100.0	V	328.0	16.21
523.245000	32.94	46.00	13.06	100.0	V	150.0	23.22
857.356111	38.28	46.00	7.72	200.0	V	248.0	28.75


FCC and ISED Test Result
 Test data_1 GHz to 18 GHz
 Tx: 125k Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	DET 2 (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1741.500000	40.03	---	74.00	33.97	100.0	H	127.0	-5.97
3084.500000	47.05	---	74.00	26.95	100.0	H	336.0	1.55
3508.500000	49.36	---	74.00	24.64	100.0	H	55.0	4.06
10547.000000	41.89	---	74.00	32.11	100.0	H	286.0	10.10
12608.500000	44.00	---	74.00	30.00	100.0	H	286.0	12.68
16924.500000	45.51	---	74.00	28.49	100.0	H	159.0	18.53

FCC and ISED Test Result
 Test data_1 GHz to 18 GHz
 Tx: 125k Hz

Critical_Freqs

Frequency (MHz)	MaxPeak (dBμV/m)	DET 2 (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1931.000000	41.28	---	74.00	32.72	100.0	V	273.0	-4.54
2602.000000	44.51	---	74.00	29.49	100.0	V	232.0	-1.06
3512.500000	48.91	---	74.00	25.09	100.0	V	119.0	3.85
8081.500000	39.79	---	74.00	34.21	100.0	V	264.0	7.50
10854.500000	41.93	---	74.00	32.07	100.0	V	243.0	10.75
14143.500000	42.89	---	74.00	31.11	100.0	V	51.0	12.80

Remark:

- (1) According to C63.10, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform a quasi-peak measurement, so quasi-peak emission value did not show in data table if the peak value complies with quasi-peak limit.
- (2) The testing was performed at 3m distance, the limit has been transferred from 300m/30m to 3m.
- (3) Corrected Amplitude = Read level + Corrector factor

Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain

Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

Radiated Emission Test 1# (9kHz – 1GHz)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	2025-5-13
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	2025-7-2
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	2025-7-24
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	2025-5-11
Sideband Horn Antenna	Q-PAR	QWH-SL-18-40-K-SG	68-4-80-14-008	12827	2025-7-2
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	2025-7-17
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	2025-5-11
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006	----	2026-10-25
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006-A01	Version10.35.02	N/A

Radiated Emission 2# Test (1GHz – 40GHz)

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	2025-5-13
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	2025-4-10
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-002	100746	2025-5-11
Sideband Horn Antenna	Q-PAR	QWH-SL-18-40-K-SG	68-4-80-14-008	12827	2025-7-2
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	2025-7-17
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	2025-5-11
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006	----	2026-10-25
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006-A01	Version10.35.02	N/A

Conducted RF Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	2025-5-11
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157W	68-4-93-14-003	101226/100929	2025-5-11
Power Splitter	Weinschel	1580	68-4-85-14-001	SC319	2025-5-11
10dB Attenuator	Weinschel	4M-10	68-4-81-14-003	43152	2025-5-11
10dB Attenuator	R&S	DNF	68-4-81-14-004	DNF-001	2025-5-11
10dB Attenuator	R&S	DNF	68-4-81-14-005	DNF-002	2025-5-11
10dB Attenuator	R&S	DNF	68-4-81-14-006	DNF-003	2025-5-11
10dB Attenuator	R&S	DNF	68-4-81-14-007	DNF-004	2025-5-11
Test software	Tonscend	System for BT/WIFI	68-4-74-14-006-A13	Version 2.6.77.0518	N/A
Shielding Room	TDK	TS8997	68-4-90-19-003	----	2025-10-15

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	2025-5-13
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	2025-5-12
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003-A10	Version9.15.00	N/A
Shielding Room	TDK	CSR #1	68-4-90-19-004	----	2025-10-15

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.57dB
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.70dB
Uncertainty for Radiated Emission in new 3m chamber 30MHz-1000MHz	Horizontal: 4.59dB; Vertical: 4.75dB
Uncertainty for Radiated Emission in new 3m 1000MHz-18000MHz	Horizontal: 5.08dB; Vertical: 5.09dB;
Uncertainty for Radiated Emission 18000MHz-40000MHz	Horizontal: 4.52dB; Vertical: 4.51dB
Uncertainty for Conducted RF test	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10^{-8} or 1%

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3 and 4.3.4.

---THE END OF REPORT---