

FCC/IC - TEST REPORT

Report Number	:	709502400827-00/	4	Date of Issue:	July 31, 2024
Model	<u>:</u>	YKV24SAED-DB-Z	z, YKV24S	AED-HB-Z	
Product Type	<u>:</u>	Tubular motor			
Applicant	<u>:</u>	Changzhou Yooksr	mart Innov	ation Co.,Ltd	
Address	<u>:</u>	1F, Building 6C, No	o. 8 Xihu F	Road Jintong Indo	ustrial Park,
		Changzhou, 21300	0, China		
Production Facility	:	Changzhou Yooksr	mart Innov	ation Co.,Ltd	
Address	<u>:</u>	1F, Building 6C, No	o. 8 Xihu F	Road Jintong Ind	ustrial Park,
		Changzhou, 21300	0, China		
Test Result	:	■ Positive	□ Negati	ve	
Total pages including Appendices	:	39			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Table of Contents

1	Ta	able of Contents	. 2							
2	D	etails about the Test Laboratory	. 3							
3	D	escription of the Equipment under Test	. 4							
4	S	Summary of Test Standards6								
5	S	ummary of Test Results	. 7							
6	G	eneral Remarks	. 8							
7	Te	est Setups	10							
8	S	ystems test configuration	13							
9	Te	echnical Requirement	14							
9	.1	Conducted Emission	14							
9	.2	Conducted peak output power	17							
9	.3	6dB bandwidth and 99% Occupied Bandwidth	19							
9	.4	Power spectral density	22							
9	.5	Spurious RF conducted emissions	24							
9	.6	Band edge	28							
9	.7	Spurious radiated emissions for transmitter	31							
10		Test Equipment List	36							
11		System Measurement Uncertainty	37							
12		Photographs of Test Set-ups	38							
13		Photographs of EUT	39							

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

No.16 Lane, 1951 Du Hui Road,

Shanghai 201108,

P.R. China

Telephone: +86 21 6141 0123

Fax: +86 21 6140 8600

FCC Registration

No.:

820234

FCC Designation

CN1183

Number:

ISED CAB

CN0101

identifier

IC Registration

31668

No.:

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product: Tubular motor

Model no.: YKV24SAED-DB-Z, YKV24SAED-HB-Z

PMN: YKV24SAED-DB-Z, YKV24SAED-HB-Z

HVIN: YKV24SAED-DB-Z, YKV24SAED-HB-Z

FCC ID: 2A9IA-24SAED

IC: 32635-24SAED

Options and accessories: NA

Rating: DC 12V

RF Transmission Frequency: 2405~2480 MHz for Thread

No. of Operated Channel: 16 for Zigbee

Modulation: 16-ary orthogonal modulation, O-QPSK PHY for Zigbee

Channel list for Thread:

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency				
11	2405 MHz	19	2445 MHz				
12	2410 MHz	20	2450 MHz				
13	2415 MHz	21	2455 MHz				
14	2420 MHz	22	2460 MHz				
15	2425 MHz	23	2465 MHz				
16	2430 MHz	24	2470 MHz				
17	2435 MHz	25	2475 MHz				
18	2440 MHz	26	2480 MHz				

Antenna Type: Ceramic Antenna

Antenna Gain: 1.3503 dBi

Description of the EUT: The Equipment Under Test (EUT) is a Tubular motor with

Zigbee function. We tested it and listed the worst data in this

report.

Test sample no.: SHA-803389-2 (Conducted sample),

SHA-803389-3 (Radiated sample)

EMC_SHA_F_R_02.10E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment, antenna gain or any information supplied.

4 Summary of Test Standards

Test Standards						
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES					
10-1-2023 Edition	Subpart C - Intentional Radiators					
RSS-Gen Issue 5 Amendment 2 February 2021	General Requirements for the Certification of Radio Apparatus					
RSS-247 Issue 3 August 2023	Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices					

All the test methods were according to KDB 558074 D01 15.247 Measurement Guidance v05r02 and ANSI C63.10-2013.

