

FCC SAR Test Report

Applicant: Meferi Technologies Co., Ltd.

EUT Description: INTELLIGENT SHOPPER ASSISTANT

Model: CIAO

Model Covered: MS35, MS35P, MS35T, MS35H, MS35L, MS35S, CIAO plus

FCC ID: 2A9LJ-CIAO

Standards: FCC 47CFR §2.1093

Date of Receipt: 2024/07/30

Date of Test: 2024/08/21 to 2024/09/10

Date of Issue: 2024/09/11

TOWE. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility assure that additional production units of the model are manufactured with identical electrical and mechanical components. All sample tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise. without written approval of TOWE, the test report shall not be reproduced except in full.

Huang Kun
Approved By:

Li Wei
Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by
01	2024/09/11	Original	Li Wei

Table of Contents

1	Summary of Test Results	4
2	Guidance Applied	5
3	Lab Information.....	5
3.1	Testing Location.....	5
3.2	Test Facility / Accreditations.....	5
3.3	Ambient Condition.....	5
4	Client Information.....	5
4.1	Applicant	5
4.2	Manufacturer	5
5	Product Information	6
5.1	Antenna Locations.....	7
6	RF Exposure Limits.....	8
7	Introduction	9
7.1	SAR Definition.....	9
8	SAR Measurements System.....	10
8.1	The SAR Measurement Set-up	10
8.2	Measurement procedure	11
8.2.1	Power reference measurement.....	11
8.2.2	Area scan	11
8.2.3	Zoom Scan.....	12
8.2.4	Power Drift Measurement.....	12
9	Test Equipment list.....	13
10	SAR measurement variability	14
11	Description of Test Position	15
11.1	Body-worn accessory exposure conditions	15
11.2	Product Specific 10g SAR exposure conditions	16
12	System Verification	17
12.1	Tissue Verification	17
12.2	SAR System Check.....	18
12.2.1	System Check Result.....	18
12.2.2	Detailed System Check Result.....	18
12.3	PD System Verification.....	19
13	Conducted Power	20
13.1	Conducted Power of WIFI 6E	20
14	Data Summary.....	22
14.1	SAR Measurement Result of WIFI 6E	23
14.2	PD Measurement Result of WIFI 6E	24
15	Measurement Uncertainty	25
16	Calibration Certificate	27
17	Test Setup Photos	27
Appendix A: System Check Plots		27
Appendix B: SAR Test Plots		27
Appendix C: Calibration certificate		27
Appendix D: Test Setup Photos		27

1 Summary of Test Results

Band	Highest SAR(W/kg)		Highest PD (W/m ²)
	Body worn 1g SAR	Product specific 10g SAR	
WIFI 6E	0.13	0.12	5.57
Limit	1.6	4.0	10.0

2 Guidance Applied

FCC 47CFR §2.1093

ANSI/IEEE C95.1-1992

IEEE 1528-2013

IEC/IEEE 62209-1528:2020

IEC TR 63170:2018

IEC 62479:2010

KDB 447498 D01 General RF Exposure Guidance v06

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r02

KDB 248227 D01 802.11 Wi-Fi SAR v02r02

KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03

3 Lab Information

3.1 Testing Location

These measurements tests were conducted at the Sushi TOWE Wireless Testing (Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014

Tel.: +86-755-27212361

Contact Email: info@towewireless.com

3.2 Test Facility / Accreditations

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC Designation No.: CN1353

Sushi TOWE Wireless Testing (Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED CAB identifier: CN0152

Sushi TOWE Wireless Testing (Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0152

Company Number: 31000

3.3 Ambient Condition

Temperature: 18°C~25°C

Relative Humidity: 30%~75%

4 Client Information

4.1 Applicant

Applicant:	Meferi Technologies Co., Ltd.
Address:	4F, A6, Tianfu Software Park, No. 1129, Century City Road, High-tech Zone, 610041, Chengdu, Sichuan, 610041 China

4.2 Manufacturer

Applicant:	Meferi Technologies Co., Ltd.
Address:	4F, A6, Tianfu Software Park, No. 1129, Century City Road, High-tech Zone, 610041, Chengdu, Sichuan, 610041 China

5 Product Information

EUT Description	INTELLIGENT SHOPPER ASSISTANT	
Model	CIAO	
Model Covered	MS35, MS35P, MS35T, MS35H, MS35L, MS35S, CIAO plus	
Hardware Version	V1.0	
Software Version	MS35_EN_GE_V01_Q3_H01_20240607	
SN.	DED6EA124508000011	
Device Capabilities:		
Band	Frequency Range (MHz)	Modulation Type
WIFI 6E	5925 ~ 6425 6425 ~ 6525 6525 ~ 6875 6875 ~ 7125	OFDM OFDMA
Antenna Type	<input type="checkbox"/> External, <input checked="" type="checkbox"/> Integrated	
Battery Information	Model:	BATMS35
	Normal Voltage:	+3.7V
	Rated capacity:	6800mAh
	Manufacturer:	SHENZHEN POLYMER BATTERY CO.,LTD.
Remark:		
1. The above EUT's information was declared by applicant, please refer to the specifications or user manual for more detailed description. 2. The 6GHz WLAN can transmit in MIMO antenna mode only. 3. Reference applicant Model Confirmation Letter: Their electrical circuit design, layout, components used, and internal wiring are identical, with only differences on model Number. According to the difference description above, only the CIAO model is tested, and other models share the same test data of CIAO.		

5.1 Antenna Locations

Refer to Appendix D Test Setup Photos.

