

RADIO TEST REPORT

FCC ID: 2A9IU-MICRO30

Product: Power Bank

Trade Name: Gendome

Model Number: Micro30

Family Model: N/A

Report No.: S24051505601001

Prepared for

Shanghai Gotion New Energy Co., Ltd.

Building 26, No.1387 Zhangdong Rd., Shanghai, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, SanweiCommunity,Xixiang Street,
Bao'an District, Shenzhen P.R. China

Tel:400-800-6106,0755-2320 0050 / 2320 0090

Website:<http://www.ntek.org.cn>

TEST RESULT CERTIFICATION

Applicant's name : Shanghai Gotion New Energy Co., Ltd.

Address : Building 26, No.1387 Zhangdong Rd., Shanghai, China

Manufacturer's Name : Shanghai Gotion New Energy Co., Ltd.

Address : Building 26, No.1387 Zhangdong Rd., Shanghai, China

Product Name: Power Bank

Model and/or type reference : Micro30

Family Model: N/A

FCC part 15C

Standards : ANSI C63.10:2013

KDB 680106 D01 RF Exposure Wireless Charging App v03r01

This device described above has been tested by ShenzhenNTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ShenzhenNTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :

Test Sample Number : S240515056001

Date (s) of performance of tests : May 15. 2024 ~ May 27. 2024

Date of Issue : May 31. 2024

Test Result : **Pass**

Prepared : Gavan Zhang
By : Gavan Zhang
(Project Engineer)

Reviewed : Aaron Cheng
By : Aaron Cheng
(Supervisor)

Approved : Alex Li
By : Alex Li
(Manager)

Table of Contents

	Page
1 . TEST SUMMARY	4
1.1 FACILITIES AND ACCREDITATIONS	5
1.2 LABORATORY ACCREDITATIONS AND LISTINGS	5
1.3 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST SETUP	9
2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	10
2.4 MEASUREMENT INSTRUMENTS LIST	11
3 . EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.1.1 POWER LINE CONDUCTED EMISSION	12
3.1.2 TEST PROCEDURE	13
3.1.3 TEST SETUP	13
3.1.4 EUT OPERATING CONDITIONS	13
3.1.5 TEST RESULTS	14
3.2 RADIATED EMISSION MEASUREMENT	16
3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	16
3.2.2 TEST PROCEDURE	17
3.2.3 TEST SETUP	18
3.2.4 TEST RESULTS	19
4 . BANDWIDTH TEST	24
4.1 TEST PROCEDURE	24
4.2 TEST SETUP	24
4.3 TEST RESULT	25
5 . ANTENNA APPLICATION	26
5.1 Antenna Requirement	26
5.2 Result	26

1. TEST SUMMARY

Test procedures according to the technical standards:

EMC Emission					
Standard	Test Item	FCC Rules	Limit	Judgment	Remark
FCC part 15C ANSI C63.10:2013	Conducted Emission	§15.207	/	PASS	
	Radiated Emission	§15.209	/	PASS	
	ANTENNA APPLICATION	§15.203	/	PASS	
	20dB BANDWIDTH	§15.215	/	PASS	

NOTE:

- (1)'N/A' denotes test is not applicable in this Test Report
- (2) For client's request and manual description, the test will not be executed.

1.1 FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

1.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Certificate Registration Number is L5516.

IC-Registration : The Certificate Registration Number is 9270A-1.

FCC- Accredited : Test Firm Registration Number:463705.
Designation Number: CN1184

A2LA-Lab. : The Certificate Registration Number is 4298.01
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005General requirements for the competence of testing and calibration laboratories.
This accreditation demonstratestechical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95 %**.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKC01	ANSI	150 KHz ~ 30MHz	2.8	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
NTEKA01	ANSI	9KHz ~1000MHz	2.64	
		1GHz ~12.4GHz	2.40	

C. Occupied Bandwidth: Uncertainty $\pm 3.7\text{dB}$

Revision History

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

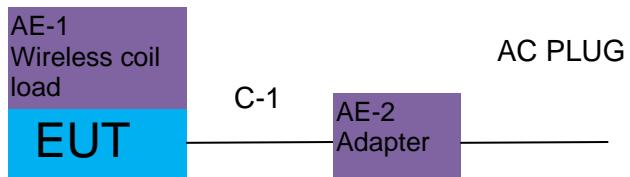
Product Feature and Specification	
Equipment	Power Bank
Trade Name	Gendome
Model No.	Micro30
FCC ID	2A9IU-MICRO30
Family Model	N/A
Model Difference	N/A
Operating Frequency	300kHz-360kHz
Antenna Type	Induction coil
Power Rating	DC 5V from Charging Port
Wireless Output	1W
Battery	15000mAh 3.2V 48Wh
HW Version	N/A
SW Version	N/A

2.1.1 DESCRIPTION OF TEST MODES

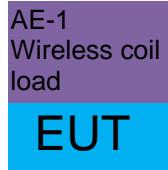
To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases	
Test Item	Data Rate/ Modulation
AC Conducted Emission	Mode 1: Charging +Max load
Radiated Test Cases	Mode 1: Charging +Max load Mode 2: Max load


Wireless output 1W(Max)full load, half load and no load mode has been tested. But the Max Load mode is the worst mode, and only this mode was presented in this report.

