



# DFS TEST REPORT

## Part 15 Subpart E 15.407

**Equipment under test** NUGU candle SE

**Model name** NU110

**FCC ID** 2A9KPNU110SE

**Applicant** LISMA CO., LTD.

**Manufacturer** DongGuan Hajen Electro-mechanics Co., Ltd.

**Date of test(s)** 2022.12.01 ~ 2023.01.03

**Date of issue** 2023.01.12

**Issued to**

**LISMA CO., LTD.**

358, Samil-daero, Jung-gu, Seoul,  
Republic of Korea

Tel: +82-10-3107-0083 / Fax: +82-0508-918-3183

**Issued by**

**KES Co., Ltd.**

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,  
Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

| <b>Test and report completed by :</b> | <b>Report approval by :</b>        |
|---------------------------------------|------------------------------------|
|                                       |                                    |
| Gu-Bong, Kang<br>Test engineer        | Yeong-Jun Cho<br>Technical manager |

This test report is not related to KS Q ISO/IEC 17025 and KOLAS

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



## KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Report No.:

KES-RF-23T0016

Page ( 2 ) of ( 20 )

### Revision history

| Revision | Date of issue | Test report No. | Description |
|----------|---------------|-----------------|-------------|
| -        | 2023.01.12    | KES-RF-23T0016  | Initial     |
|          |               |                 |             |

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



## TABLE OF CONTENTS

|       |                                                                      |    |
|-------|----------------------------------------------------------------------|----|
| 1.    | General information.....                                             | 4  |
| 1.1.  | EUT description .....                                                | 5  |
| 1.2.  | Test configuration.....                                              | 6  |
| 1.3.  | Information about derivative model .....                             | 7  |
| 1.4.  | Accessory information.....                                           | 7  |
| 1.5.  | Sample calculation .....                                             | 7  |
| 1.6.  | Measurement Uncertainty .....                                        | 7  |
| 1.7.  | Frequency/channel operations .....                                   | 8  |
| 3.    | DFS (Dynamic Frequency Selection) test description.....              | 11 |
| 3.1.  | Applicability.....                                                   | 11 |
| 3.2.  | Requirements.....                                                    | 12 |
| 3.3.  | DFS Detection Thresholds.....                                        | 13 |
| 3.4.  | Parameters of DFS Test Signals .....                                 | 14 |
| 4.    | Test results .....                                                   | 15 |
| 4.1.  | DFS (Dynamic Frequency Selection) .....                              | 15 |
| 4.1.1 | Radar waveform.....                                                  | 16 |
| 4.1.2 | LAN Traffic .....                                                    | 17 |
| 4.1.3 | Channel move time & aggregate channel closing transmission time..... | 18 |
| 4.1.4 | Non-occupancy period .....                                           | 19 |
|       | Appendix A. Measurement equipment .....                              | 20 |

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



## KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Report No.:  
KES-RF-23T0016  
Page ( 4 ) of ( 20 )

### 1. General information

Applicant: LISMA CO., LTD.

Applicant address: 358, Samil-daero, Jung-gu, Seoul, Republic of Korea

Test site: KES Co., Ltd.

Test site address:  3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Test Facility FCC Accreditation Designation No.: KR0100, Registration No.: 444148  
ISED Registration No.: 23298

FCC rule part(s): 15.407

FCC ID: 2A9KPNU110SE

Test device serial No.:  Production  Pre-production  Engineering

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)