Note:

According to the distance between WIFI antenna and the sides of the EUT we can draw the conclusion that:

EUT sides for testing							
Mode	Exposure Condition	Front	Back	Left	Right	Top	Bottom
WIFI 6E MIMO	Body	Yes	Yes	Yes	Yes	Yes	No

Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

6 RF Exposure Limits

RF Exposure Limit for below 6GHz

Human Exposure	Uncontrolled Environment General Population (W/kg) or (mW/g)	Controlled Environment Occupational (W/kg) or (mW/g)
Spatial Peak SAR¹ (Brain/Trunk)	1.6	8.0
Spatial Average SAR² (Whole Body)	0.08	0.4
Spatial Peak SAR³ (Hands/Feet/Ankle/Wrist)	4.0	20.0

Note:

1, The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2, The Spatial Average value of the SAR averaged over the whole body.

3, The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

RF Exposure Limit for above 6GHz

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Human Exposure to Radiofrequency (RF) Radiation Limits		
Frequency Range (MHz)	Power Density (mW/cm ²)	Average Time (Minutes)
(A)Limits for Occupational/Controlled Environments		
1,500-100,000	5.0	6
(B)Limits for General Population/Uncontrolled Environments		
1,500-100,000	1.0	30

Note: 1.0 mW/cm² is 10.0 W/m².

7 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

7.1 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

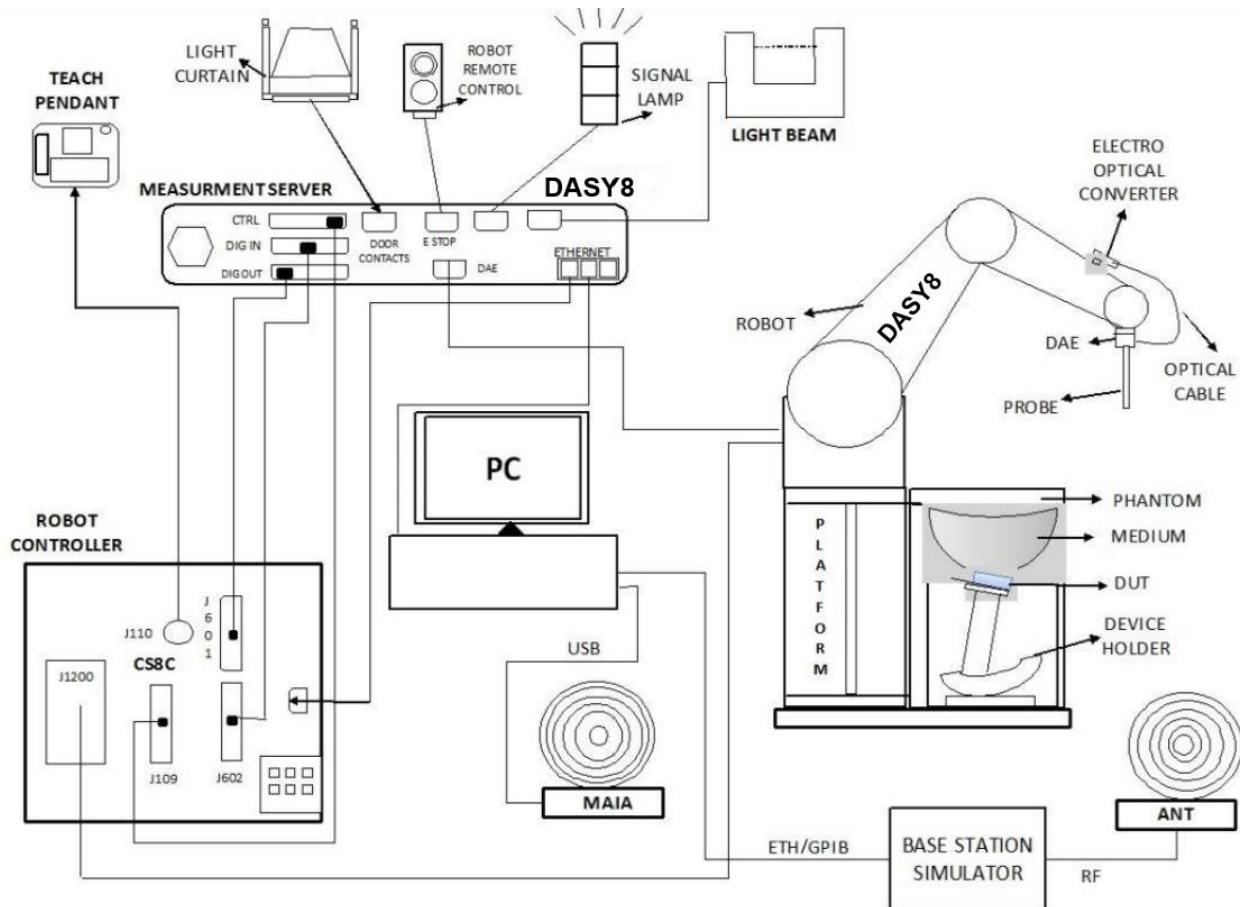
$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg):

$$\mathbf{SAR} = \frac{\sigma E^2}{\rho}$$

Where:

σ is the conductivity of the tissue material (S/m)


ρ is the mass density of the tissue material (kg/m³)

E is the RMS electrical field strength (V/m)

8 SAR Measurements System

8.1 The SAR Measurement Set-up

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Windows 11 and the DASY8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

8.2 Measurement procedure

8.2.1 Power reference measurement

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

8.2.2 Area scan

Measurement procedures for evaluating SAR from wireless handsets typically start with a coarse measurement grid to determine the approximate location of the local peak SAR values. This is known as the area-scan procedure. In addition, identify the positions of any local maxima with SAR values within 2 dB of the maximum value, and that will not be within the zoom scan of other peaks. Additional zoom scans shall be measured for such peaks only when the primary peak is within 2 dB of the SAR compliance limit.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

8.2.3 Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz.

		≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$ graded grid	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
		$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

8.2.4 Power Drift Measurement

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test that must remain within a maximum variation of $\pm 5\%$. Detail power drift measurement refer to appendix B.

9 Test Equipment list

Manufacturer	Equipment Name	Model	Serial Number	Calibration Date	Due Date of calibration
SPEAG	Twin Phantom	SAM	2173	NCR	NCR
SPEAG	mmWave Phantom	mmWave	1121	NCR	NCR
SPEAG	E-Field Probe	EX3DV4	7858	2024/01/09	2025/01/08
SPEAG	EUmmWV Probe Tip Protection	EUmmWV4	9499	2023/11/29	2024/11/28
SPEAG	Data Acquisition Electronics	DAE4	1847	2024/01/04	2025/01/03
SPEAG	System Validation Kits	D6.5GHzV2	1096	2023/05/11	2026/05/10
SPEAG	5G Verification Source	10GHz	1075	2023/11/28	2024/11/27
SPEAG	Dielectric parameter probes	DAK3.5	1341	2024/07/15	2025/07/14
R&S	Vector network analyzer	ZNB8	101413	2024/07/17	2025/07/16
R&S	Signal Generator	SMR20	100621	2024/03/25	2025/03/24
R&S	AVG Power Sensor	NRP-Z21	101651	2024/03/25	2025/03/24
R&S	AVG Power Sensor	NRP-Z21	104189	2024/03/25	2025/03/24
HAISIDIKE	Thermometer	TP300	TOWE-EQ-SR-023	2024/03/27	2025/03/26
BingYu	Temperature and Humidity Indicator	HTC-1	TOWE-EQ-SR-027	2024/06/03	2025/06/02
Talent Microwave	Directional Coupler	TC-05180-10S	220420003	NCR	NCR
QiJi	Amplifier	YX28982301	TOWE-EQ-SR-020	NCR	NCR

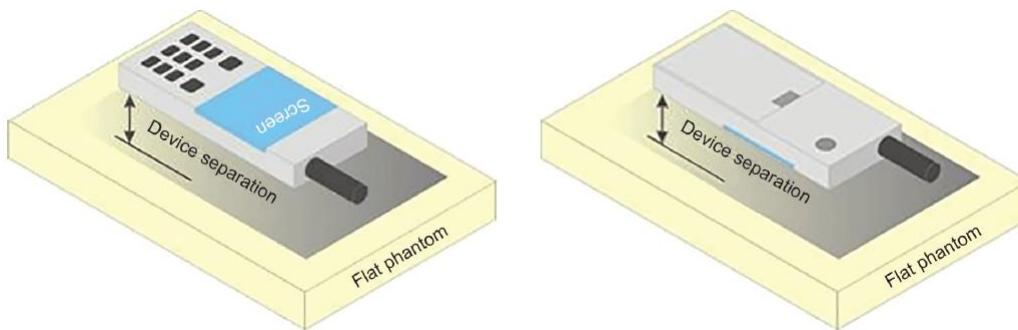
Note:

1. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged or repaired during the interval.
2. The justification data of dipole can be found in Appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

10 SAR measurement variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue equivalent medium.

The following procedures are applied to determine if repeated measurements are required.


- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

11 Description of Test Position

11.1 Body-worn accessory exposure conditions

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 11-6). Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Figure 11-6: Test positions for body-worn devices

11.2 Product Specific 10g SAR exposure conditions

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions, i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear. the phablets procedures outlined in KDB Publication 648474 D04 v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worm accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna ≤ 25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1-g SAR > 1.2 W/kg.

12 System Verification

12.1 Tissue Verification

The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. The temperature variation of the Tissue Simulate Liquids was $22\pm2^\circ\text{C}$, the liquid depth of the ear reference point or the flat phantom was at least 15 cm (which is shown in Figure 12-1).

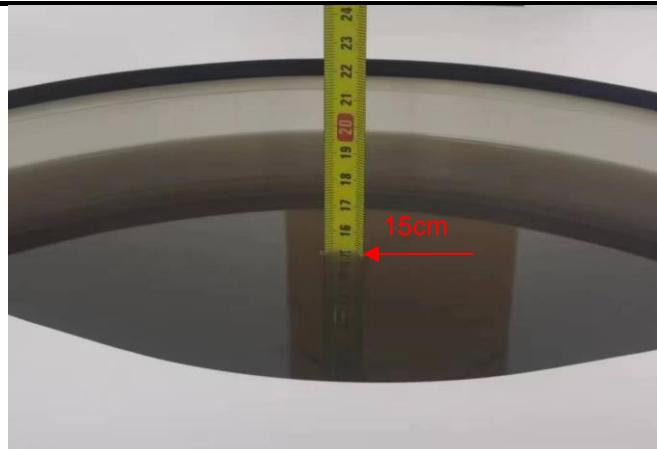


Figure 12-1 Liquid depth in the Flat Phantom

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Target Tissue		Measured Tissue		Deviation (Limit $\pm 5\%$)		Date
			Permittivity ϵ_r	Conductivity $\sigma(\text{S/m})$	Permittivity ϵ_r	Conductivity $\sigma(\text{S/m})$	$\Delta\epsilon_r$	$\Delta\sigma$	
6500	Head	21.8	34.50	6.07	34.700	6.180	0.58%	1.81%	2024/09/07

Table 1: Measurement Tissue Parameters

12.2 SAR System Check

Prior to SAR assessment, a SAR system Check measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR values. The System Performance Check Setup in Figure 12-3.