2.2 DESCRIPTION OF TEST SETUP

For AC Conducted Emission Mode

For Radiated Test Cases

2.3 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
AE-1	Wireless coil load	N/A	N/A	N/A	Peripherals
AE-2	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length	Note
C-1	Power Cable	NO	NO	1.0m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.
- (3) "YES" means "shielded""with core", "NO" means "unshielded""without core".

2.4 MEASUREMENT INSTRUMENTS LIST

Radiation Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.26	2025.04.25	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Amplifier	EMC	EMC051835 SE	980246	2024.01.23	2025.01.22	1 year
8	Amplifier	MITEQ	TTA1840-35-HG	177156	2023.05.29	2024.05.28	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2023.05.29	2024.05.28	1 year
10	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
11	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBECK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50ΩCoaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MHz)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MHz)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MHz)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

3. EMC EMISSION TEST

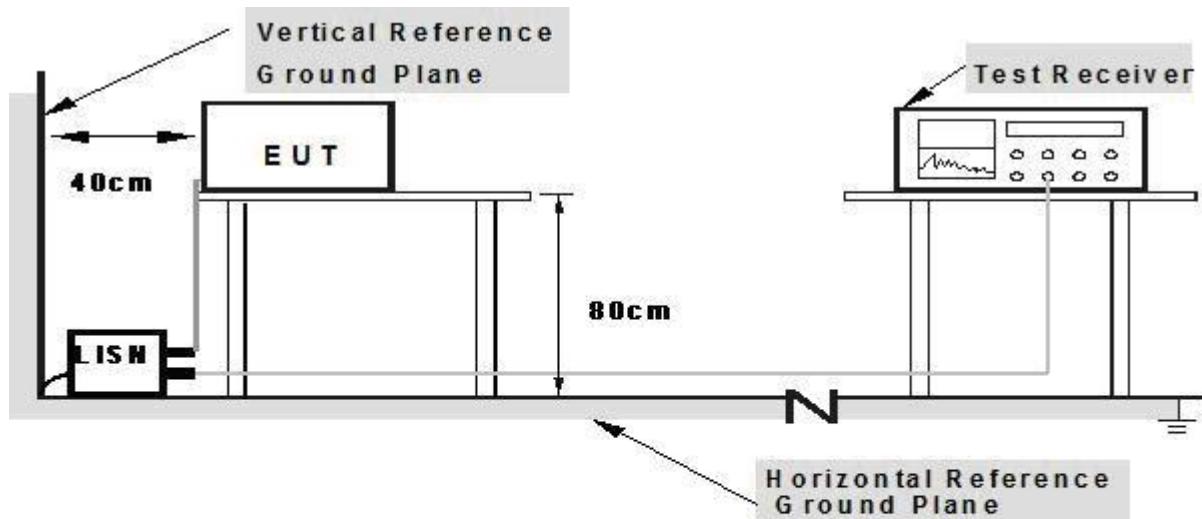
3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	limit	
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