5 Summary of Test Results

Technical Requirements											
FCC Part 15 Sub	FCC Part 15 Subpart C & RSS-247 Issue 3/RSS-Gen Issue 5										
Test Condition				Test	Tes	st Result					
Test Condition			Pages	Site	Pass	Fail	N/A				
§15.207	RSS-GEN 8.8	Conducted emission AC power port 14-16 Site 1									
§15.247 (b) (3)	RSS-247 5.4(d)	Conducted peak output power	17-18	Site 1							
	RSS-247 5.4(d)	Equivalent Isotropic Radiated Power	17-18	Site 1							
§15.247(a)(1)	RSS-247 5.1(a) & RSS-Gen 6.7	20dB bandwidth and 99% Occupied Bandwidth									
§15.247(a)(1)	RSS-247 5.1(b)	Carrier frequency separation					\boxtimes				
§15.247(a)(1)(iii)	RSS-247 5.1(d)	Number of hopping frequencies					\boxtimes				
§15.247(a)(1)(iii)	RSS-247 5.1(d)	Dwell Time - Average Time of Occupancy									
§15.247(a)(2)	RSS-247 5.2(a) & RSS- GEN 6.7	6dB bandwidth and 99% Occupied Bandwidth	19-21	Site 1							
§15.247(e)	RSS-247 5.2(b)	Power spectral density	22-23	Site 1							
§15.247(e)	RSS-247 5.5	Spurious RF conducted emissions	24-27	Site 1							
§15.247(d)	RSS-247 5.5	Band edge	28-30	Site 1							
§15.247(d) & §15.209 & §15.205	RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	31-35	Site 1							
§15.203	RSS-Gen 6.8	Antenna requirement	See no	te 1							

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses a Line Antenna, which gain is 1.3503dBi. In accordance to §15.203 and RSS-Gen 6.8, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2A9IA-24SAED, IC: 32635-24SAED, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-247, RSS-GEN.

According to the client's declaration, the wireless components of both models are completely identical, with only slight differences in PCB and structural appearance. The differences mainly include:

- Number of Aluminum Body Apertures: The number of openings or holes in the aluminum body differs between the two models.
- Length of Aluminum Body: The aluminum body exhibits varying lengths across the two models.
- Structure of Driver Uint: The former features a dual motor dual output design, while the latter has a single motor dual output design.

So model YKV24SAED-DB-Z was chosen to perform all the tests. We listed the worst data in this report.

SUMMARY:

All tests	according	to the	regulations	cited	on page	5	were

■ - Performed	
□ - Not Performed	
The Equipment under Test	
■ - Fulfills the general approval	requirements.
☐ - Does not fulfill the general a	approval requirements.
Sample Received Date:	April 8, 2024
Testing Start Date:	July 1, 2024
Testing End Date:	July 27, 2024

-TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

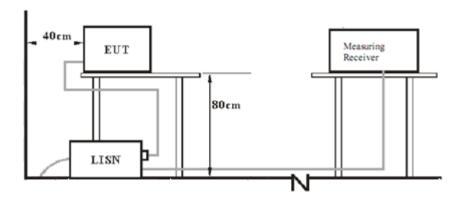
Reviewed by:

Prepared by:

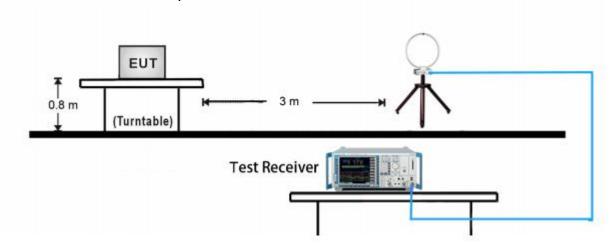
Tested by:

Tianji XU

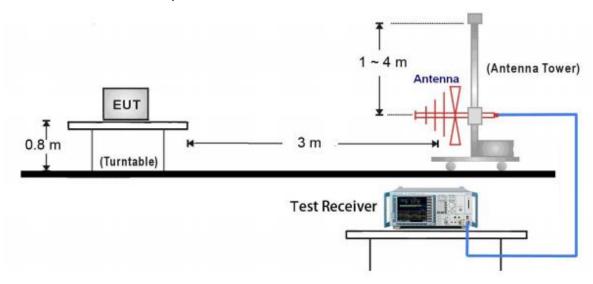
Hui TONG
EMC Section Manager


Wenqiang LU
EMC Project Engineer

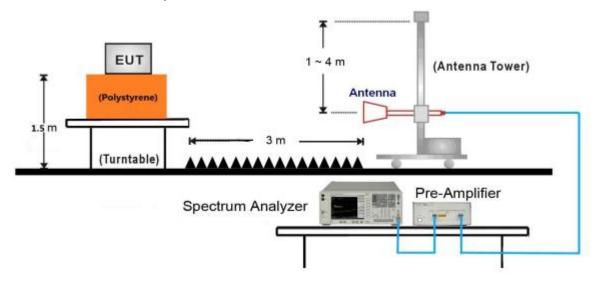
Tianji XU
EMC Test Engineer


7 Test Setups

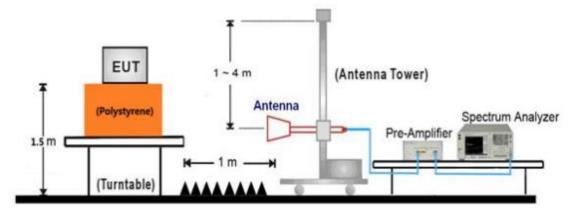
7.1 AC Power Line Conducted Emission test setups


7.2 Radiated test setups

9kHz ~ 30MHz Test Setup:



30MHz ~ 1GHz Test Setup:



1GHz ~ 18GHz Test Setup:

18GHz ~ 25GHz Test Setup:

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenove	X240	Notebook

Test software: SSCOM V5.13.1.exe

The system was configured to channel 11, 18, and 26 for the test.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

Test Mode Applicability and Tested Channel Detail:

Mode	Tested Channel	Data Rate (Mbps)	Modulation	Index Value (Power level setting)
Zigbee	11	1	16-ary orthogonal modulation, O- QPSK PHY	10
	18	1	16-ary orthogonal modulation, O- QPSK PHY	10
	26	1	16-ary orthogonal modulation, O- QPSK PHY	10

9 Technical Requirement

9.1 Conducted Emission

Test Method

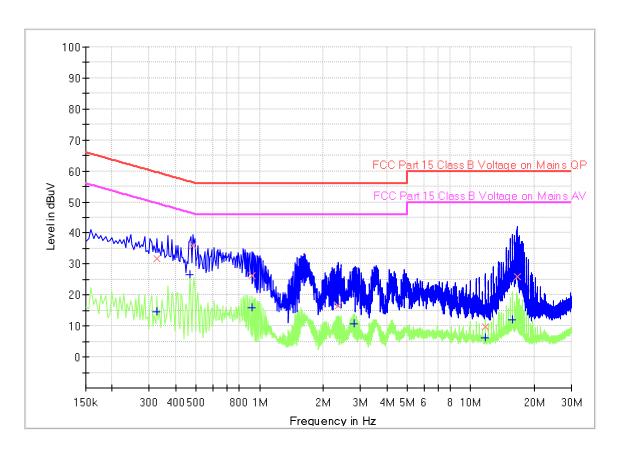
- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency	QP Limit	AV Limit	
MHz	dΒμV	dΒμV	
0.150-0.500	66-56*	56-46*	
0.500-5	56	46	
5-30	60	50	

Decreasing linearly with logarithm of the frequency



Product Type : Tubular motor M/N : YKV24SAED-DB-Z

Operating Condition : Mode 1: Tx_2440MHz (worst case)

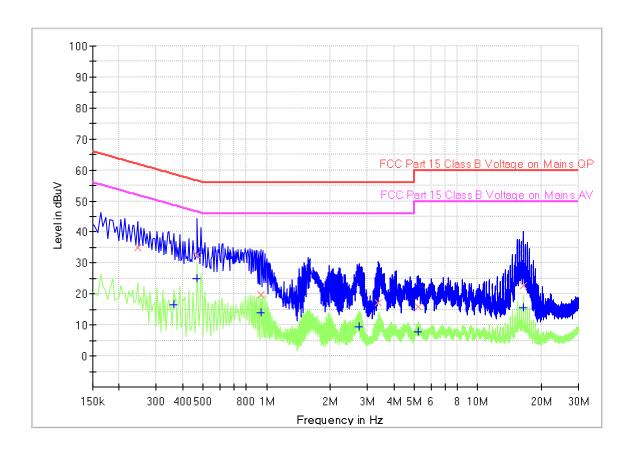
Test Specification : L-line (charging mode)

Comment : AC 120V/60Hz (powered by adaptor)