### 1.1. EUT description

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment under test  | NUGU candle SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Frequency range       | 2 402 MHz ~ 2 480 MHz (BDR / EDR)<br>2 402 MHz ~ 2 480 MHz (LE 1 Mbps)<br>2 412 MHz ~ 2 462 MHz (802.11b/g/n_HT20)<br>2 422 MHz ~ 2 452 MHz (802.11n_HT40)<br><b>UNII-1 5 180 MHz ~ 5 240 MHz (802.11a/n_HT20)</b><br><b>5 190 MHz ~ 5 230 MHz (802.11n_HT40)</b><br><b>UNII-2A 5 260 MHz ~ 5 320 MHz (802.11a/n_HT20)</b><br><b>5 270 MHz ~ 5 310 MHz (802.11n_HT40)</b><br><b>UNII-2C 5 500 MHz ~ 5 720 MHz (802.11a/n_HT20)</b><br><b>5 510 MHz ~ 5 710 MHz (802.11n_HT40)</b><br><b>UNII-3 5 745 MHz ~ 5 825 MHz (802.11a/n_HT20)</b><br><b>5 755 MHz ~ 5 795 MHz (802.11n_HT40)</b>                                                                                         |
| Model                 | NU110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Modulation technique  | GFSK, $\pi/4$ DQPSK, 8DPSK, <b>DSSS, OFDM</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of channels    | 2 402 MHz ~ 2 480 MHz (BDR / EDR) : 79 ch<br>2 402 MHz ~ 2 480 MHz (LE 1 Mbps) : 40 ch<br>2 412 MHz ~ 2 462 MHz (802.11b/g/n_HT20) : 11 ch<br>2 422 MHz ~ 2 452 MHz (802.11n_HT40) : 7 ch<br><b>UNII-1 5 180 MHz ~ 5 240 MHz (802.11a/n_HT20) : 4 ch</b><br><b>5 190 MHz ~ 5 230 MHz (802.11n_HT40) : 2 ch</b><br><b>UNII-2A 5 260 MHz ~ 5 320 MHz (802.11a/n_HT20) : 4 ch</b><br><b>5 270 MHz ~ 5 310 MHz (802.11n_HT40) : 2 ch</b><br><b>UNII-2C 5 500 MHz ~ 5 720 MHz (802.11a/n_HT20) : 12 ch</b><br><b>5 510 MHz ~ 5 710 MHz (802.11n_HT40) : 6 ch</b><br><b>UNII-3 5 745 MHz ~ 5 825 MHz (802.11a/n_HT20) : 5 ch</b><br><b>5 755 MHz ~ 5 795 MHz (802.11n_HT40) : 2 ch</b> |
| Antenna specification | BDR/EDR : Chip Antenna // Peak gain: 3.0 dBi<br>LE 1 Mbps : Chip Antenna // Peak gain: 3.0 dBi<br>WLAN 2.4 GHz : Chip Antenna // Peak gain: 3.0 dBi<br><b>WLAN 5 GHz : Chip Antenna // Peak gain: 3.3 dBi</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Power source          | AC 120 V (AC/DC adapter output 15 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H/W version           | V0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S/W version           | 130020312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



## 1.2. Test configuration

The **LISMA CO., LTD. // NUGU candle SE // NU110 // FCC ID: 2A9KPNU110SE** was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15.407  
KDB 905462 D02 v02  
ANSI C63.10-2013

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



### 1.3. Information about derivative model

N/A

### 1.4. Accessory information

| Equipment     | Manufacturer                                   | Model       | Serial No.   | Power source                             |
|---------------|------------------------------------------------|-------------|--------------|------------------------------------------|
| AC/DC adapter | Dongguan RuiHeng Electronic Technology Co.,LTD | RH-150200US | 221010000111 | AC 120 V input,<br>DC 15 V, 2.0 A output |

### 1.5. Sample calculation

Where relevant, the following sample calculation is provided

For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

$$\begin{aligned}\text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 1.83 + 10 = 11.83 \text{ (dB)}\end{aligned}$$

For Radiation test :

Field strength level ( $\text{dB}\mu\text{V}/\text{m}$ ) = Measured level ( $\text{dB}\mu\text{V}$ ) + Antenna factor (dB) + Cable loss (dB) – Amplifier gain (dB)

### 1.6. Measurement Uncertainty

| Test Item                                                                                                                                     | Uncertainty                |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|
| Uncertainty for Conduction emission test                                                                                                      | 2.38 dB ( SHIELD ROOM #6 ) |                    |
| Uncertainty for Radiation emission test<br>(include Fundamental emission)                                                                     | Below 1 GHz                | 4.50 dB ( SAC #6 ) |
|                                                                                                                                               | Above 1 GHz                | 4.90 dB ( SAC #5 ) |
| Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. |                            |                    |