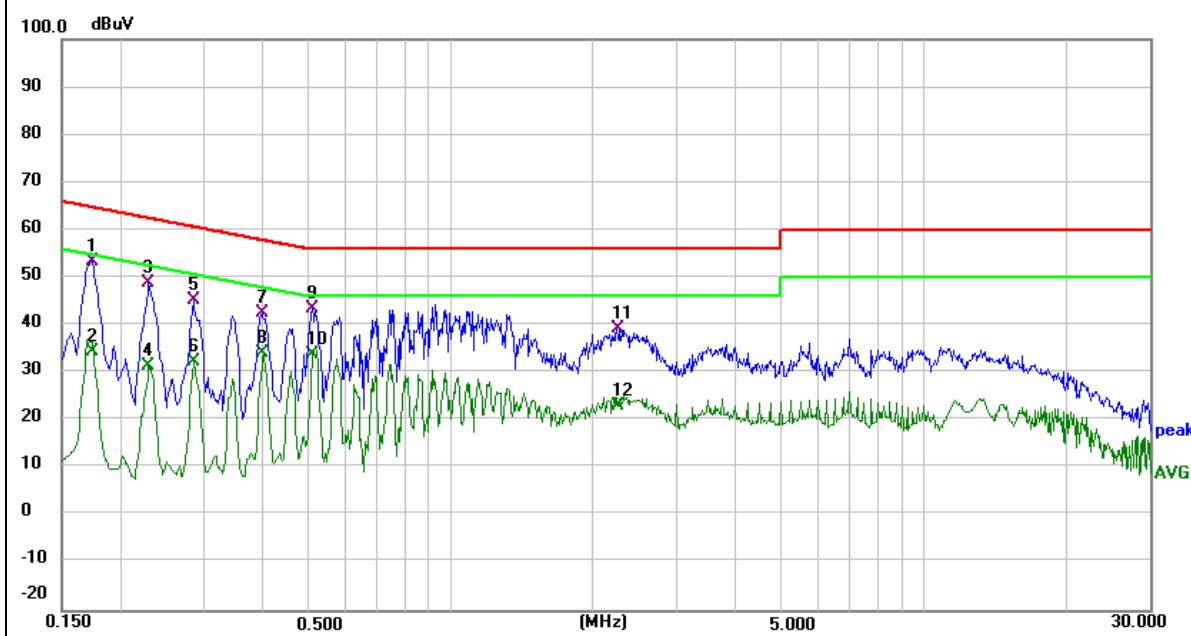
3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMH) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

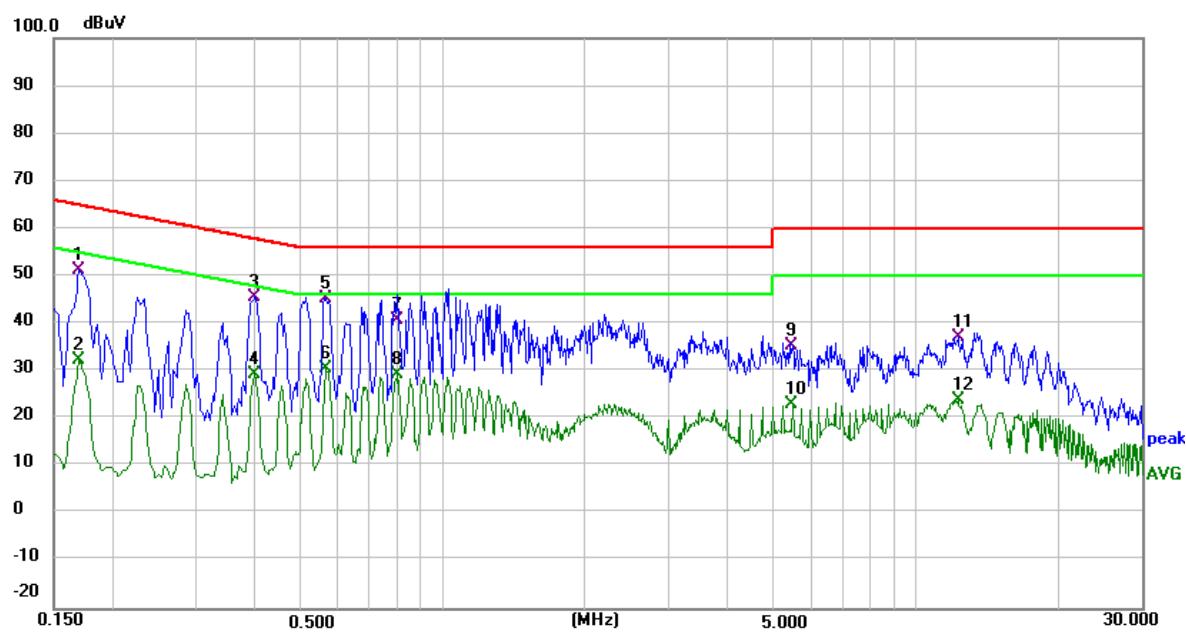

3.1.5 TEST RESULTS

EUT:	Power Bank	Model Name. :	Micro30
Temperature:	21.1 °C	Relative Humidity:	48%
Pressure:	1010hPa	Phase :	L
Test Mode:	Mode 1	Test Voltage:	DC 5V from Adapter AC 120V/60Hz