Final Result

Frequency	Quasi	CAverag	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	Peak	е	(dBuV)	(dB)	Time	(kHz)		(dB)
	(dBuV)	(dBuV)			(ms)			
0.325500		14.53	49.57	35.04	1000.0	9.000	L1	19.5
0.325500	31.80		59.57	27.77	1000.0	9.000	L1	19.5
0.469500		26.45	46.52	20.07	1000.0	9.000	L1	19.5
0.483000	35.80		56.29	20.49	1000.0	9.000	L1	19.4
0.915000	-	15.77	46.00	30.23	1000.0	9.000	L1	19.5
0.915000	26.22		56.00	29.78	1000.0	9.000	L1	19.5
2.346000	16.51		56.00	39.49	1000.0	9.000	L1	19.5
2.809500		10.75	46.00	35.25	1000.0	9.000	L1	19.5
11.742000	9.59		60.00	50.41	1000.0	9.000	L1	19.9
11.746500		6.07	50.00	43.93	1000.0	9.000	L1	19.9
15.801000		11.92	50.00	38.08	1000.0	9.000	L1	20.1
16.548000	26.06	-	60.00	33.94	1000.0	9.000	L1	20.2

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator



Product Type : Tubular motor M/N : YKV24SAED-DB-Z

Operating Condition : Mode 1: Tx_2440MHz (worst case)

Test Specification : N-line (charging mode)

Comment : AC 120V/60Hz (powered by adaptor)

Final Result

Frequency	Quasi	CAverag	Limit	Margin	Meas.	Bandwidth	Line	Corr.
•		· ·		•			Line	
(MHz)	Peak	е	(dBuV)	(dB)	Time	(kHz)		(dB)
	(dBuV)	(dBuV)			(ms)			
0.244500	34.86		61.94	27.08	1000.0	9.000	N	19.4
0.361500	I	16.66	48.69	32.03	1000.0	9.000	N	19.5
0.469500		24.81	46.52	21.71	1000.0	9.000	N	19.5
0.469500	32.71		56.52	23.81	1000.0	9.000	N	19.5
0.937500	I	14.09	46.00	31.91	1000.0	9.000	N	19.5
0.937500	19.79		56.00	36.21	1000.0	9.000	N	19.5
2.755500	-	9.43	46.00	36.57	1000.0	9.000	N	19.5
3.390000	17.24		56.00	38.76	1000.0	9.000	N	19.5
5.226000	15.83		60.00	44.17	1000.0	9.000	N	19.6
5.248500		7.67	50.00	42.33	1000.0	9.000	N	19.6
16.471500	I	15.65	50.00	34.35	1000.0	9.000	N	20.0
16.485000	22.72		60.00	37.28	1000.0	9.000	N	20.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (3) & RSS-247 5.4(d), conducted peak output power limit as below:

	Frequency Range	Limit	Limit
	MHz	W	dBm
Conducted peak output power	2400-2483.5	≤1	≤30
e.i.r.p.	2400-2483.5	≤4	≤36

Test result as below table

	Conducted Peak		
Frequency	Output Power	E.I.R.P	Result
MHz	dBm	dBm	
Low channel 2405MHz	7.31	8.6603	Pass
Middle channel 2440MHz	7.08	8.4303	Pass

9.3 6dB bandwidth and 99% Occupied Bandwidth

Test Method for 6 dB Bandwidth

- 1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: RBW=100KHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Use the automatic bandwidth measurement capability of an instrument, use the X dB bandwidth mode with X set to 6 dB.
- 5. Allow the trace to stabilize, record the 6 dB Bandwidth value.

Test Method for 99 % Bandwidth

- Connect EUT test port to spectrum analyzer.
 Use the following spectrum analyzer settings:
 RBW=1% to 5% of the actual occupied, VBW≥3RBW, Sweep = auto,
 Detector function = peak, Trace = max hold
- 2. Use the occupied bandwidth measurement capability of test receiver.
- 3. Allow the trace to stabilize, record the occupied bandwidth value.

Limit

 6dB bandwidth Limit [kHz]	99% bandwidth Limit [kHz]
≥500	

Test result

Frequency MHz	6dB bandwidth kHz	99% Bandwidth kHz	Result
Top channel 2402MHz	1648	2272	Pass
Middle channel 2440MHz	1831	2285	Pass
Bottom channel 2480MHz	1642	2258	Pass

9.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings:
- 4. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 5. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 6. Repeat above procedures until other frequencies measured were completed.