### 1.7. Frequency/channel operations

| Ch. | Frequency (MHz) | Rate(Mbps)                               |
|-----|-----------------|------------------------------------------|
| 00  | 2 402           | BDR 1 Mbps,<br>EDR 2 Mbps,<br>EDR 3 Mbps |
| .   | .               | .                                        |
| 40  | 2 442           | BDR 1 Mbps,<br>EDR 2 Mbps,<br>EDR 3 Mbps |
| .   | .               | .                                        |
| 78  | 2 480           | BDR 1 Mbps,<br>EDR 2 Mbps,<br>EDR 3 Mbps |

| Ch. | Frequency (MHz) | Rate(Mbps) |
|-----|-----------------|------------|
| 00  | 2 402           | LE 1 Mbps  |
| .   | .               | .          |
| 20  | 2 442           | LE 1 Mbps  |
| .   | .               | .          |
| 39  | 2 480           | LE 1 Mbps  |

| Ch. | Frequency (MHz) | Rate(Mbps)       |
|-----|-----------------|------------------|
| 01  | 2 412           | 802.11b/g/n_HT20 |
| .   | .               | .                |
| 06  | 2 437           | 802.11b/g/n_HT20 |
| .   | .               | .                |
| 11  | 2 462           | 802.11b/g/n_HT20 |

| Ch. | Frequency (MHz) | Rate(Mbps)   |
|-----|-----------------|--------------|
| 03  | 2 422           | 802.11n_HT40 |
| .   | .               | .            |
| 06  | 2 437           | 802.11n_HT40 |
| .   | .               | .            |
| 09  | 2 452           | 802.11n_HT40 |



# KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Report No.:  
KES-RF-23T0016  
Page ( 9 ) of ( 20 )

## UNII-1

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 36  | 5 180           |
| 44  | 5 220           |
| 48  | 5 240           |

## UNII-2A

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 52  | 5 260           |
| 56  | 5 280           |
| 64  | 5 320           |

## UNII-2C

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 100 | 5 500           |
| 120 | 5 600           |
| 144 | 5 720           |

## UNII-3

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 149 | 5 745           |
| 157 | 5 785           |
| 165 | 5 825           |

### 802.11a/n\_HT20 mode

## UNII-1

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 38  | 5 190           |
| 46  | 5 230           |

## UNII-2A

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 54  | 5 270           |
| 62  | 5 310           |

## UNII-2C

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 102 | 5 510           |
| 118 | 5 590           |
| 142 | 5 710           |

## UNII-3

| Ch. | Frequency (MHz) |
|-----|-----------------|
| 151 | 5 755           |
| 159 | 5 795           |

### 802.11n\_HT40 mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



## KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Report No.:  
KES-RF-23T0016  
Page ( 10 ) of ( 20 )

### 2. Summary of tests

| Section in FCC Part 15 | Parameter                         | Test results |
|------------------------|-----------------------------------|--------------|
| 15.407<br>(h)(iii)(iv) | Channel Move Time                 | Pass         |
|                        | Channel Closing Transmission Time | Pass         |
|                        | Non-Occupancy Period              | Pass         |

---

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)

### 3. DFS (Dynamic Frequency Selection) test description

#### 3.1. Applicability

The following table from KDB 905462 D02 v02 lists the applicable requirements for the DFS testing.  
 The device evaluated in this report is considered a client device without radar detection capability.

| Requirement                     | Operational Mode |                                |                             |
|---------------------------------|------------------|--------------------------------|-----------------------------|
|                                 | Master           | Client Without Radar Detection | Client With Radar Detection |
| Non-Occupancy Period            | Yes              | Not required                   | Yes                         |
| DFS Detection Threshold         | Yes              | Not required                   | Yes                         |
| Channel Availability Check Time | Yes              | Not required                   | Not required                |
| U-NII Detection Bandwidth       | Yes              | Not required                   | Yes                         |

Table 2.1. DFS Applicability

| Requirement                       | Operational Mode                             |                                |
|-----------------------------------|----------------------------------------------|--------------------------------|
|                                   | Master Device or Client with Radar Detection | Client Without Radar Detection |
| DFS Detection Threshold           | Yes                                          | Not required                   |
| Channel Closing Transmission Time | Yes                                          | Yes                            |
| Channel Move Time                 | Yes                                          | Yes                            |
| U-NII Detection Bandwidth         | Yes                                          | Not required                   |
| Non-Occupancy Period              | NA/Yes                                       | Yes                            |

| Additional requirements for devices with multiple           | Master Device or Client with Radar Detection | Client Without Radar Detection                       |
|-------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| U-NII Detection Bandwidth and statistical Performance Check | All BW modes must be tested                  | Not required                                         |
| Channel Move Time and Channel Closing Transmission Time     | Test using widest BW mode available          | Test using the widest BW mode available for the link |
| All other tests                                             | Any single BW mode                           | Not required                                         |