Frequency (MHz)	Reading Level (dB μ V)	Correct Factor (dB)	Measure-ment (dB μ V)	Limits (dB μ V)	Margin (dB)	Remark
0.1740	43.53	9.97	53.50	64.77	-11.27	QP
0.1740	24.51	9.97	34.48	54.77	-20.29	AVG
0.2300	38.87	10.10	48.97	62.45	-13.48	QP
0.2300	21.38	10.10	31.48	52.45	-20.97	AVG
0.2860	34.98	10.22	45.20	60.64	-15.44	QP
0.2860	22.11	10.22	32.33	50.64	-18.31	AVG
0.3980	32.04	10.44	42.48	57.90	-15.42	QP
0.3980	23.74	10.44	34.18	47.90	-13.72	AVG
0.5100	32.82	10.67	43.49	56.00	-12.51	QP
0.5100	23.11	10.67	33.78	46.00	-12.22	AVG
2.2500	29.57	9.66	39.23	56.00	-16.77	QP
2.2500	13.44	9.66	23.10	46.00	-22.90	AVG

Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.



EUT:	Power Bank	Model Name. :	Micro30
Temperature:	21.1 °C	Relative Humidity:	48%
Pressure:	1010hPa	Phase :	N
Test Mode:	Mode 1	Test Voltage:	DC 5V from Adapter AC 120V/60Hz

Frequency (MHz)	Reading Level (dB μ V)	Correct Factor (dB)	Measure-ment (dB μ V)	Limits (dB μ V)	Margin (dB)	Remark
0.1700	41.35	9.97	51.32	64.96	-13.64	QP
0.1700	22.45	9.97	32.42	54.96	-22.54	AVG
0.3980	35.19	10.44	45.63	57.90	-12.27	QP
0.3980	18.96	10.44	29.40	47.90	-18.50	AVG
0.5660	34.33	10.79	45.12	56.00	-10.88	QP
0.5660	19.62	10.79	30.41	46.00	-15.59	AVG
0.8020	29.53	11.26	40.79	56.00	-15.21	QP
0.8020	18.24	11.26	29.50	46.00	-16.50	AVG
5.4899	25.64	9.67	35.31	60.00	-24.69	QP
5.4899	13.36	9.67	23.03	50.00	-26.97	AVG
12.2620	27.53	9.70	37.23	60.00	-22.77	QP
12.2620	14.18	9.70	23.88	50.00	-26.12	AVG

Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Notes

:

- (1) Measurement was performed at an antenna to the closed point of EUT distance of meters.
- (2) Emission level (dB_{UV}/m)=20log Emission level (uV/m).
- (3) Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of 15.205, and the emissions located in restricted bands also comply with 15.209 limit.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

3.2.2 TEST PROCEDURE

Test Arrangement for Radiated Emissions up to 1 GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited testfacility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the topof a variable-height antenna tower.
- c. The antenna is a broadband antenna(Blow 30M, use loop antenna), and its height is varied from one meter to four meters above theground to determine the maximum value of the field strength. Both horizontal and vertical polarizations ofthe antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to findthe maximum reading.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency below 1GHz.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Use the following receiver/spectrum analyzer settings:

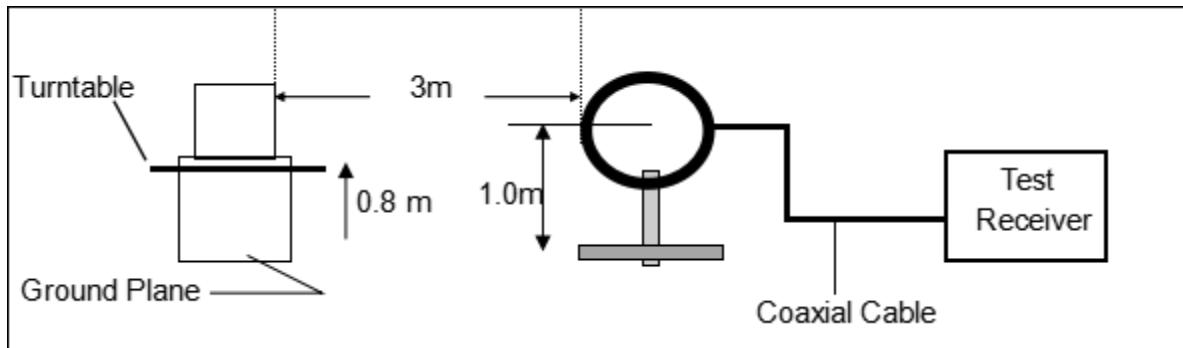
Span = wide enough to fully capture the emission being measured

