

TEST REPORT

Report No.: 8331EU012507W2

Applicant: Kopplen Inc.

Address: Suite 339, 1-7357 Woodbine Ave, Markham Ontario, L3R 6L3 Canada

Product Name: Magnetic Wireless Power Bank

Model No.: PBK-WL51BLK (refer to clause 2.4)

Trademark: Kopplen

FCC ID: 2A9QR-PBKWL51BLK

Test Standard(s): 47 CFR Part 1 Subpart I Section 1.1310
47 CFR Part 2, Subpart J, Section 2.1093

Test Result: Pass

Date of Receipt: Jun. 25, 2025

Test Date: Jun. 25, 2025 – Jul. 09, 2025

Date of Issue: Jul. 28, 2025

ISSUED BY:

SHENZHEN EU TESTING LABORATORY LIMITED

Prepared by:

Mikey Zhu/ Engineer

Reviewed and Approved by:

Sally Zhang/ Manager

Revision Record

Report Version	Issued Date	Description	Status
V0	Jul. 28, 2025	Original	Valid

Table of Contents

1	COVER PAGE.....	1
2	GENERAL INFORMATION	4
2.1	APPLICANT INFORMATION	4
2.2	MANUFACTURER INFORMATION	4
2.3	FACTORY INFORMATION.....	4
2.4	GENERAL DESCRIPTION OF E.U.T.....	4
2.5	TECHNICAL INFORMATION OF E.U.T.....	5
3	TEST SUMMARY.....	6
3.1	TEST STANDARD	6
3.2	TEST VERDICT.....	6
3.3	TEST LABORATORY	6
4	TEST CONFIGURATION.....	7
4.1	TEST ENVIRONMENT	7
4.2	TEST EQUIPMENT	7
4.3	TEST MODE	8
4.4	MEASUREMENT UNCERTAINTY	8
5	TEST METHODOLOGY.....	9
5.1	REFERENCE EVALUATION METHOD	9
5.2	LIMIT	9
5.3	TEST SETUP DIAGRAM	10
5.4	MEASUREMENT PROCEDURE	11
5.5	EVALUATION RESULT	16
	ANNEX A TEST SETUP PHOTOS.....	17

2 General Information

2.1 Applicant Information

Applicant	Kopplen Inc.
Address	Suite 339, 1-7357 Woodbine Ave, Markham Ontario, L3R 6L3 Canada

2.2 Manufacturer Information

Manufacturer	Dongguan Megix Technology Co., Ltd
Address	2/F, Building 1, No.14, Mingzhu Street, Shima Community, Tangxia Town, Dongguan City, Guangdong Province, China

2.3 Factory Information

Factory	Dongguan Megix Technology Co., Ltd
Address	2/F, Building 1, No.14, Mingzhu Street, Shima Community, Tangxia Town, Dongguan City, Guangdong Province, China

2.4 General Description of E.U.T.

Product Name	Magnetic Wireless Power Bank
Model No. Under Test	PBK-WL51BLK
List Model No.	PW19A
Description of Model differentiation	All models are same with electrical parameters and internal circuit structure, but only differ in appearance color and model name. (this information provided by the customer)
Rating(s)	Input (USB-C): 5V---3A, 9V---2A (18W Max) Output (USB-C): 5V---3A, 9V---2.22A, 12V---1.67A (20W Max) Output (Wireless): 5W/7.5W/10W/15W (Max) Capacity: 3.85VDC, 5000mAh / 19.25Wh
Product Type	<input type="checkbox"/> Mobile <input checked="" type="checkbox"/> Portable <input type="checkbox"/> Fix Location
Test Sample No.	-1/2(Normal Sample), -2/2(Engineering Sample)
Hardware Version	N/A
Software Version	N/A
Remark	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.5 Technical Information of E.U.T.

Network and Wireless Connectivity	Wireless Power Transfer (WPT)
-----------------------------------	-------------------------------

The requirement for the following technical information of the EUT was tested in this report:

Technology	WPT
Operating Frequency	110.1-205KHz
Modulation Type	FSK
Antenna Type	Inductive Loop Coil Antenna
Antenna Gain(Peak)	0 dBi
Remark	The above information are declared by the applicant, EU-LAB is not responsible for the information accuracy provided by the applicant.