**Note:** Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 2.2. DFS Applicability During normal operation

### 3.2. Requirements

KDB 905462 D02 v02 the following are the requirements for Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear

| Parameter                         | Value                                                                                                     |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|
| Non-occupancy period              | Minimum 30 minutes                                                                                        |
| Channel Availability Check Time   | 60 seconds                                                                                                |
| Channel Move Time                 | 10 seconds<br>See Note 1.                                                                                 |
| Channel Closing Transmission Time | 200 milliseconds + an Aggregate of 60 milliseconds over remaining 10 second period.<br>See Notes 1 and 2. |
| U-NII Detection Bandwidth         | Minimum 100% of the U-NII 99% transmission power bandwidth. See Note3.                                    |

**Note 1:** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

**Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (and aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

**Note 3:** During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 2.3. DFS Response Requirement Values



### 3.3. DFS Detection Thresholds

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection Thresholds are listed in the following table.

| Maximum Transmit Power                                                          | Value<br>(See Notes 1, 2, and 3) |
|---------------------------------------------------------------------------------|----------------------------------|
| EIRP $\geq$ 200 milliwatt                                                       | -64 dBm                          |
| EIRP < 200 milliwatt and<br>Power spectral density < 10 dBm/MHz                 | -62 dBm                          |
| EIRP < 200 milliwatt that do not meet the power spectral<br>density requirement | -64 dBm                          |

**Note 1:** This is the level at the input of the receiver assuming a 0 dBi receive antenna.

**Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS respons.

**Note 3:** EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01

Table 2.4. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

### 3.4. Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only Zero type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the channel Move Time and the Channel Closing Transmission Time.

| Radar Type                                                                                                                                  | Pulse Width (μsec) | PRI (μsec)                                                                                                                                                    | Number of Pulses                                               | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|--------------------------|
| 0                                                                                                                                           | 1                  | 1428                                                                                                                                                          | 18                                                             | See Note 1                                 | See Note 1               |
| 1                                                                                                                                           | 1                  | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a                                                                     | Roundup:<br>$\{(1/360)*(19*10^6 \text{ PRI } \mu\text{sec})\}$ | 60%                                        | 30                       |
|                                                                                                                                             |                    | Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A |                                                                |                                            |                          |
| 2                                                                                                                                           | 1-5                | 150-230                                                                                                                                                       | 23-29                                                          | 60%                                        | 30                       |
| 3                                                                                                                                           | 6-10               | 200-500                                                                                                                                                       | 16-18                                                          | 60%                                        | 30                       |
| 4                                                                                                                                           | 11-20              | 200-500                                                                                                                                                       | 12-16                                                          | 60%                                        | 30                       |
| Aggregate (Radar Types 1-4)                                                                                                                 |                    |                                                                                                                                                               |                                                                | 80%                                        | 120                      |
| <b>Note 1:</b> Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. |                    |                                                                                                                                                               |                                                                |                                            |                          |

Table 2.5. Short Pulse Radar Test Waveforms

| Radar Type | Pulse Width (μsec) | Chirp Width (MHz) | PRI (μsec) | Pulses per Burst | Number of Bursts | Minimum Percentage of Successful Detection | Minimum Trials |
|------------|--------------------|-------------------|------------|------------------|------------------|--------------------------------------------|----------------|
| 5          | 50-100             | 5-20              | 1000-2000  | 1-3              | 8-20             | 80%                                        | 30             |

Table 2.6. Short Pulse Radar Test Waveforms

| Radar Type | Pulse Width (μsec) | PRI (μsec) | Pulses Per Hop | Hopping Rate (kHz) | Hopping Sequence Length (msec) | Minimum Percentage of Successful Detection | Minimum Trials |
|------------|--------------------|------------|----------------|--------------------|--------------------------------|--------------------------------------------|----------------|
| 6          | 1                  | 333        | 9              | 0.333              | 300                            | 70%                                        | 30             |

Table 2.7. Frequency Hopping Radar Test Waveform

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)