RBW=200Hz for 9KHz to 150KHz,

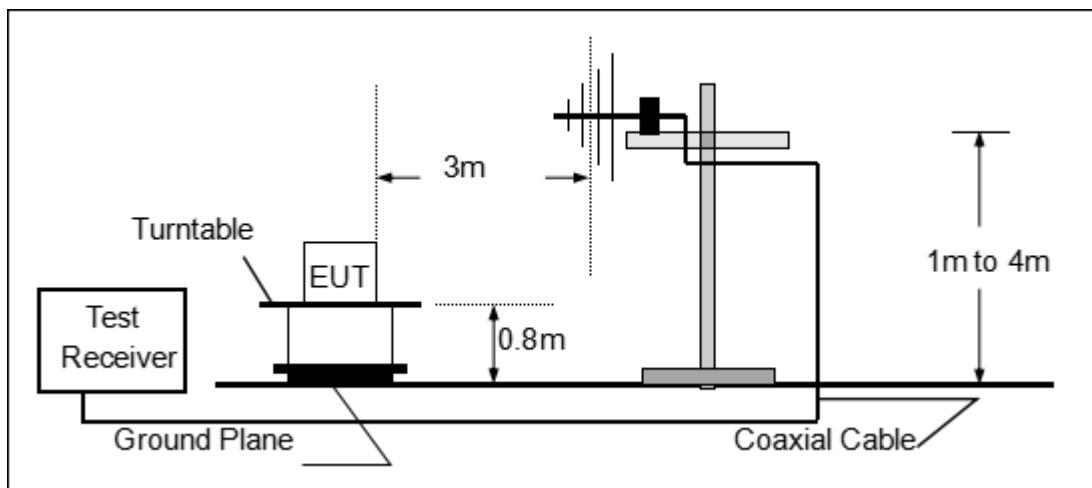
RBW=9kHz for 150KHz to 30MHz,

RBW=120KHz for 30MHz to 1GHz

VBW \geq 3*RBW


Sweep = auto

Detector function = QP


Trace = max hold

3.2.3 TEST SETUP

(a) For Radiated Emission Test Set-Up, Frequency Below 30MHz

(b) For Radiated Emission 30~1000MHz

3.2.4 TEST RESULTS

TEST RESULTS(9KHz~30MHz)

Note:

EUT:	Power Bank	Model Name. :	Micro30
Temperature:	24°C	Relative Humidity:	54%
Pressure:	1010hPa	Test Power :	DC 3.2V
Test Mode :	Mode 1	Polarization:	X

Frequency (MHz)	Ant.Pol.	Emission Level	Limits	Margin	Remark
		(dBuV/m)	(dBuV/m)	(dB)	
0.063	X	45.92	111.617	-65.70	Avg
0.079	X	46.59	109.652	-63.06	Avg
0.339	X	75.16	97.000	-21.84	Avg(fundamental frequency)
0.712	X	45.96	70.555	-24.59	QP
1.529	X	44.25	63.916	-19.67	QP
11.426	X	49.28	69.542	-20.26	QP

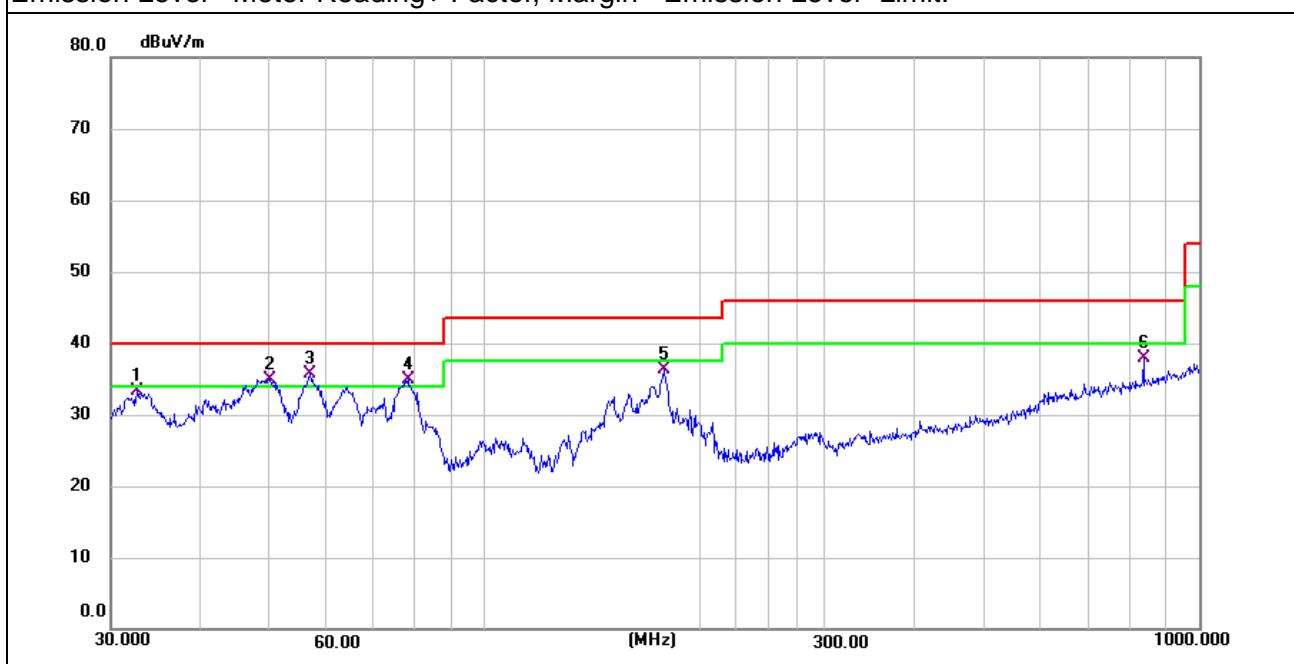
Note:

