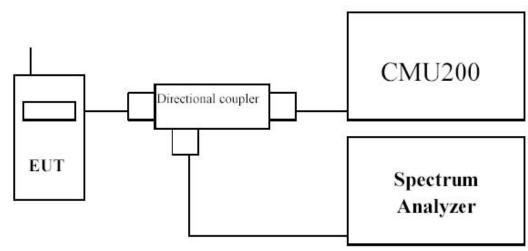
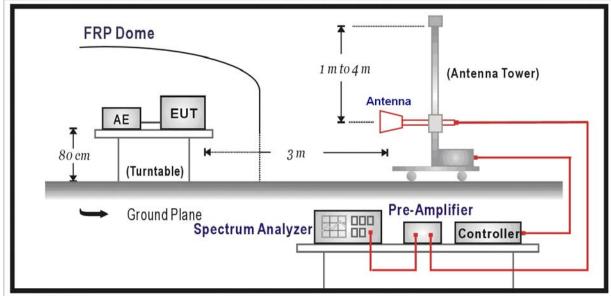
		WCDMA	Band V			
Channel	Frequency	Measureme	nt Results	Limit		
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict	
4132	826.4	823.993	-19.389	-13.00	Pass	
4233	846.6	849.001	-21.120	-13.00	Pass	
Ref Offset 8.7 dB	Gain:Low #Atten: 40 dB	Mkr1 823.993 MHz Auto Tune	Ref Offset 8.7 dB		rr1 849.001 MHz Auto 1	
	17. Avg Type: RM: NON: Wide	TYPE MALLAND DET A A A A A	Center Freq 849.000000 MHz PNO Win IFGainte Ref Offset 8.7 dB 10 dB/div Ref 30.00 dBm	w #Atten: 40 dB	RACE 12.45 0 TYPE	
10.0		824.000000 MHz Start Freq	10.0	\	849.00000 Start F	
0.00		823.000000 MHz	0.00	The state of the s	848.000000	
n n		-13.00 dBm Stop Freq		λ	-13.00 (Ent	
00	and the same of th	825.000000 MHz	-20.0	Manager of the state of the sta	850.000000	
000		825.000000 MHz CF Step 200.000 KHz Auto Man	300	Marine Commence of the Commenc	850.00000	


3.4 Spurious Emission

LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

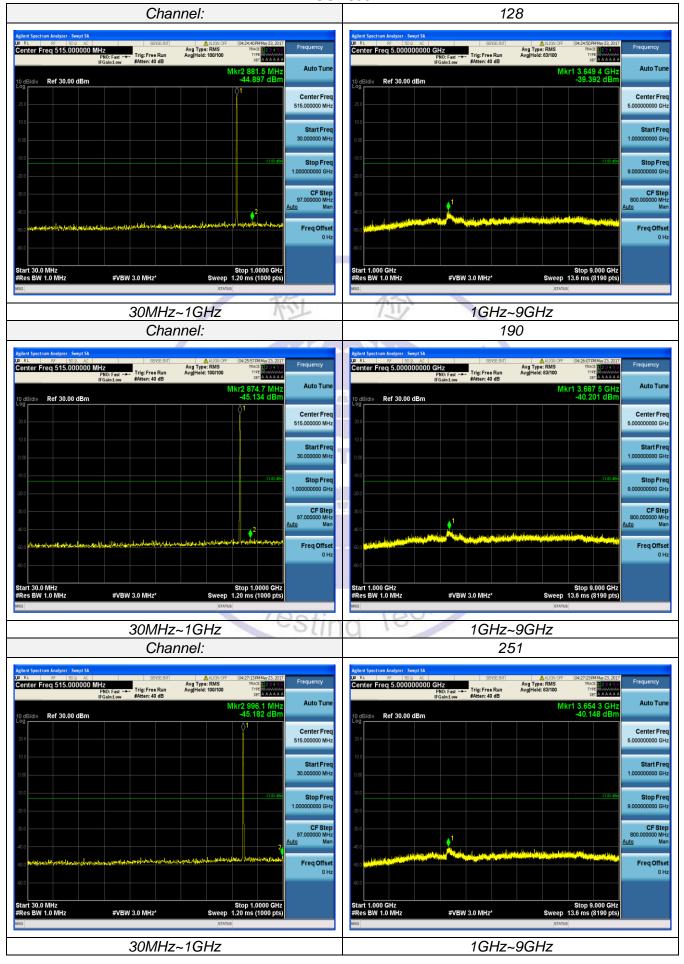
TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