## 4. Test results

### 4.1. DFS (Dynamic Frequency Selection)

#### Test setup

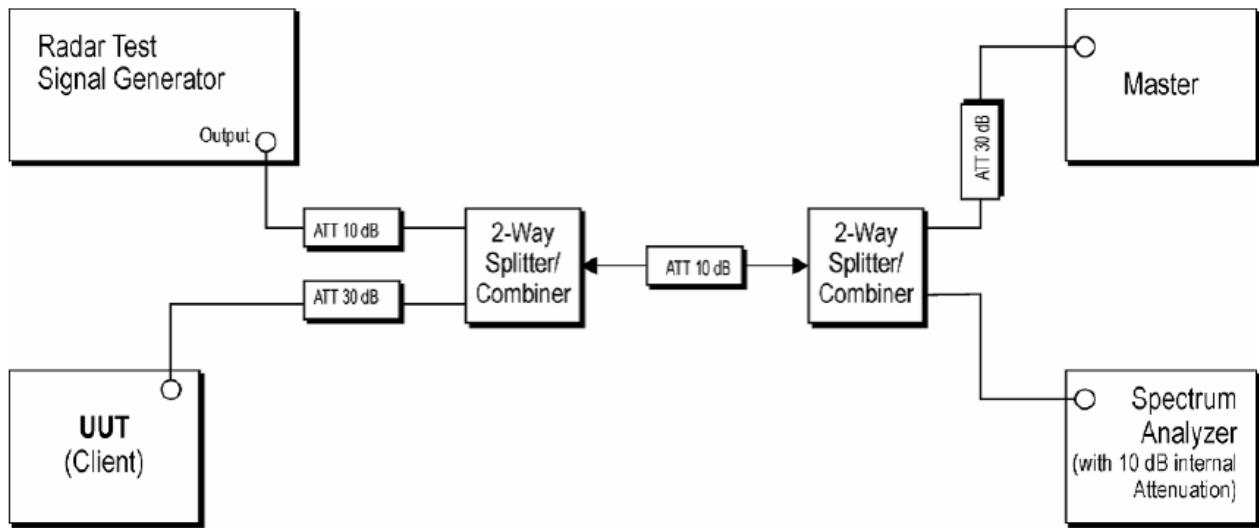
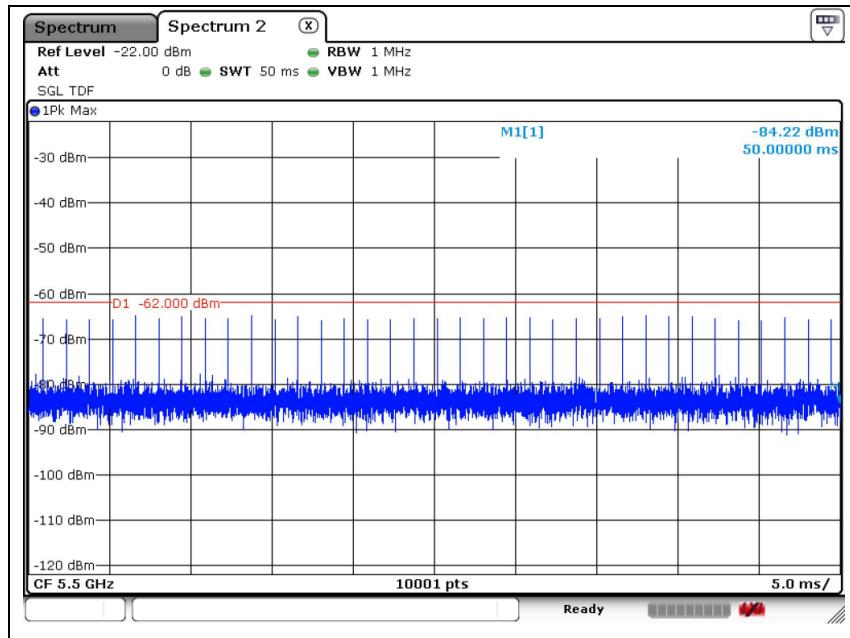