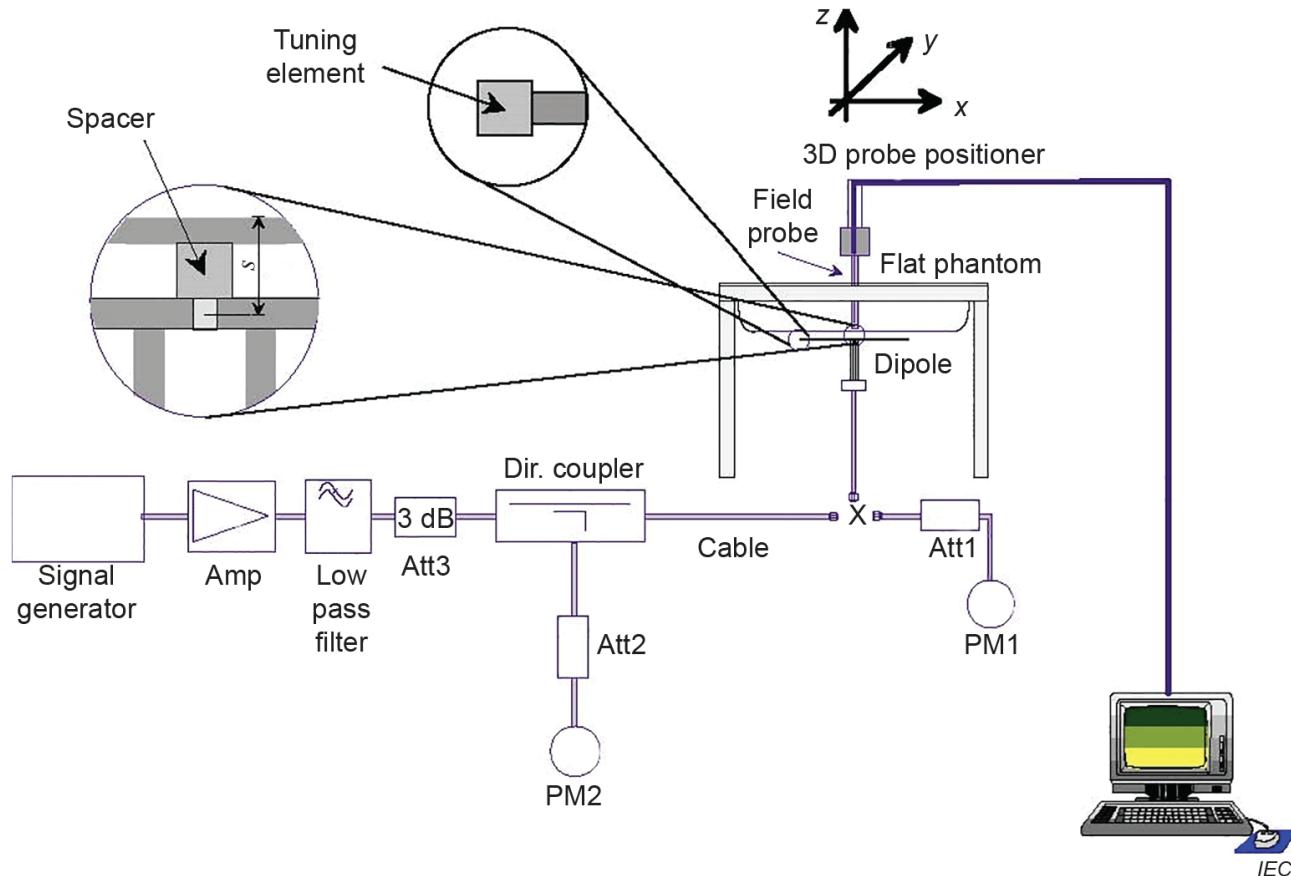
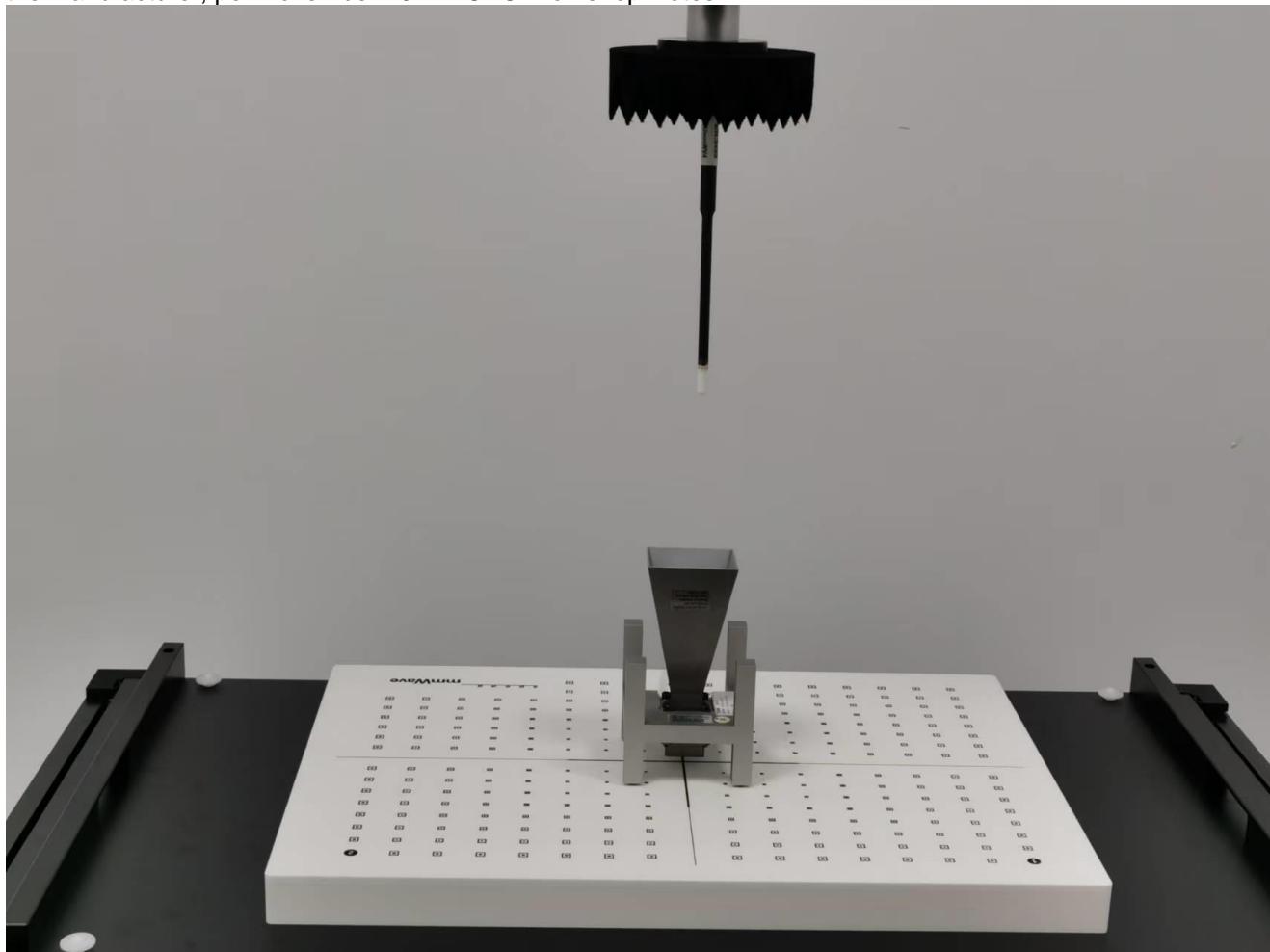