3 Test Summary

3.1 Test Standard

The tests were performed according to following standards:

No.	Identity	Document Title
1	47 CFR Part 1 Subpart I Section 1.1310	Radio frequency radiation exposure limits.
2	47 CFR Part 2, Subpart J, Section 2.1093	Radiofrequency radiation exposure evaluation: portable devices
3	KDB 680106 D01v04	RF exposure consideration for low power consumer wireless power transfer applications.

Remark:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained.

3.2 Test Verdict

No.	Description	FCC Part No.	Verdict	Remark
1	RF Exposure Evaluation	FCC 1.1310 FCC 2.1093 KDB 680106 D01 Wireless Power Transfer v04	Pass	--

3.3 Test Laboratory

Test Laboratory	Shenzhen EU Testing Laboratory Limited
Address	101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China
Designation Number	CN1368
Test Firm Registration Number	952583

4 Test Configuration

4.1 Test Environment

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 60%		
Atmospheric Pressure	86 kPa to 106 kPa		
Temperature	NT (Normal Temperature)	+15°C to +35°C	
Working Voltage of the EUT	NV (Normal Voltage)	120 VAC, 60Hz for adapter 3.85VDC battery inside	

4.2 Test Equipment

Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
Electric and Magnetic Field Probe - Analyzer	Narda	EHP-200A	EE-405	2025/02/14	2026/02/13

Electric and Magnetic Field Probe - Analyzer EHP-200A detailed parameters are as follows.

Dynamic range	>80
SPAN	0 to FULL SPAN
RBW	1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz
Measurement range	> 94 dB
Calibration	internal E2PROM
Temperature error	0.02 dB/°C
Dimensions	92 x 92 x 109 mm
Weight	550 g
Preamplifier	selectable ON/OFF, 14dB
Units	V/m, A/m, uT, mW/cm2, W/m2
Internal battery	3.7 V - 5.55 Ah Li-Ion, rechargeable
Operation	> 12 hours
Recharging time	< 8 hours
External supply	10 to 15 Vdc, I = approx. 560 mA
Optical fiber connection	up to 40 m (USB-OC) up to 80 m (8053-OC)
Firmware updating	through the optical link via EHP200-TS
Self test	automatic at power on
Operating temperature	-10°C to +50°C
Storage temperature	-20°C to +70°C
Environmental protection	IP42

4.3 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned bellow was evaluated respectively.

No.	Description	Remark
TM1	Wireless Output (5W)	
TM2	Wireless Output (7.5W)	
TM3	Wireless Output (10W)	
TM4	Wireless Output (15W)	Record
TM5	Standby	

Note:

1. EUT supports empty load, half load, full load working at the same time, so the all conditions have been tested. It is found that TM4 full load is the worst mode, and the data in the report only reflects the worst mode.

4.4 Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test Item	Measurement Uncertainty
Magnetic field measurements(3kHz~10MHz)	±14.6%
Electric field measurements(3kHz~10MHz)	±17.3%