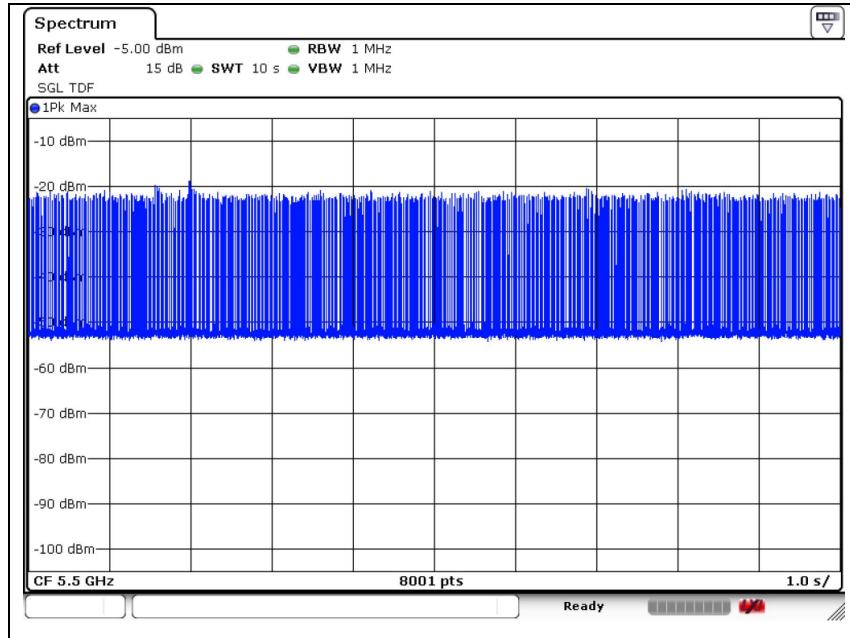

Figure 1: Conducted Test Setup for DFS


#### Test procedure

KDB 905462 D02 v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 1 shows the typical test setup.

1. One frequency will be chosen from the Operating Channels of the UUT within the 5250 ~5350 MHz or 5470 ~5725 MHz bands.
2. The Client Device (EUT) is setup per the diagram in Figure 1 and communications between the Master device and the Client is established.
3. An MPEG or data file that is typical for the device is streamed from the Master to the Client to properly load the network.

#### 4.1.1 Radar waveform


Mode: 802.11n (UNII-2C)  
Operating frequency: 5 500 MHz

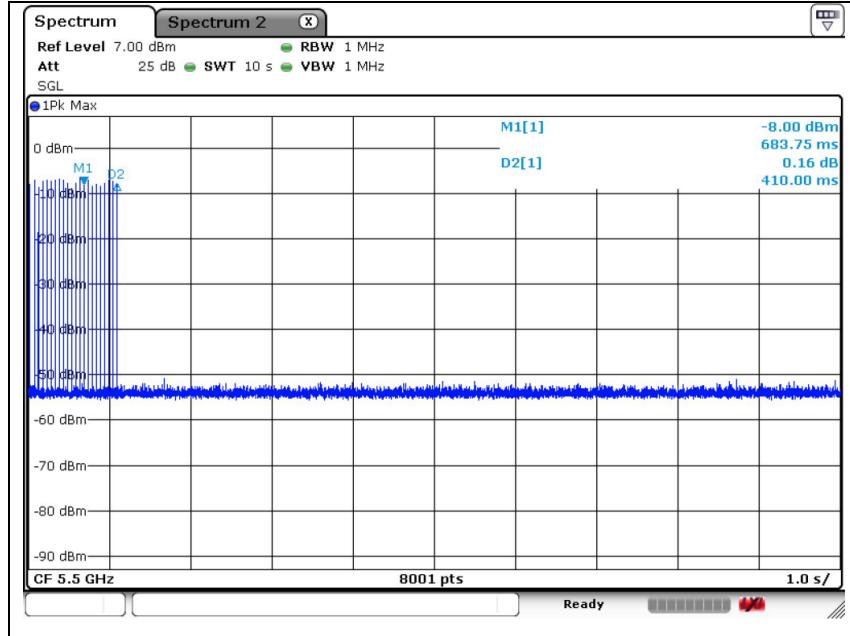


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.  
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.  
The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)

#### 4.1.2 LAN Traffic

Mode: 802.11n (UNII-2C)  
Operating frequency: 5 500 MHz




This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)

#### 4.1.3 Channel move time & aggregate channel closing transmission time

Mode: 802.11n (UNII-2C)  
 Operating frequency: 5 500 MHz



| Channel closing transmission time calculated | Test results |
|----------------------------------------------|--------------|
| Sweep time[S] sec                            | 10           |
| Sampling bins[B]                             | 8 001        |
| Number of sampling bins in 10 sec[N]         | 1            |
| Closing transmission time [C] ms             | 1.250        |

| Channel move time (s) | Limit  |
|-----------------------|--------|
| 0.410                 | ≤ 10 s |

Note:

**Dwell = S/B;**

Where **dwell** is the dwell time per spectrum analyzer sampling bin, **S** is the sweep time and **B** is the number of spectrum analyzer sampling bins.