Figure 12-3 System Performance Check Setup

12.2.1 System Check Result

Frequency (MHz)	Tissue Type	Dipole	S/N	Target SAR (1W)		Measured SAR (250mW)		Measured SAR (normalized to 1W)		Deviation (Limit $\pm 10\%$)		Date
				1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	$\Delta 1g$	$\Delta 10g$	
6500	Head	D6.5GHzV2	1096	289.00	53.40	28.90	5.45	289.00	54.50	0.00%	2.06%	2024/09/07

Table 2: SAR System Check Result


12.2.2 Detailed System Check Result

Please see the Appendix A

12.3 PD System Verification

The system was verified to be within ± 0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

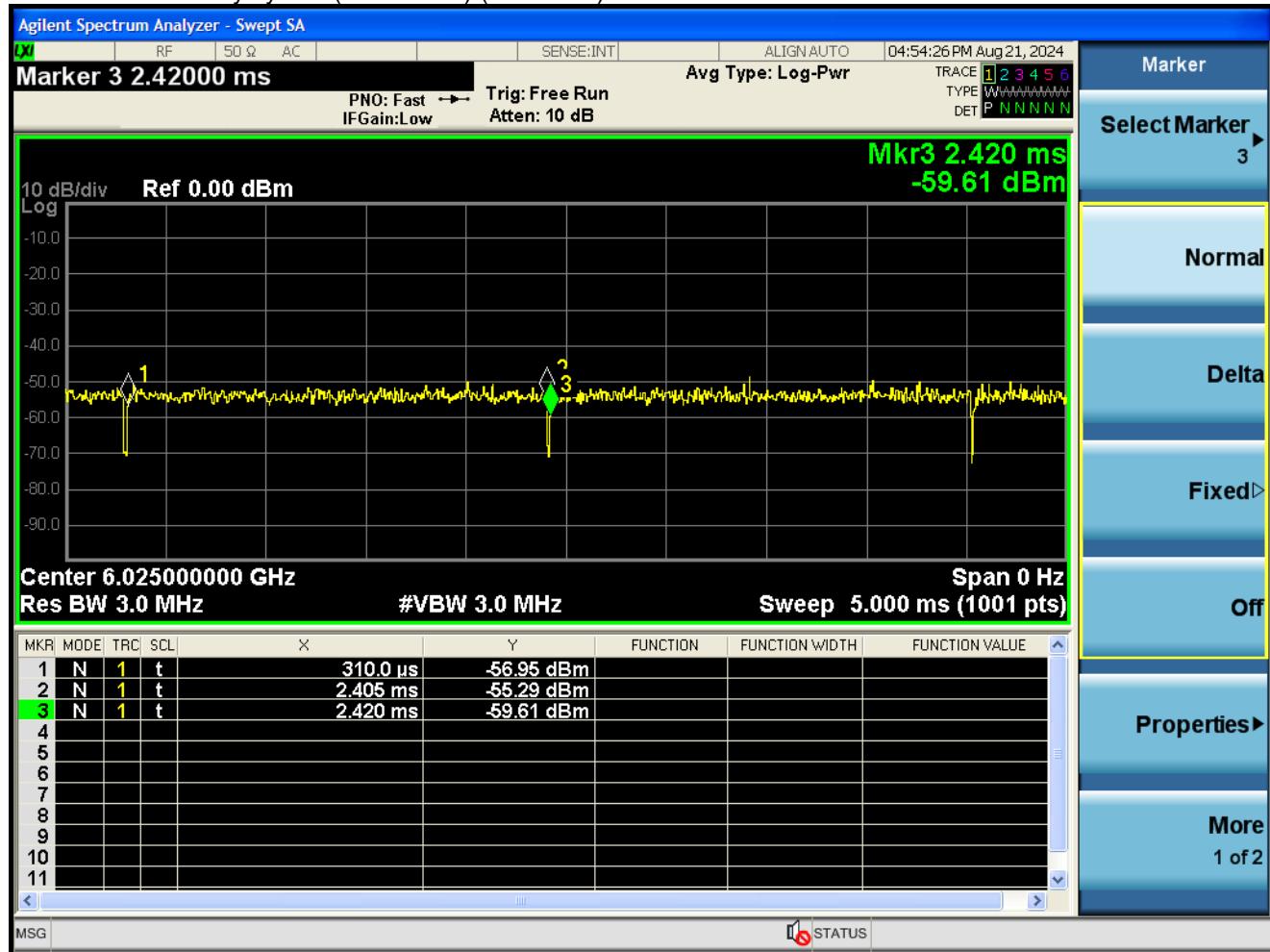
The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes

System Verification Setup Photo

Frequency (GHz)	PD Verification Source	Distance (mm)	Measured 4cm ² (W/m ²)	Target 4cm ² (W/m ²)	Deviation (dB)	Measured Date
10G	10GHz_1075	10	60.40	57.50	0.21	2024/09/09

Detailed System Check Results Please see the Appendix A.

13 Conducted Power


13.1 Conducted Power of WIFI 6E

Note:

1. WLAN 6GHz operations are limited to MIMO operations only (does not support standalone mode), SAR and PD for MIMO was evaluated by making a measurement with both antennas transmitting simultaneously.
2. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/ax mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
3. Per 201904 TCBC workshops, General principles of KDB 248227 D01 can be applied to determine the SAR initial Test Configurations and test reduction for 802.11ax SAR testing. For the table below the 802.11ax maximum power is SU (non-OFDMA), and the SU maximum power is higher than RU (OFDMA).
4. In applying the test guidance, the IEEE 802.11 mode with the maximum output power (out of all modes) should be considered for testing.
5. For modes with the same maximum output power, the guidance from section 5.3.2 a) of KDB 248227 D01 should be applied, with 802.11ax being considered as the highest 802.11 mode for the appropriate frequency bands.
6. 802.11 ax/be supports both full tone size mode and partial tone size mode, after verification on partial tone size mode that partial size tone mode power will not be higher than full tone size mode, therefore, full tone mode power was chosen to be measured in this report.

MIMO					
Mode	Channel	Frequency (MHz)	Conducted Power (dBm)	Tune up	SAR Test
802.11a	1	5955	No Required	9.00	No
	45	6175		9.00	
	113	6515		9.00	
	181	6855		9.00	
	233	7115		7.00	
802.11ax 20M	1	5955	No Required	9.00	No
	45	6175		9.00	
	113	6515		9.00	
	181	6855		9.00	
	233	7115		7.00	
802.11ax 40M	3	5965	No Required	9.00	No
	43	6165		9.00	
	107	6485		9.00	
	179	6845		9.00	
	227	7085		7.00	
802.11ax 80M	7	5985	No Required	9.00	No
	87	6385		9.00	
	103	6465		9.00	
	135	6625		9.00	
	215	7025		7.00	
802.11ax 160M	15	6025	8.88	9.00	Yes
	47	6185	8.43	9.00	
	111	6505	8.24	9.00	
	143	6665	8.33	9.00	
	207	6985	6.23	7.00	

802.11ax 160M Duty cycle= (2.405-0.31)/(2.42-0.31) =99.29%

14 Data Summary

General Notes:

- 1) The Highest Reported SAR Plot and PD Plot refer to Appendix B.
- 2) Per KDB 447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:
 - $\leq 0.8\text{W/kg}$ for 1g or 2.0W/kg for 10g respectively, when the transmission band is $\leq 100\text{MHz}$.
 - $\leq 0.6\text{ W/kg}$ or 1.5 W/kg , for 1g or 10g respectively, when the transmission band is between 100 MHz and 200MHz .
 - $\leq 0.4\text{ W/kg}$ or 1.0 W/kg , for 1g or 10g respectively, when the transmission band is $\geq 200\text{MHz}$.
- 3) For WIFI 6E doesn't support wireless router capability.
- 4) Per October 2020 TCB Workshop interim procedures, start instead with a minimum of 5 test channels across the full band, then adapt and apply conducted power and SAR test reduction procedures of KDB 248227 v02r02.
- 5) Absorbed power density (APD) using a 4cm^2 averaging area is reported based on SAR measurements.
- 6) Per FCC guidance and equipment manufacturer guidance, the power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty $> 30\%$. Total expanded uncertainty of 2.67 dB (84.93%) was used to determine the psPD measurement scaling factor.
- 7) Per April 2021 TCB Workshop, For the highest SAR test configurations also measure incident PD (total) using power-density reconstruction method in 2 mm closest measurement plane.
- 8) IPD is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.
- 9) The measurement procedure consists of measuring the PDinc at two different distances: 2 mm (compliance distance) and $\lambda/5$. The grid extents should be large enough to fully capture the transmitted energy. The grid step should be fine enough to demonstrate that the integrated Power Density iPDn fulfil the criterion described below. Since iPD ratio between the two distances is $\geq -1\text{dB}$, the grid step (0.0625) was sufficient for determining compliance at $d=2\text{mm}$.