5 Test Methodology

5.1 Reference Evaluation Method

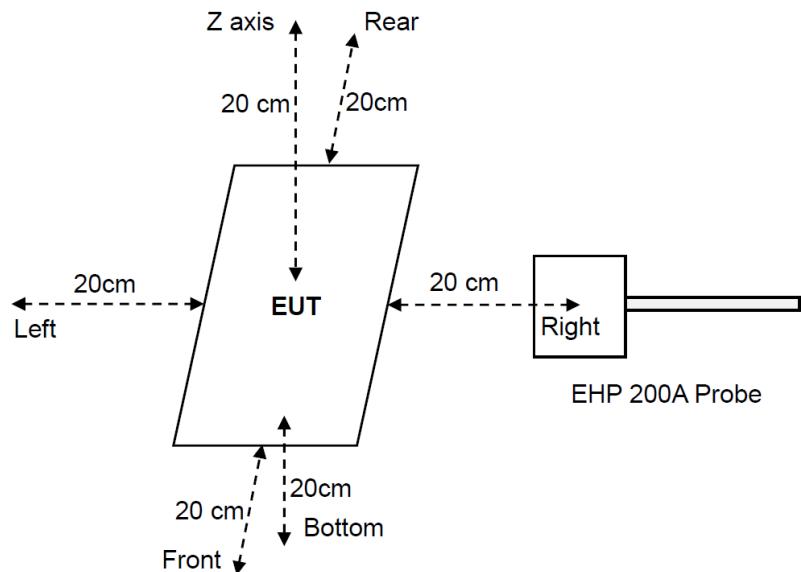
- ✧ ANSI C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz.
- ✧ FCC KDB publication 680106 D01 RF Exposure Wireless Charging Apps v04: RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications
- ✧ FCC CFR 47 Part 1.1310: Radiofrequency radiation exposure limits.
- ✧ FCC CFR 47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices
- ✧ FCC CFR 47 Part 18.107: Industrial, Scientific, and Medical Equipment
- ✧ April 2024 TCBC Workshop: Part 18 Wireless Power Transfer Devices: Clarifications on KDB 680106v04 and ECR Processes.

5.2 Limit

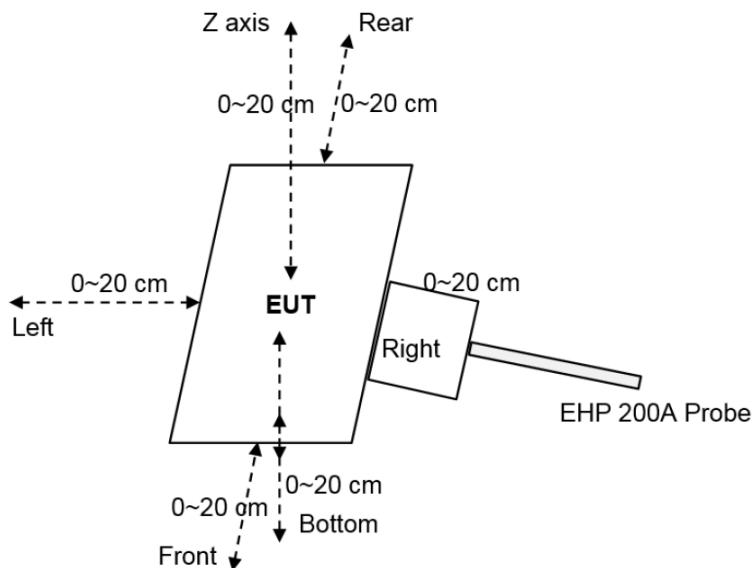
According to FCC CFR 47 § 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of FCC part 2.1093 of this chapter.

TABLE 1 TO § 1.1310(e)(1)—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

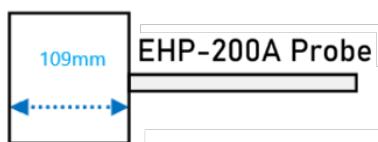
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(i) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*(100)	≤6
3.0-30	1842/f	4.89/f	*(900/f ²)	<6
30-300	61.4	0.163	1.0	<6
300-1,500			f/300	<6
1,500-100,000			5	<6
(ii) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824/f	2.19/f	*(180/f ²)	<30
30-300	27.5	0.073	0.2	<30
300-1,500			f/1500	<30
1,500-100,000			1.0	<30


f = frequency in MHz. * = Plane-wave equivalent power density.

Note 1: Occupational/ controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

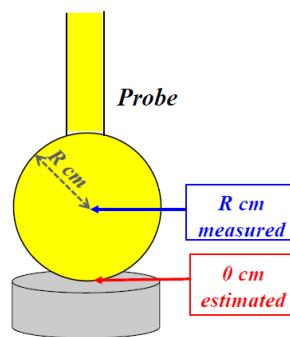

Note 2: General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

5.3 Test Setup Diagram


For Mobile Exposure Conditions:

For Portable Exposure Conditions:

- 1) The RF exposure test was performed in anechoic chamber.
- 2) The distance of the points (A, B, C, D, E, F) is 0,2,4,6,8,10,12,14,16,18,20cm.
- 3) The values tested by the probe are X, Y and Z on three axes perpendicular to the edge of the device. Top and bottom side coincident with the axis (Y) of the main coil.