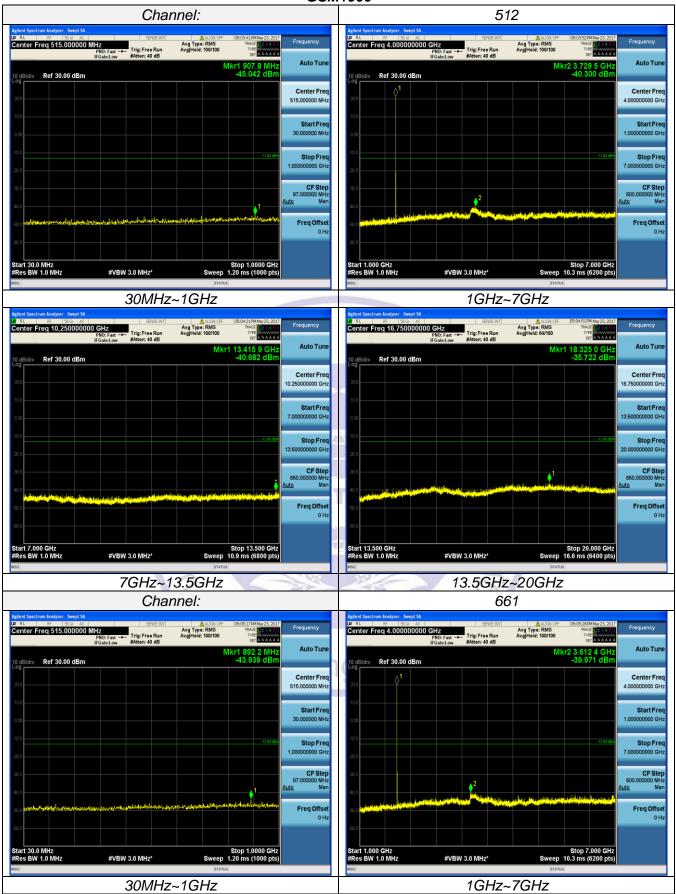
Conducted Spurious Measurement:

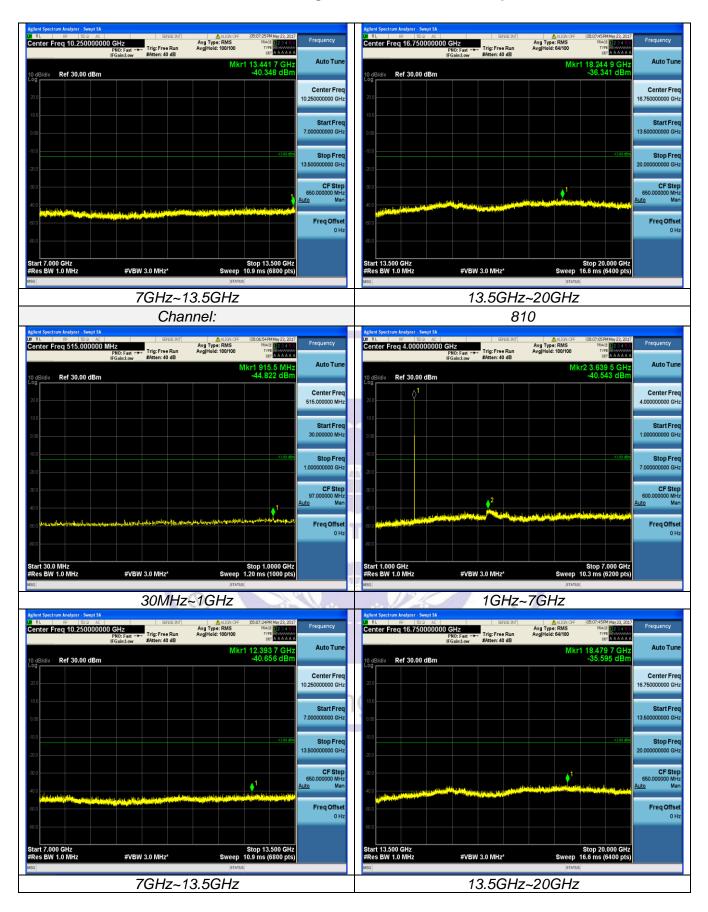
- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.

- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1MHz for Part 22 and 1MHz for Part 24, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

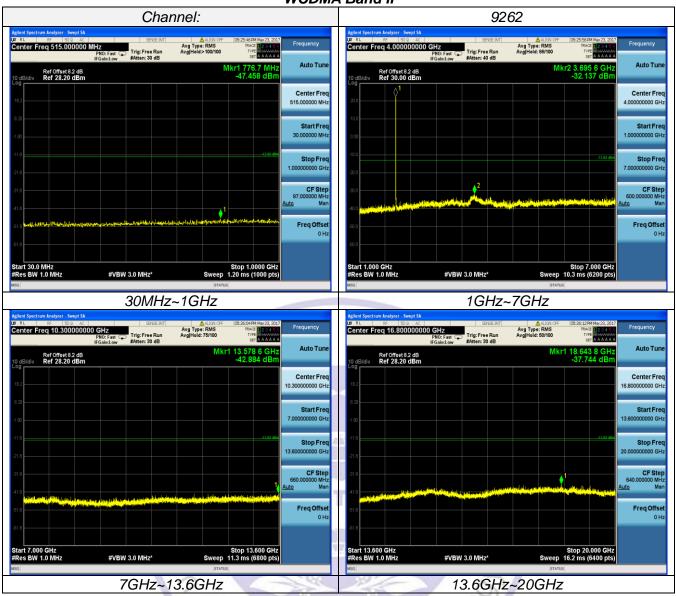

Radiated Spurious Measurement:

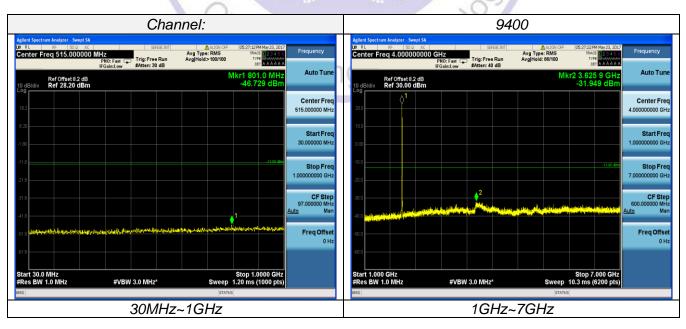
- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.