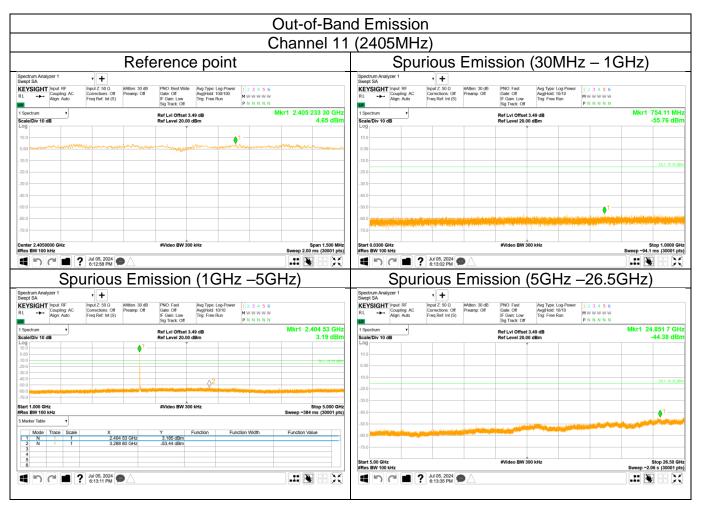
Limit

	Limit [dBm/3kHz]
-	≤8

Test result

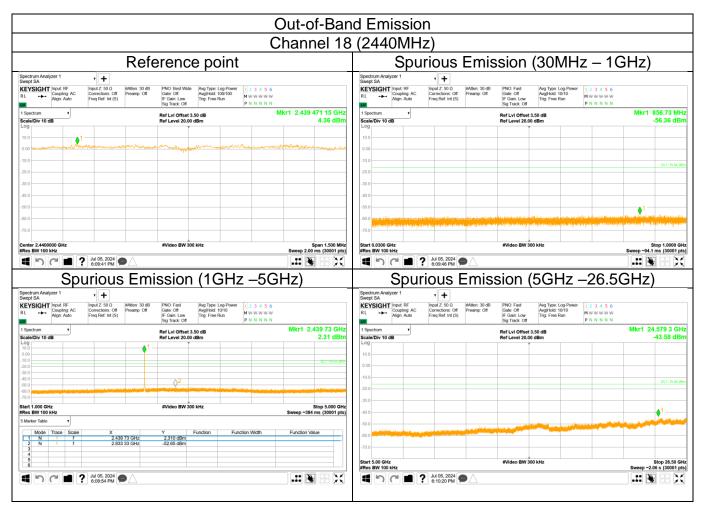
Frequency	Power spectral density	Result
MHz	dBm/3kHz	
Top channel 2405MHz	-8.07	Pass
Middle channel 2440MHz	-7.92	Pass
Bottom channel 2480MHz	-8.87	Pass

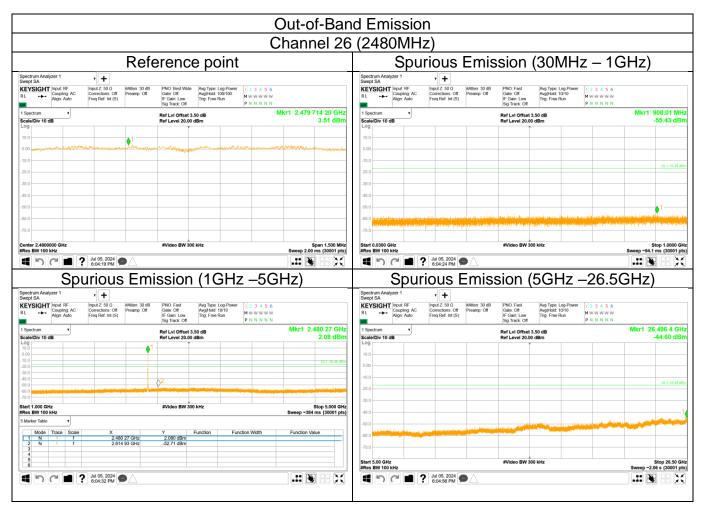
9.5 Spurious RF conducted emissions


Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 5. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 6. Repeat above procedures until all frequencies measured were complete.