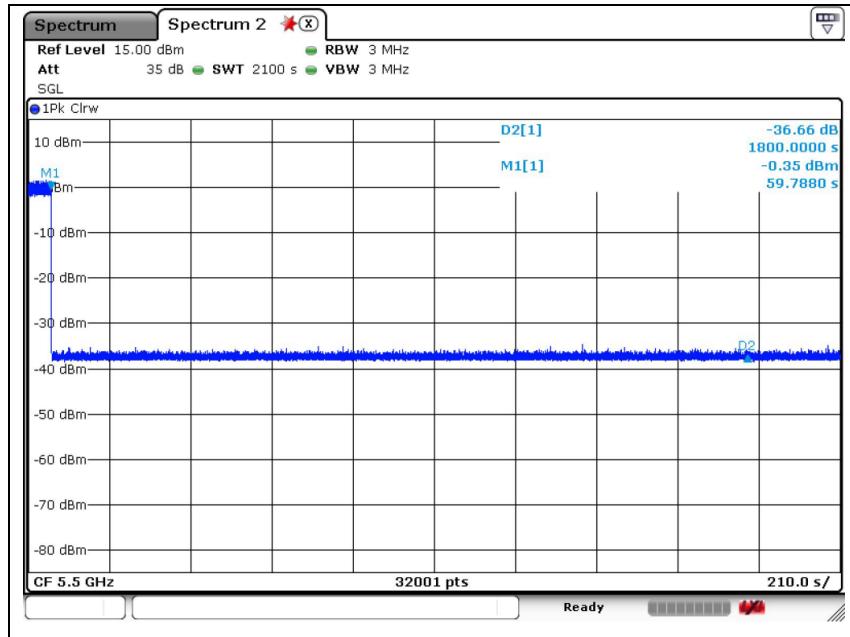
An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

**C = N × Dwell;**

Where **C** is the closing time, **N** is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

**Dwell = [S] / [B] = 10 / 8 001 = 0.001 250**

**Closing Transmission Time[C] = [N] × [Dwell] = 1 × 0.001 250 = 0.001 250 s = 1.250 ms**


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)

#### 4.1.4 Non-occupancy period

Mode: 802.11n (UNII-2C)  
Operating frequency: 5 500 MHz



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)



## KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil,  
Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea  
Tel: +82-31-425-6200 / Fax: +82-31-424-0450  
www.kes.co.kr

Report No.:  
KES-RF-23T0016  
Page ( 20 ) of ( 20 )

### Appendix A. Measurement equipment

| Equipment                   | Manufacturer  | Model            | Serial No.   | Calibration interval | Calibration due. |
|-----------------------------|---------------|------------------|--------------|----------------------|------------------|
| Spectrum Analyzer           | R&S           | FSV3044          | 101272       | 1 year               | 2023.03.14       |
| MXG Vector SIGNAL GENERATOR | AGILENT       | N5182A           | MY50143829   | 1 year               | 2023.01.14       |
| Attenuator                  | HP            | 30dB ATTENAUATOR | 3318A05137   | 1 year               | 2023.01.14       |
| Attenuator                  | SRT           | F04-H930-01      | 17041002     | 1 year               | 2023.01.14       |
| Attenuator                  | Mini-Circuits | BW-S10-2W263+    | 2            | 1 year               | 2023.01.17       |
| Attenuator                  | Mini-Circuits | BW-S10-2W263+    | 3            | 1 year               | 2023.01.17       |
| Splitter                    | MINI-CIRCUITS | ZFSC-2-10G+      | FG63701930-1 | 1 year               | 2023.06.16       |
| Splitter                    | MINI-CIRCUITS | ZFSC-2-10G+      | FG63701930-2 | 1 year               | 2023.06.16       |

### Peripheral devices

| Device                | Manufacturer         | Model No. | Serial No.    | Note.                  |
|-----------------------|----------------------|-----------|---------------|------------------------|
| Access Point (Master) | Synology             | MR220ac   | 2090RERGTR86M | FCC ID:<br>YOR-MR200AC |
| Notebook computer     | LG Electronics Inc., | LGS53     | 306QCZP560949 | Notebook computer      |

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact [kes@kes.co.kr](mailto:kes@kes.co.kr)