Note: The EHP-200A Probe has a diameter of 10.9cm and a radius of 5.45cm.

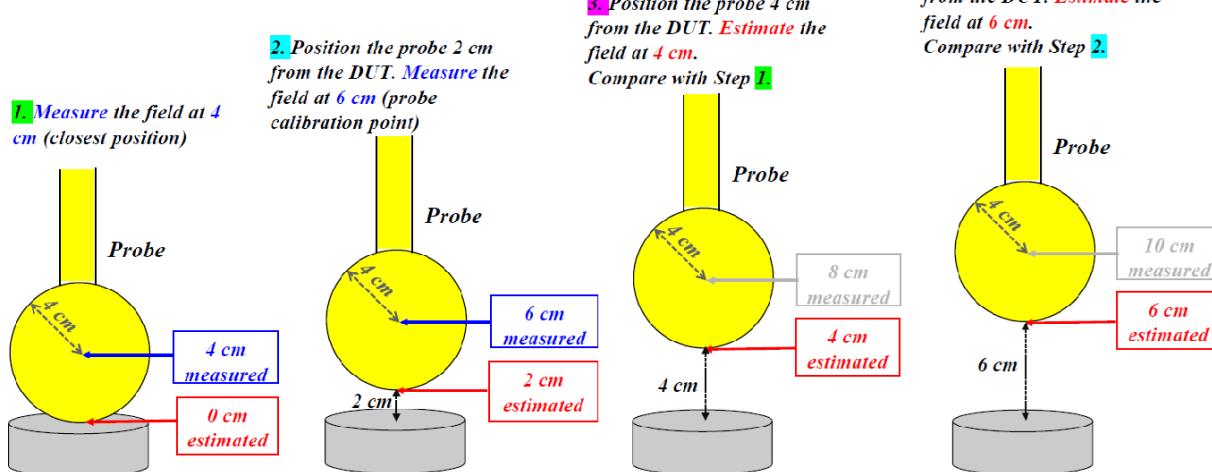
5.4 Measurement Procedure

For Portable Exposure Conditions:

- 1) The portable test modes have covered the considerations of the mobile test, only record the test data of the portable conditions in this report.
- 2) Operating modes with client device (1%, 50%, 99% battery status of client device), have been tested, only show the data of worst case of 1% battery status of client device.
- 3) Test performed with all the radiating structures operating at maximum power at the same time.
- 4) E-field and H-field measurements are taken along all three axes the device from 0cm to 20cm in 2cm minimum increment for each edge surface of the host/client pair. If the center of the probe sensing elements is more than 5mm from the probe outer edge, the field strengths need to be estimated for the positions that are not reachable.
- 5) Validation of Field Estimates

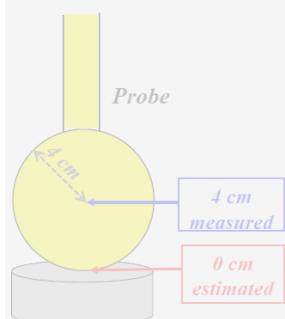
a) If R is the probe radius and the probe tip is in contact with the coil, then the probe center is R cm from the coil surface as bellow picture:

b) The probe then is measuring the field correctly at R cm from the surface, and only estimating the field at the 0 cm point of contact with the coil surface.

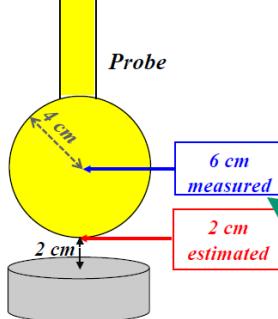

c) The validation requires showing that the model used to estimate the field provides data within 30% accuracy for at least the two, 2-cm-spaced closest points to where the estimates were made.

d) If there is only one estimated value, then a single validation point is sufficient.