Below 30MHz, Pre-test the X, Y, Z axis to find X axis is worst case, so only record X axis test data.

X: Field strength which this device generates since the position of the charging coil and loop antenna differ by 0 degrees.

Y: Field strength which this device generates since the position of the charging coil and loop antenna differ by 90 degrees.

Z: Field strength which this device generates since the position of the charging coil and loop antenna differ by 180 degrees.

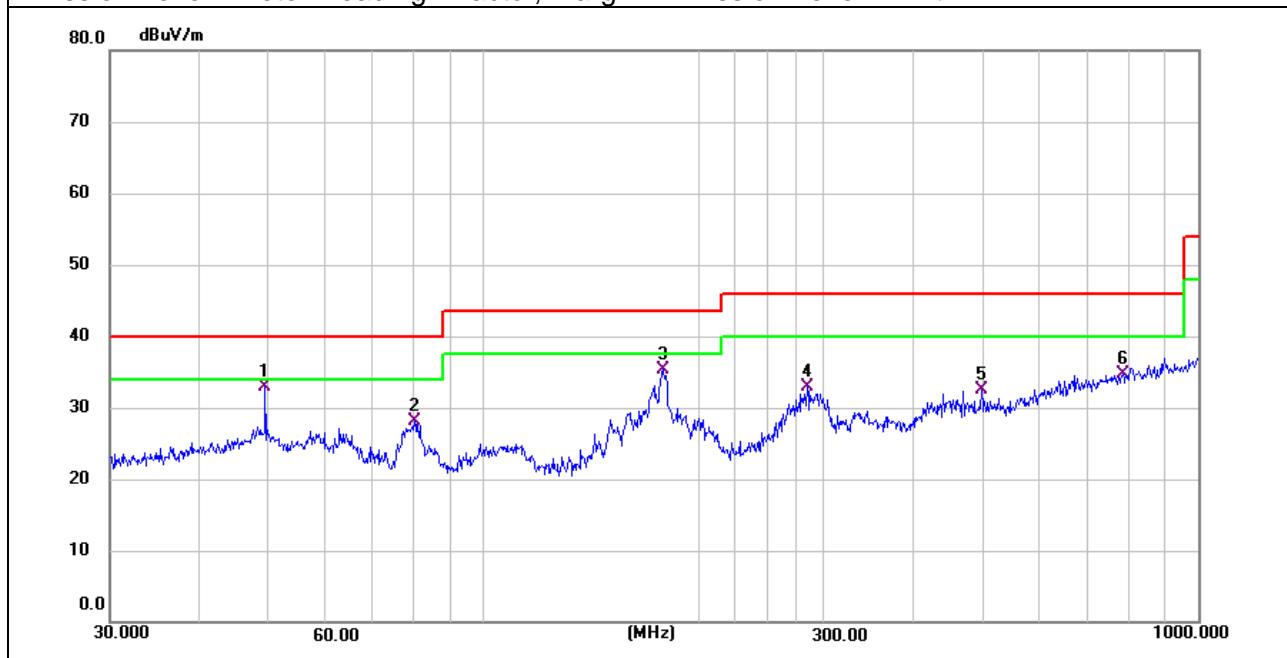

TEST RESULTS(30MHz ~1000MHz)

EUT:	Power Bank	Model Name. :	Micro30
Temperature:	25.6°C	Relative Humidity:	54%
Pressure:	1010hPa	Test Power :	DC 5V from Adapter AC 120V/60Hz
Test Mode :	Mode 1	Polarization:	Vertical

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	32.6340	15.27	18.01	33.28	40.00	-6.72	QP
V	50.0566	14.42	20.43	34.85	40.00	-5.15	QP
V	56.9912	16.09	19.67	35.76	40.00	-4.24	QP
V	78.1389	20.09	14.73	34.82	40.00	-5.18	QP
V	178.1327	19.78	16.49	36.27	43.50	-7.23	QP
V	836.2443	9.15	28.80	37.95	46.00	-8.05	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.