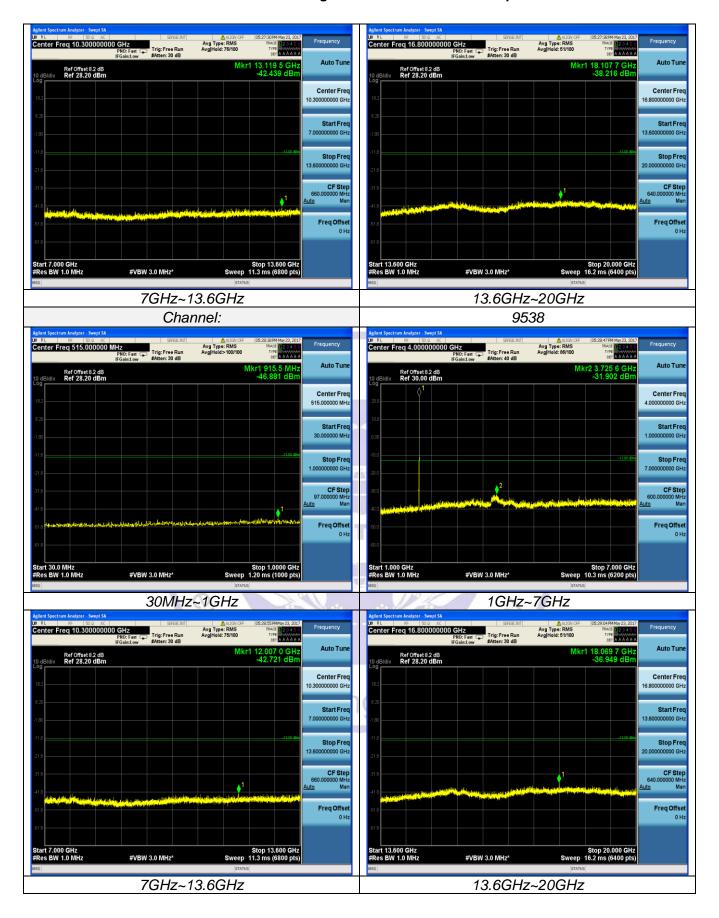

TEST RESULTS

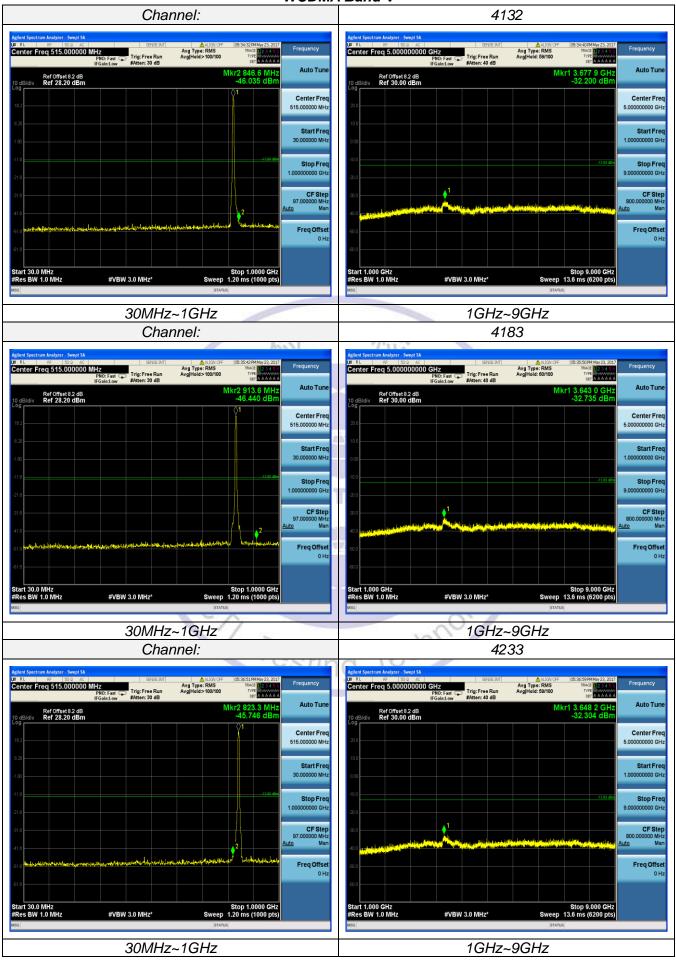

Conducted Measurement:

GSM850




GSM1900




WCDMA Band II

WCDMA Band V

Radiated Measurement:

GSM 850

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
128	1648.40	-34.10	3.00	3.00	9.58	-27.52	-13.00	14.52	Н
	2472.60	-37.23	3.47	3.00	10.72	-29.98	-13.00	16.98	H
120	1648.40	-32.22	3.00	3.00	9.68	-25.54	-13.00	12.54	V
	2472.60	-34.51	3.47	3.00	10.72	-27.26	-13.00	14.26	V
	1673.20	-32.93	3.14	3.00	9.61	-26.46	-13.00	13.46	Н
190	2509.80	-35.65	3.59	3.00	10.77	-28.47	-13.00	15.47	Н
190	1673.20	-31.58	3.14	3.00	9.61	-25.11	-13.00	12.11	V
	2509.80	-33.25	3.59	3.00	10.77	-26.07	-13.00	13.07	V
	1697.60	-34.99	3.26	3.00	9.77	-28.48	-13.00	15.48	Н
251	2546.40	-38.06	3.69	3.00	10.89	-30.86	-13.00	17.86	Н
201	1697.60	-33.15	3.26	3.00	9.77	-26.64	-13.00	13.64	V
	2546.40	-35.94	3.69	3.00	10.89	-28.74	-13.00	15.74	V