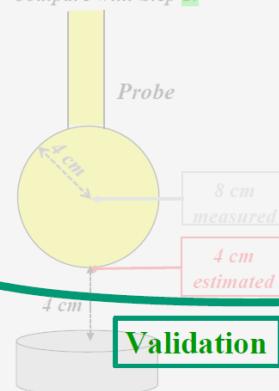
e) Validation Example for 4 cm Probe Radius as following


Step 1:

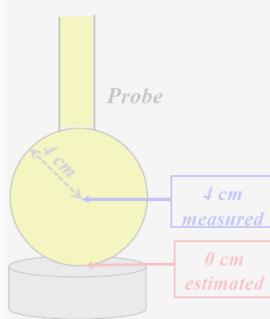
Validation Example for 4 cm Probe Radius

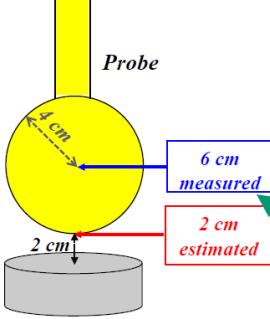


Step 2:
Validation Example for 4 cm Probe Radius

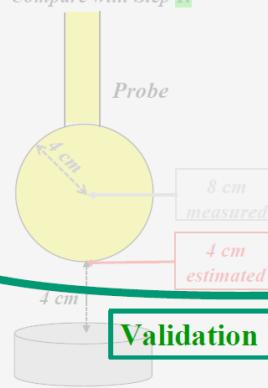

1. Measure the field at 4 cm (closest position)

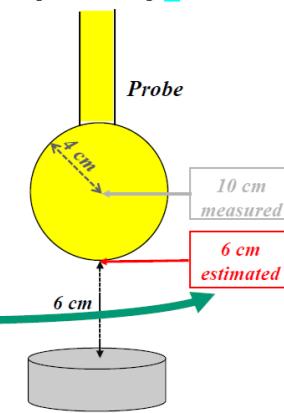
2. Position the probe 2 cm from the DUT. Measure the field at 6 cm (probe calibration point)