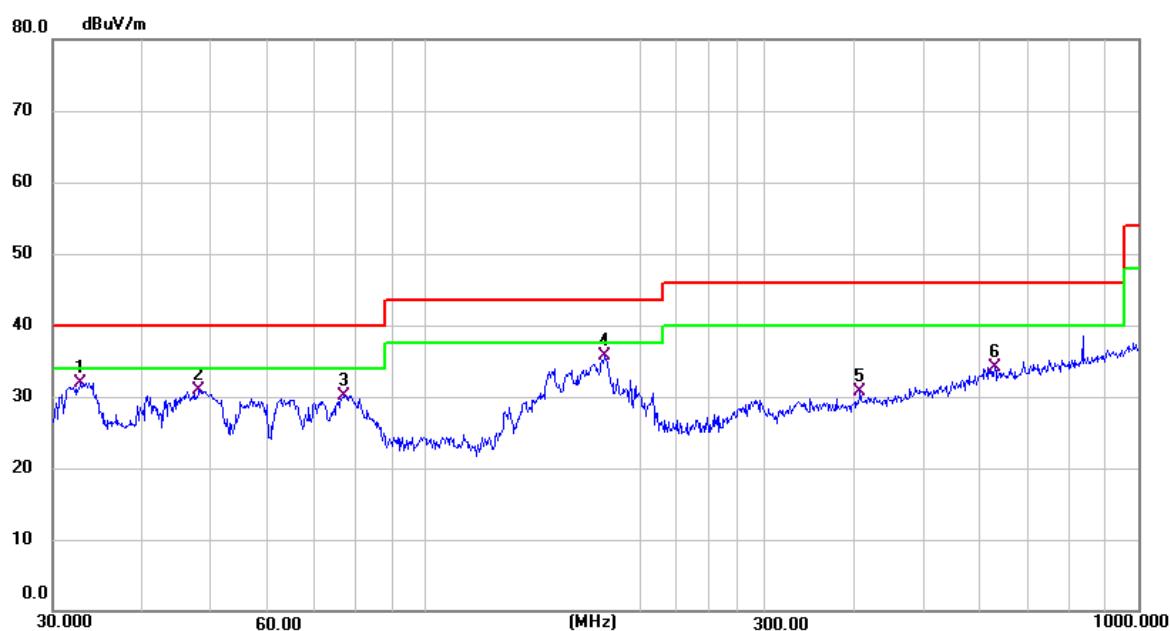


EUT:	Power Bank	Model Name. :	Micro30
Temperature:	25.6 °C	Relative Humidity:	54%
Pressure:	1010hPa	Test Power :	DC 5V from Adapter AC 120V/60Hz
Test Mode :	Mode 1	Polarization:	Horizontal

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
H	49.5328	12.37	20.49	32.86	40.00	-7.14	QP
H	80.0805	13.42	14.68	28.10	40.00	-11.90	QP
H	178.7584	18.62	16.61	35.23	43.50	-8.27	QP
H	283.9791	12.85	19.98	32.83	46.00	-13.17	QP
H	497.6765	8.53	23.93	32.46	46.00	-13.54	QP
H	785.0935	6.79	27.93	34.72	46.00	-11.28	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.



EUT:	Power Bank	Model Name. :	Micro30
Temperature:	25.6 °C	Relative Humidity:	54%
Pressure:	1010hPa	Test Power :	DC 3.2V
Test Mode :	Mode 2	Polarization:	Vertical

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	32.8635	13.84	18.04	31.88	40.00	-8.12	QP
V	48.1625	10.28	20.53	30.81	40.00	-9.19	QP
V	77.3210	15.36	14.82	30.18	40.00	-9.82	QP
V	178.1325	19.28	16.49	35.77	43.50	-7.73	QP
V	407.5144	8.21	22.47	30.68	46.00	-15.32	QP
V	629.4772	8.12	26.04	34.16	46.00	-11.84	QP

Remark:

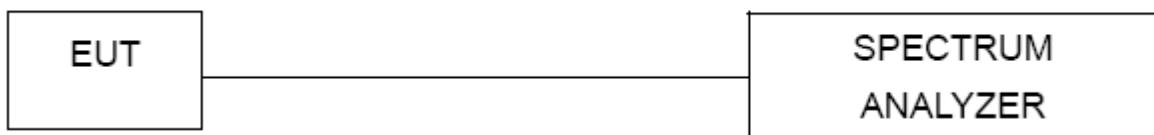
Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.