$$10 \cdot \log_{10} \frac{iPD_n(2\text{mm})}{iPD_n(\lambda/5)} \geq -1$$

14.1 SAR Measurement Result of WIFI 6E

MIMO Test Results												
Test position	Mode	Ch./Freq. (MHz)	SAR (W/kg) 1g	Power Drift (dB)	Duty Cycle	Duty Cycle Scaling Factor	Conducted Power (dBm)	Tune up Limit (dBm)	Scaling Factor	Reported 1g SAR (W/kg)	Measured APD (W/m^2)	Reported APD (W/m^2)
Body worn 10mm												
Front side	802.11ax 160M	15/6025	0.023	-0.06	99.29%	1.007	8.88	9.00	1.028	0.024	0.184	0.190
Back side	802.11ax 160M	15/6025	0.123	0.00	99.29%	1.007	8.88	9.00	1.028	0.127	1.100	1.139
Left side	802.11ax 160M	15/6025	0.021	0.11	99.29%	1.007	8.88	9.00	1.028	0.022	0.156	0.161
Right side	802.11ax 160M	15/6025	0.090	0.00	99.29%	1.007	8.88	9.00	1.028	0.093	0.777	0.804
Top side	802.11ax 160M	15/6025	0.027	-0.05	99.29%	1.007	8.88	9.00	1.028	0.028	0.221	0.229
Back side	802.11ax 160M	47/6185	0.091	0.02	99.29%	1.007	8.43	9.00	1.140	0.104	0.821	0.943
Back side	802.11ax 160M	111/6505	0.063	0.08	99.29%	1.007	8.24	9.00	1.191	0.076	0.573	0.687
Back side	802.11ax 160M	143/6665	0.041	-0.03	99.29%	1.007	8.33	9.00	1.167	0.048	0.336	0.395
Back side	802.11ax 160M	207/6985	0.072	0.04	99.29%	1.007	6.23	7.00	1.194	0.087	0.616	0.741
Test position	Mode	Ch./Freq. (MHz)	SAR (W/kg) 10g	Power Drift (dB)	Duty Cycle	Duty Cycle Scaling Factor	Conducted Power (dBm)	Tune up Limit (dBm)	Scaling Factor	Reported 10g SAR (W/kg)	Measured APD (W/m^2)	Reported APD (W/m^2)
Product specific 10g SAR 0mm												
Front side	802.11ax 160M	15/6025	0.017	0.02	99.29%	1.007	8.88	9.00	1.028	0.018	0.359	0.372
Back side	802.11ax 160M	15/6025	0.114	0.02	99.29%	1.007	8.88	9.00	1.028	0.118	2.560	2.650
Left side	802.11ax 160M	15/6025	0.007	0.00	99.29%	1.007	8.88	9.00	1.028	0.007	0.188	0.195
Right side	802.11ax 160M	15/6025	0.064	0.19	99.29%	1.007	8.88	9.00	1.028	0.066	1.460	1.511
Top side	802.11ax 160M	15/6025	0.039	0.06	99.29%	1.007	8.88	9.00	1.028	0.040	0.886	0.917
Back side	802.11ax 160M	47/6185	0.093	-0.05	99.29%	1.007	8.43	9.00	1.140	0.107	2.070	2.377
Back side	802.11ax 160M	111/6505	0.045	0.19	99.29%	1.007	8.24	9.00	1.191	0.054	1.020	1.224
Back side	802.11ax 160M	143/6665	0.021	-0.01	99.29%	1.007	8.33	9.00	1.167	0.025	0.480	0.564
Back side	802.11ax 160M	207/6985	0.030	0.08	99.29%	1.007	6.23	7.00	1.194	0.036	0.675	0.812

Table 3: SAR of WIFI 6E.

14.2 PD Measurement Result of WIFI 6E

Test position	Mode	Ch./Freq. (MHz)	Gap (mm)	Grid Step (λ)	Conducted Power(dBm)	Tune up Limit(dBm)	iPDn	iPD ratio (≥ -1)	Normal psPD (W/m^2)	Total psPD (W/m^2)
Back side	802.11ax 160M	15/6025	2.0	0.0625	8.88	9.00	47.5	-0.309	2.330	3.470
Back side	802.11ax 160M	15/6025	10.0	0.125	8.88	9.00	51		1.630	2.090

MIMO Test Results														
Test position	Mode	Ch./Freq. (MHz)	Gap (mm)	Grid Step (λ)	Normal psPD (W/m^2)	Total psPD (W/m^2)	Duty Cycle	Duty Cycle Scaling Factor	Conducted Power (dBm)	Tune up Limit (dBm)	Scaling Factor	Scaling Factor for Measurement Uncertainty	Reported Normal psPD (W/m^2)	Reported Total psPD (W/m^2)
Front side	802.11ax 160M	15/6025	2.000	0.0625	0.890	1.470	99.29%	1.007	8.88	9.00	1.028	1.5493	1.427	2.358
Back side	802.11ax 160M	15/6025	2.000	0.0625	2.330	3.470	99.29%	1.007	8.88	9.00	1.028	1.5493	3.737	5.565
Left side	802.11ax 160M	15/6025	2.000	0.0625	0.656	1.650	99.29%	1.007	8.88	9.00	1.028	1.5493	1.052	2.646
Right side	802.11ax 160M	15/6025	2.000	0.0625	1.630	2.430	99.29%	1.007	8.88	9.00	1.028	1.5493	2.614	3.897
Top side	802.11ax 160M	15/6025	2.000	0.0625	1.420	2.120	99.29%	1.007	8.88	9.00	1.028	1.5493	2.277	3.400
Back side	802.11ax 160M	47/6185	2.000	0.0625	2.250	2.760	99.29%	1.007	8.43	9.00	1.140	1.5493	4.003	4.910
Back side	802.11ax 160M	111/6505	2.000	0.0625	0.820	1.260	99.29%	1.007	8.24	9.00	1.191	1.5493	1.524	2.342
Back side	802.11ax 160M	143/6665	2.000	0.0625	0.878	1.210	99.29%	1.007	8.33	9.00	1.167	1.5493	1.598	2.203
Back side	802.11ax 160M	207/6985	2.000	0.0625	1.220	1.910	99.29%	1.007	6.23	7.00	1.194	1.5493	2.273	3.558

Table 4: PD of WIFI 6E.