3. Position the probe 4 cm from the DUT. Estimate the field at 4 cm.
Compare with Step 1.

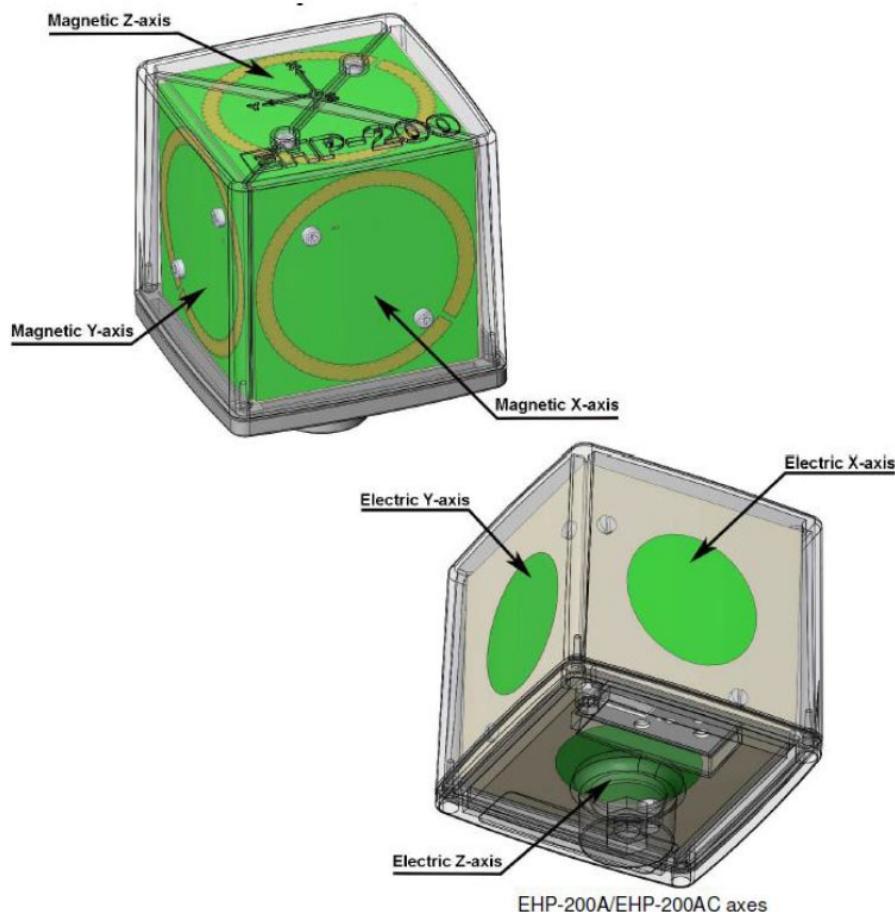

4. Position the probe 6 cm from the DUT. Estimate the field at 6 cm.
Compare with Step 2.

Step 3:
Validation Example for 4 cm Probe Radius


1. Measure the field at 4 cm (closest position)


2. Position the probe 2 cm from the DUT. Measure the field at 6 cm (probe calibration point)

3. Position the probe 4 cm from the DUT. Estimate the field at 4 cm.
Compare with Step 1.

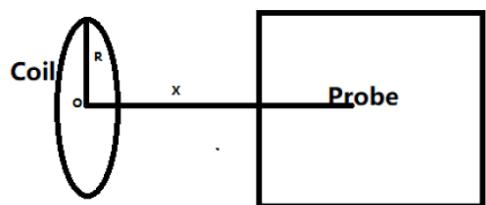

4. Position the probe 6 cm from the DUT. Estimate the field at 6 cm.
Compare with Step 2.

Description of the Validation Example for 4 cm Probe Radius

- Assume that $R=4$ cm. The field at 0 cm can only be estimated, but the field at 4 cm is measured exactly (at the center of the probe)
- Move the probe at 2 cm from the surface. The field at 2 cm can still only be estimated, but the field at 6 cm is measured exactly.
- Compare the estimate with the values at the same positions where the field was measured exactly (i.e. 4 cm and 6 cm)
- The difference between measurements and estimates needs to be no more than 30%.
- The validation of the estimates needs to be for the two closest points to the coil, but at least 2 cm apart (in this case they are). This is to avoid a validation at, say 2 cm and another on at 2.1cm, that is essentially a repetition.

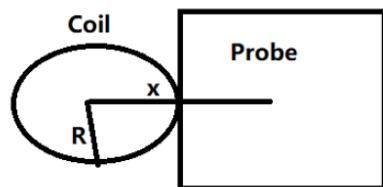
6) According to Calibration information and specification about EHP-200A Probe, the probe's sensitive elements center are 8mm below the external surface, and the dimensions is 92*92*109mm, so the actual 0cm field strengths need to be estimated for the positions that are not reachable, only the result of test distance 2cm~20cm was measured value. The Extrapolated Value Calculation Method is described below.

	Length (mm)	Width (mm)	Height (mm)
	109	92	92



The sensitive elements are located approximately 8 mm below the external surface

Estimated method for portable RF Exposure condition:


We use Biot-Savart formula theory to estimate the strength of the magnetic field that the measuring instrument cannot measure. According to Biot-Savart formula:

Top & Bottom Side:

$$B = \frac{\mu_0 * I * N * R^2}{2 * (R^2 + x^2)^{3/2}}$$

Front, left, right & rear Side:

$$B = \frac{\mu_0 * I * N}{2 * x}$$

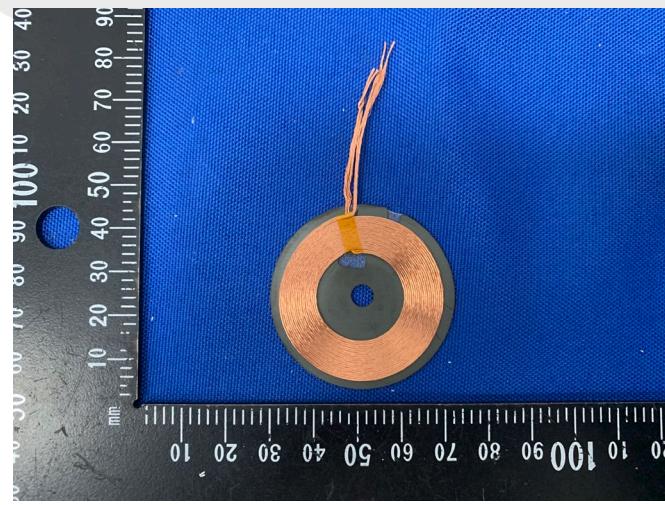
Where:

B: means H-field value.