GSM1900

	GOM 1000								
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3700.40	-39.54	4.25	3.00	12.34	-31.45	-13.00	18.45	Н
510	5550.60	-42.81	4.97	3.00	13.52	-34.26	-13.00	21.26	Н
512	3700.40	-37.59	4.25	3.00	12.34	-29.50	-13.00	16.50	V
	5550.60	-41.96	4.97	3.00	13.52	-33.41	-13.00	20.41	V
	3760.00	-39.74	4.38	3.00	12.34	-31.78	-13.00	18.78	Н
664	5640.00	-43.09	5.01	3.00	13.58	-34.52	-13.00	21.52	Н
661	3760.00	-37.4	4.38	3.00	12.34	-29.44	-13.00	16.44	V
	5640.00	-41.44	5.01	3.00	13.58	-32.87	-13.00	19.87	V
	3819.60	-39.65	4.49	3.00	12.45	-31.69	-13.00	18.69	Н
010	5729.40	-42.18	5.26	3.00	13.66	-33.78	-13.00	20.78	Н
810	3819.60	-38.84	4.49	3.00	12.45	-30.88	-13.00	17.88	V
	5729.40	-41.81	5.26	3.00	13.66	-33.41	-13.00	20.41	V

WCDMA Band II

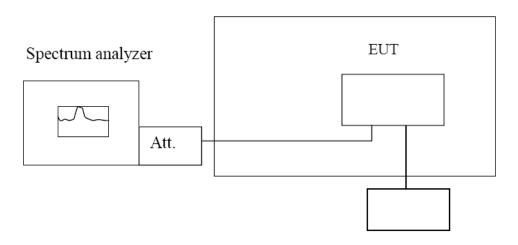
WCDMA Band II									
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3704.80	-41.59	4.27	3.00	12.34	-33.52	-13.00	20.52	Η
9262	5557.20	-46.11	4.99	3.00	13.52	-37.58	-13.00	24.58	Η
9202	3704.80	-40.73	4.27	3.00	12.34	-32.66	-13.00	19.66	V
	5557.20	-44.31	4.99	3.00	13.52	-35.78	-13.00	22.78	V
	3760.00	-42.7	4.38	3.00	12.34	-34.74	-13.00	21.74	Н
9400	5640.00	-46.83	5.01	3.00	13.58	-38.26	-13.00	25.26	Н
9400	3760.00	-41.65	4.38	3.00	12.34	-33.69	-13.00	20.69	V
	5640.00	-44.61	5.01	3.00	13.58	-36.04	-13.00	23.04	V
	3815.20	-41.42	4.47	3.00	12.45	-33.44	-13.00	20.44	Н
9538	5722.80	-45.69	5.23	3.00	13.66	-37.26	-13.00	24.26	Н
9036	3815.20	-40.99	4.47	3.00	12.45	-33.01	-13.00	20.01	V
	5722.80	-44.87	5.23	3.00	13.66	-36.44	-13.00	23.44	V

WCDMA Band V

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1652.80	-39.41	3.02	3.00	9.58	-32.85	-13.00	19.85	Н
0262	2479.20	-45.45	3.51	3.00	10.72	-38.24	-13.00	25.24	Н
9262	1652.80	-39.29	3.02	3.00	9.68	-32.63	-13.00	19.63	V
	2479.20	-43.46	3.51	3.00	10.72	-36.25	-13.00	23.25	V
	1673.20	-40.01	3.14	3.00	9.61	-33.54	-13.00	20.54	Н
9400	2509.80	-44.96	3.59	3.00	10.77	-37.78	-13.00	24.78	Н
9400	1673.20	-39.59	3.14	3.00	9.61	-33.12	-13.00	20.12	V
	2509.80	-43.87	3.59	3.00	10.77	-36.69	-13.00	23.69	V
	1693.20	-40.37	3.24	3.00	9.77	-33.84	-13.00	20.84	Н
9538	2539.80	-44.57	3.65	3.00	10.89	-37.33	-13.00	24.33	Н
9556	1693.20	-39.07	3.24	3.00	9.77	-32.54	-13.00	19.54	V
	2539.80	-43.88	3.65	3.00	10.89	-36.64	-13.00	23.64	V