15 Measurement Uncertainty

Applicable for SAR Measurements							
a	c	d	e = f(d,k)	g	g	i = C*g/e	i = C*g/e
Uncertainty Component	Tol (%)	Prob. Dist.	Div.	Ci	Ci	u _i (%)	u _i (%)
				1g	10g	1g	10g
Measurement System							
Probe calibration	6.95	N	1	1	1	6.95	6.95
Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.90	1.90
Hemispherical isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.88	3.88
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71
Modulation response	2.4	R	$\sqrt{3}$	1	1	1.39	1.39
Detection limits	0.25	R	$\sqrt{3}$	1	1	0.14	0.14
Boundary effect	2	R	$\sqrt{3}$	1	1	1.15	1.15
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0	R	$\sqrt{3}$	1	1	0.00	0.00
Integration time	2.6	R	$\sqrt{3}$	1	1	1.50	1.50
RF ambient conditions – noise	3	R	$\sqrt{3}$	1	1	1.73	1.73
RF ambient conditions – reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.46	0.46
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.87	3.87
Post-processing	4	R	$\sqrt{3}$	1	1	2.31	2.31
Test sample related							
Device holder	3.6	N	1	1	1	3.60	3.60
Device positioning	1.89	N	1	1	1	1.89	1.89
Power scaling	5	R	$\sqrt{3}$	1	1	2.89	2.89
Output power variation-SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89
Phantom and set-up							
Phantom uncertainty	6.6	R	$\sqrt{3}$	1	1	3.81	3.81
uncertainty in SAR correction for deviations in permittivity and conductivity	1.2	N	1	1	0.84	1.20	1.01
Liquid conductivity measurement	0.82	N	1	0.78	0.71	0.64	0.58
Liquid permittivity measurement	2.39	N	1	0.23	0.26	0.55	0.62
Liquid permittivity –temperature	1.30	R	$\sqrt{3}$	0.78	0.71	0.59	0.53
Liquid conductivity –temperature	1.60	R	$\sqrt{3}$	0.23	0.26	0.21	0.24
Combined standard uncertainty							12.52
Expanded uncertainty (K=2)							25.04
							25.00

Applicable for Power Density Measurements						
a	b	c	d	e	f=b*e/d	g
Error Description	Uncertainty Value (±dB)	Probability	Div.	Ci	Standard Uncertainty (±dB)	Vi (Veff)
Uncertainty terms dependent on the measurement system						
Probe Calibration	0.49	N	1	1	0.49	∞
Probe correction	0.00	R	1.732	1	0.00	∞
Frequency response (BW ≤1 GHz)	0.20	R	1.732	1	0.12	∞
Sensor cross coupling	0.00	R	1.732	1	0.00	∞
Isotropy	0.50	R	1.732	1	0.29	∞
Linearity	0.20	R	1.732	1	0.12	∞
Probe scattering	0.00	R	1.732	1	0.00	∞
Probe positioning offset	0.30	R	1.732	1	0.17	∞
Probe positioning repeatability	0.04	R	1.732	1	0.02	∞
Sensor mechanical offset	0.00	R	1.732	1	0.00	∞
Probe spatial resolution	0.00	R	1.732	1	0.00	∞
Field impedance dependance	0.00	R	1.732	1	0.00	∞
Amplitude and phase drift	0.00	R	1.732	1	0.00	∞
Amplitude and phase noise	0.04	R	1.732	1	0.02	∞
Measurement area truncation	0.00	R	1.732	1	0.00	∞
Data acquisition	0.03	N	1	1	0.03	∞
Sampling	0.00	R	1.732	1	0.00	∞
Field reconstruction	2.00	R	1.732	1	1.15	∞
Forward transformation	0.00	R	1.732	1	0.00	∞
Power density scaling	0.00	R	1.732	1	0.00	∞
Spatial averaging	0.10	R	1.732	1	0.06	∞
System detection limit	0.04	R	1.732	1	0.02	∞
Uncertainty terms dependent on the DUT and environmental factors						
Probe coupling with DUT	0.00	R	1.732	1	0.00	∞
Modulation response	0.40	R	1.732	1	0.23	∞
Integration time	0.00	R	1.732	1	0.00	∞
Response time	0.00	R	1.732	1	0.00	∞
Device holder influence	0.10	R	1.732	1	0.06	∞
DUT alignment	0.00	R	1.732	1	0.00	∞
RF ambient conditions	0.04	R	1.732	1	0.02	∞
Ambient reflections	0.04	R	1.732	1	0.02	∞
Immunity / secondary reception	0.00	R	1.732	1	0.00	∞
Drift of the DUT		R	1.732	1	0.00	∞
Combined Std. Uncertainty					1.33	
Expanded STD Uncertainty (95%), K=2					2.67	

16 Calibration Certificate

Please see the Appendix C

17 Test Setup Photos

Please see the Appendix D

Appendix A: System Check Plots

Appendix B: SAR Test Plots

Appendix C: Calibration certificate

Appendix D: Test Setup Photos

--- The End ---