μ_0 : space permeability; $\mu_0 = 4\pi * 10^{-7}$:

I: A current element passing through a coil:

R: means the Radius of coil;


Test Distance: The distance from the sensing element of the probe to the edge of the device surface

x: means the center of the coil to the sensing elements of the probe. (For top & bottom side: x=test distance.

For other side: x=test distance +R)

N: Number of turns.

The conditions of EUT:

For validation purposes:

If the value to show a **30% agreement** between the model and the (E-and/or H-Field) probe measurements for the two closest points to the device surface, and with 2cm increments. Then this extrapolation method is reasonable.

Validation:**H-Field Magnetic Field Emissions**

Test Distance (cm)	Top	Bottom	Front	Rear	Left	Right	Conclusion
2cm(estimated) (A/m)	0.2313	0.1848	0.1701	0.1422	0.1746	0.1392	Compliance within 30%
2cm(measured) (A/m)	0.2724	0.1976	0.1985	0.1584	0.1917	0.1528	
Agreement (%)	16.32	6.69	15.41	10.78	9.34	9.32	

E-Field Magnetic Field Emissions

Test Distance (cm)	Top	Bottom	Front	Rear	Left	Right	Conclusion
2cm(estimated) (V/m)	26.690	25.299	33.220	32.043	31.394	27.948	Compliance within 30%
2cm(measured) (V/m)	31.567	27.922	37.201	35.427	35.469	30.569	
Agreement (%)	16.74	9.86	11.31	10.03	12.19	8.96	

H-Field Magnetic Field Emissions

Test Distance (cm)	Top	Bottom	Front	Rear	Left	Right	Conclusion
4cm(estimated) (A/m)	0.1423	0.1336	0.2124	0.1256	0.1497	0.1192	Compliance within 30%
4cm(measured) (A/m)	0.1646	0.1522	0.2395	0.1452	0.1811	0.1448	
Agreement (%)	14.53	13.02	11.99	14.48	18.98	19.39	

E-Field Magnetic Field Emissions

Test Distance (cm)	Top	Bottom	Front	Rear	Left	Right	Conclusion
4cm(estimated) (V/m)	34.325	33.942	32.001	29.133	30.120	28.238	Compliance within 30%
4cm(measured) (V/m)	37.015	36.299	36.262	32.555	34.070	30.583	
Agreement (%)	7.54	6.71	12.48	11.09	12.31	7.97	

Note:

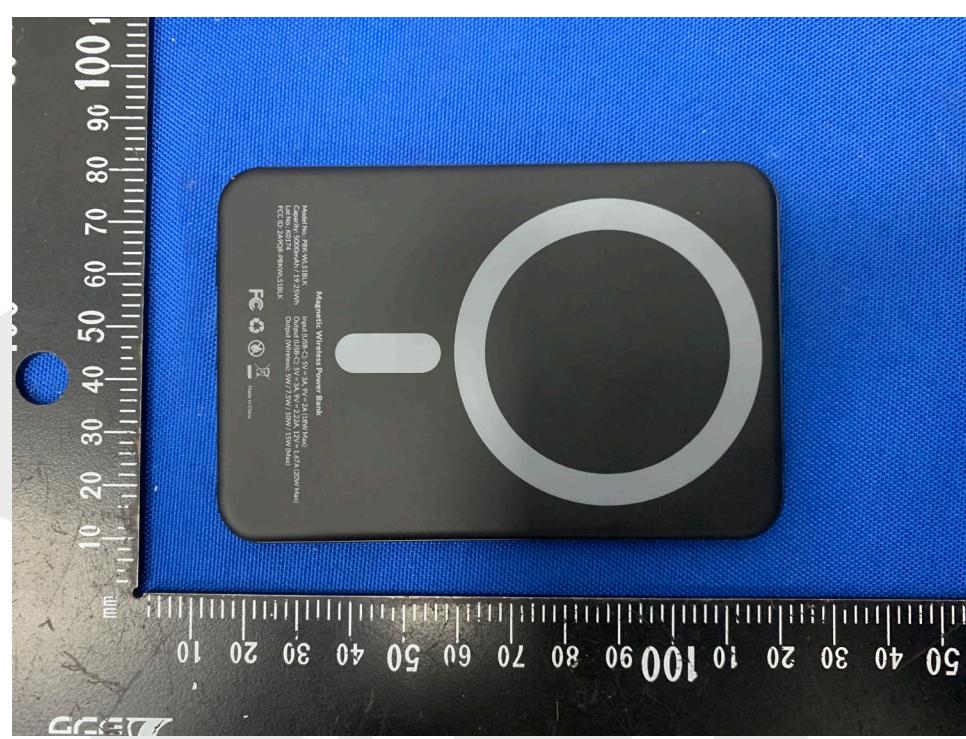
1. The percent ratio of agreement is the difference between the estimated and measured values divided by the average of the estimated and measured values.
2. EUT is a loop/coil emitting structure, so E-field not required. Just record the H-field value.