Remark:

- EIRP=P_{Mea}(dBm)-P_{cl}(dB) +G_a(dBi)
 We were not recorded other points as values lower than limits.
- 3. Margin = Limit EIRP


3.5 Frequency Stability under Temperature & Voltage Variations

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Temperature Chamber

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz							
Voltage (V)	Temperature (°C)	Frequer	ncy error	Limit (ppm)	Result		
voitage (v)	remperature (c)	Hz	ppm	Limit (ppin)			
	-30	85	0.102				
	-20	48	0.057				
	-10	44	0.053		Pass		
	0	56	0.067				
3.70	10	79	0.094	2.5			
	20	54	0.065				
	30	66	0.079				
	40	74	0.088				
	50	58	0.069				
4.26	25	54	0.065				
End point 3.15	25	98	0.117				

Refere	nce Frequency: PCS	1900 Middle o	hannel=661 ch	nannel=1880MHz	
Voltage (V)	Temperature	Freque	ncy error	Limit (ppm)	Result
voltage (v)	(℃)	Hz	ppm	Limit (ppin)	Nesuit
	-30	87	0.046		
	-20	79	0.042		Pass
	(C) -10	//77	0.041	Within the	
	5 0	69	0.037		
3.70	2 10	64	0.034		
	20	87	0.046	authorized frequency	
	30	88	0.047	block	
	40	52	0.028	4	
	50	47	0.025	0	
4.26	25	26	0.014	3	
End point 3.15	25	99	0.053		

Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz							
Voltage (\/)	Temperature	Frequer	ncy error	Limit (nnm)	Result		
Voltage (V)	(℃)	Hz	ppm	Limit (ppm)			
	-30	88	0.047				
	-20	50	0.027				
	-10	75	0.040		Pass		
	0	64	0.034				
3.70	10	55	0.029	Within the			
	20	67	0.036	authorized frequency block			
	30	72	0.038				
	40	59	0.031				
	50	62	0.033				
4.26	25	65	0.035				
End point 3.15	25	86	0.046				

Reference Frequency: WCDMA Band V Middle channel=4182 channel=836.6MHz						
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result	
voitage (v)	(℃)	Hz	ppm	Limit (ppin)	Kesuit	
	-30	65	0.078			
	-20	70	0.084		Pass	
	-10	69	0.082	2.5		
	0	68	0.081			
3.70	10	48	0.057			
	20	59	0.071			
	30	61	0.073			
	40	62	0.074			
	50	55	0.066			
4.26	25	74	0.088]		
End point 3.15	25	82	0.098			

Reference Freque	ncy: EGPRS850 M	iddle channel	=190 channel=83	6.6MHz	
Voltage (V)	Temperature	Frequency	y error	Limit (ppm)	Result
voltage (v)	(°C)	Hz	ppm	Limit (ppm)	
	-30	116	0.138	1	
	-20	78	0.093		Pass
	-10	63	0.075	70	
	0=	99	0.118		
3.70	10	129	0.154		
	20	112	0.133	2.5	
	30	89	0.106		
	40	76	0.091		
	50	69	0.082	0	
4.26	25	44	0.053	100	
End point 3.15	25	69	0.082	0	

Reference Frequency: EGPRS1900 Middle channel=661 channel=1880MHz								
Voltage (V)	Temperature	Frequency	error	Limit (ppm)	Result			
voltage (v)	(℃)	Hz	ppm	Еппи (ррпп)				
	-30	85	0.045					
	-20	102	0.053					
	-10	96	0.051					
	0	52	0.029					
3.70	10	73	0.039	Within the				
	20	85	0.045	authorized	Pass			
	30	69	0.037	frequency block				
	40	48	0.026	DIOOR				
	50	37	0.020					
4.26	25	55	0.029					
End point 3.15	25	83	0.044					

4 Test Setup Photos of the EUT

Please refer to the EUT test set up photo document.

5 Photos of the EUT

Please refer to the EUT photo document.