EUT:	Power Bank	Model Name. :	Micro30
Temperature:	25.6 °C	Relative Humidity:	54%
Pressure:	1010hPa	Test Power :	DC 3.2V
Test Mode :	Mode 2	Polarization:	Horizontal

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
H	49.5328	12.37	20.49	32.86	40.00	-7.14	QP
H	80.0805	13.42	14.68	28.10	40.00	-11.90	QP
H	178.7581	17.62	16.61	34.23	43.50	-9.27	QP
H	283.9791	12.85	19.98	32.83	46.00	-13.17	QP
H	440.1961	9.06	22.87	31.93	46.00	-14.07	QP
H	670.4891	6.85	26.61	33.46	46.00	-12.54	QP

Remark:

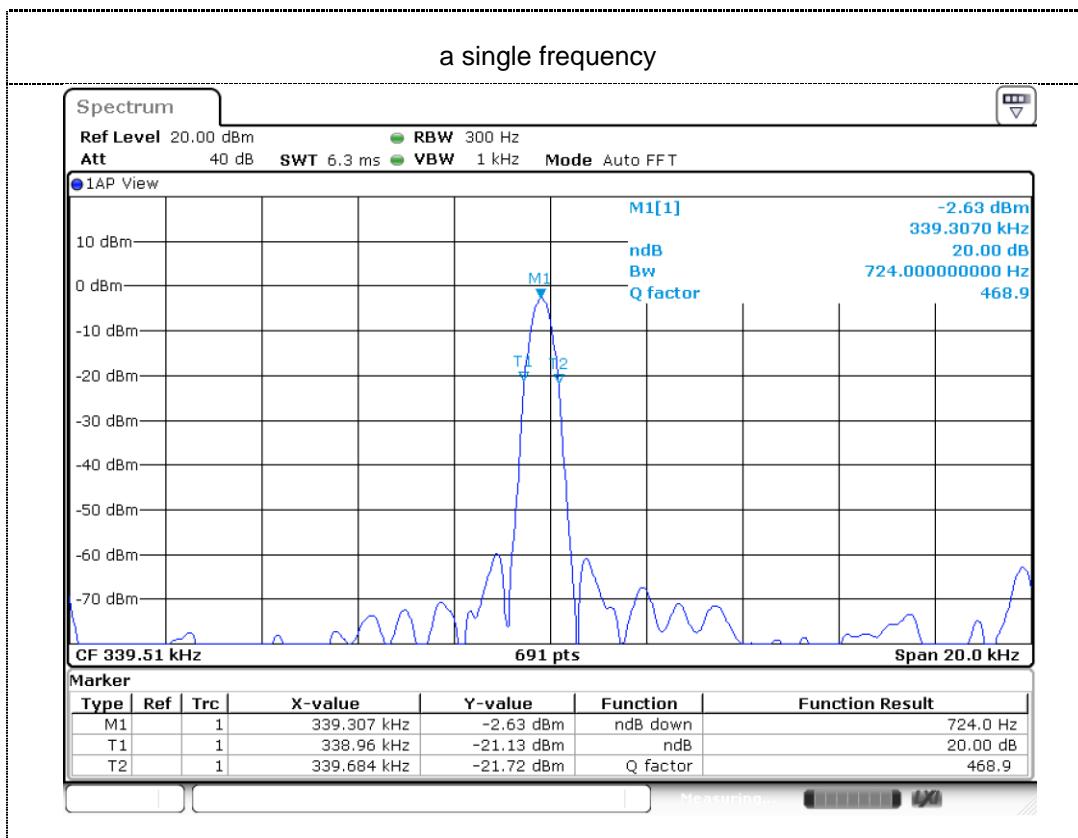
Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit.



4. BANDWIDTH TEST

4.1 TEST PROCEDURE

- 1). The transmitter output (antenna port) was connected to the spectrum analyzer in peak mode.
- 2). 20dB Bandwidth the resolution bandwidth of 300 Hz and the video bandwidth of 1 kHz were used.
- 3). Measured the spectrum width with power higher than 20dB below carrier.


4.2 TEST SETUP

4.3 TEST RESULT

EUT:	Power Bank	Model Name. :	Micro30
Temperature:	24°C	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode :	Mode 1
Test Power :	DC 5V		

-20dB Bandwidth-a single frequency(Hz)	F_L (kHz)	F_H (kHz)
724.0	338.96	339.684

5. ANTENNA APPLICATION

5.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2 Result

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END REPORT