5.5 Evaluation Result

Test Condition: Test Mode 4 operating with client device (1% battery status of client device)

Distance (cm)	H-Field Results (A/m)						Limit (A/m)	Conclusion
	Top	Bottom	Left	Right	Front	Back		
0	0.0250	0.0200	0.2940	0.2352	0.1420	0.1136	1.63	Compliance
2	0.1680	0.1344	0.0660	0.0528	0.1850	0.1480	1.63	Compliance
4	0.0350	0.0280	0.1200	0.0960	0.1800	0.1440	1.63	Compliance
6	0.0970	0.0776	0.1640	0.1312	0.1150	0.0920	1.63	Compliance
8	0.1680	0.1344	0.0720	0.0576	0.1270	0.1016	1.63	Compliance
10	0.0390	0.0312	0.2460	0.1968	0.1320	0.1056	1.63	Compliance
12	0.0650	0.0520	0.2850	0.2280	0.2840	0.2272	1.63	Compliance
14	0.0110	0.0088	0.0630	0.0504	0.3110	0.2488	1.63	Compliance
16	0.0820	0.0656	0.2380	0.1904	0.2780	0.2224	1.63	Compliance
18	0.0750	0.0600	0.2290	0.1832	0.0810	0.0648	1.63	Compliance
20	0.1980	0.1584	0.0120	0.0096	0.1110	0.0888	1.63	Compliance

Test Condition: Test Mode 4 operating with client device (1% battery status of client device)


Distance (cm)	E-Field Results (V/m)						Limit (V/m)	Conclusion
	Top	Bottom	Left	Right	Front	Back		
0	5.2986	6.7658	5.1719	3.5568	4.8688	4.9877	614	Compliance
2	3.6328	4.9792	4.4807	5.1193	4.9404	3.5338	614	Compliance
4	3.1937	2.0056	0.4943	2.7503	2.6023	1.8091	614	Compliance
6	4.2043	3.4488	3.9630	3.9672	3.6432	4.8022	614	Compliance
8	3.4084	3.2156	3.9690	2.6391	2.8589	3.2942	614	Compliance
10	2.0052	2.3731	2.7669	3.0160	3.6425	3.0744	614	Compliance
12	4.4725	6.6068	6.7515	5.8627	5.7272	4.6037	614	Compliance
14	4.6285	3.4531	4.5323	4.0118	3.9442	4.8981	614	Compliance
16	3.4302	2.0707	1.6451	2.5040	1.4966	0.8497	614	Compliance
18	4.2123	2.3919	2.7907	3.7215	3.2775	4.8101	614	Compliance
20	2.1613	3.2451	2.4786	2.6108	3.8693	3.4898	614	Compliance

ANNEX A TEST SETUP PHOTOS

PHOTO 1

Test Position: Top

PHOTO 2

PHOTO 3

STATEMENT

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--- End of Report ---