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20


Note: The emission which exceed the limit is the fundamental.

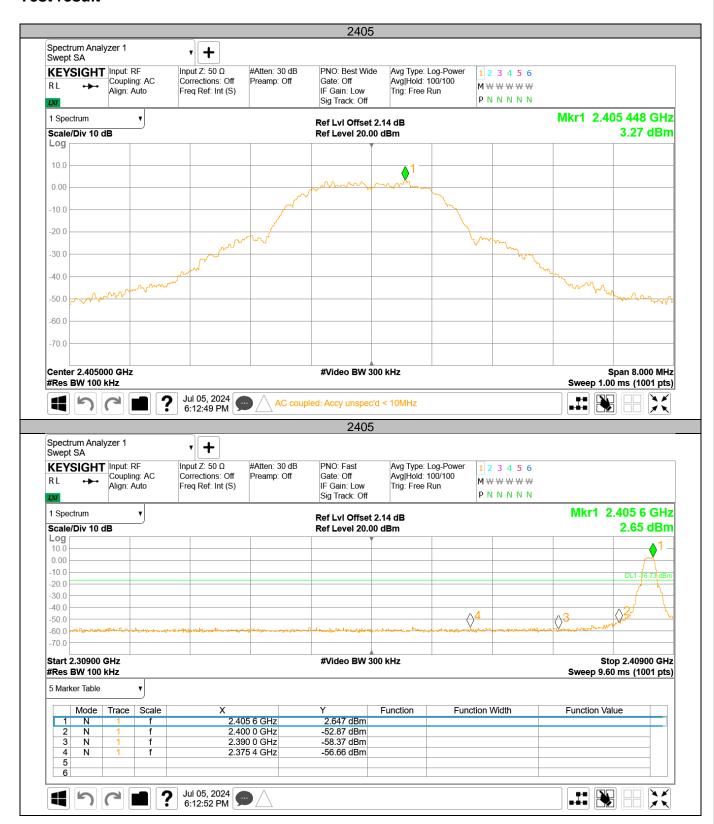
Note: The emission which exceed the limit is the fundamental.

Note: The emission which exceed the limit is the fundamental.

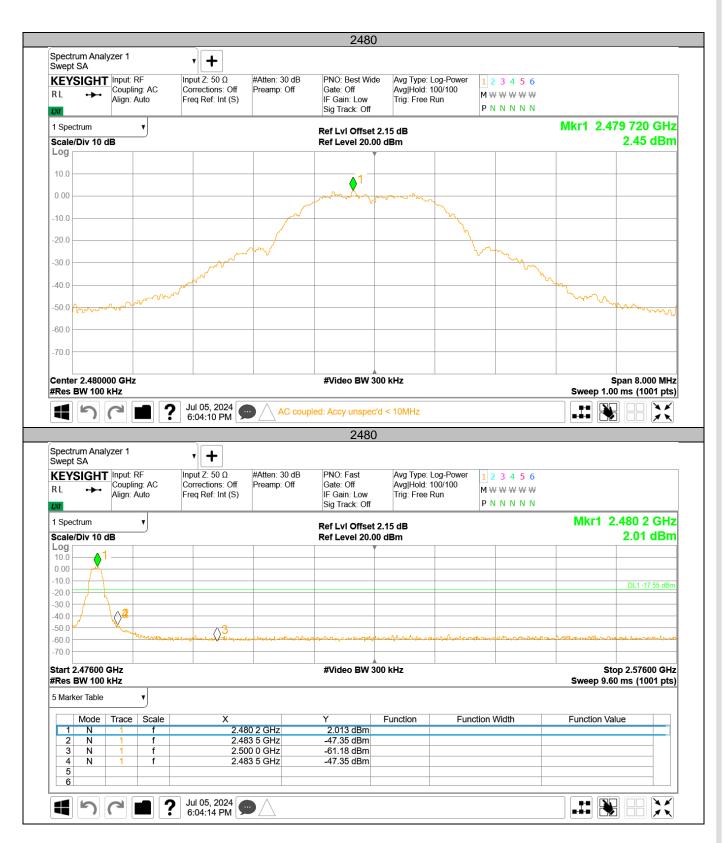
9.6 Band edge

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 5. The level displayed must comply with the limit specified in this Section.
- 6. Repeat above procedures until all frequencies measured were complete and submit all the plots.


Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3) and RSS-247 section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB.


Frequency Range MHz	Limit (dBc)
30-25000	-20

Test result

9.7 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10
 - 1) Procedure for Unwanted Emissions Measurements Below 1000 MHz Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.
 - 2) For Peak unwanted emissions Above 1GHz:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1GHz a) RBW = 1MHz.

- b) VBW \ $[3 \times RBW]$.
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission (AV) at frequency above 1GHz.

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3) and RSS 247 section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in § 15.209(a) and RSS-Gen is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a) and RSS-Gen section 8.9, must also comply with the radiated emission limits specified in § 15.209(a) and RSS-Gen section 8.10.

Frequency MHz	Field Strength μV/m	Field Strength dBµV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Limit $3m(dB\mu V/m)$ =Limit $300m(dB\mu V/m)$ +40Log(300m/3m) (Below 30MHz) Note 2: Limit $3m(dB\mu V/m)$ =Limit $30m(dB\mu V/m)$ +40Log(30m/3m) (Below 30MHz)

Spurious Radiated Emissions for Transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Data of measurement within frequency range 9kHz-30MHz is the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.

Above 1GHz Transmitting spurious emission test result as below:

2405MHz

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dΒμV/m	
2384.9	48.1	Horizontal	74	Peak	25.9	pass
4808.5	44.8	Horizontal	74	Peak	29.2	pass
2384.2	47.9	Vertical	74	Peak	26.1	pass
4811.1	44.3	Vertical	74	Peak	29.7	pass

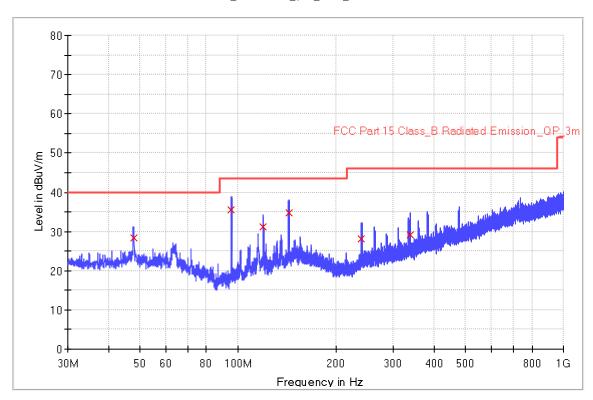
2440MHz

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dBµV/m	
4883.4	45.6	Horizontal	74	Peak	28.4	pass
4880.7	44.6	Vertical	74	Peak	29.4	pass

2480MHz

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBμV/m		dΒμV/m	
2484.3	50.2	Horizontal	74	Peak	23.8	pass
4965.7	46.5	Horizontal	74	Peak	27.5	pass
2484.2	50.4	Vertical	74	Peak	23.6	pass
4961.0	44.8	Vertical	74	Peak	29.2	pass

Remark:


- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
- (3) Margin = limit Corrected Reading

The worst case of Radiated Emission below 1GHz:

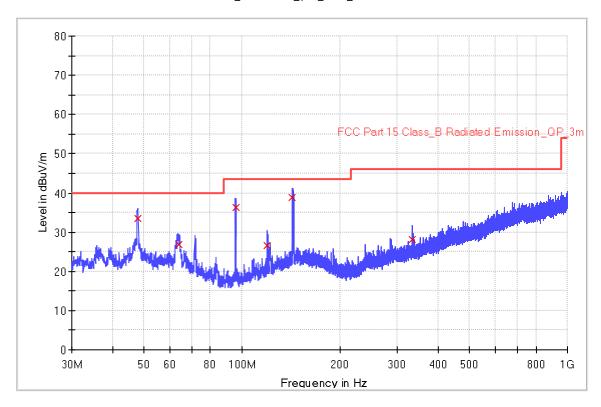
Site: 3 meter chamber	Time: 2024/07/01 - 12:31			
Limit: FCC_Part15.209 and RSS-GEN 8.8_RE(3m)	Engineer: Wenqiang LU			
Probe: VULB9168 Polarity: Horizontal				
UT: Tubular motor, Model no: YKV24SAED-DB-Z Power: 120VAC, 60Hz (Charging mode)				
Note: Transmit by at channel 2440MHz.				
Note: Pre-scan with three orthogonal axis and worst case as X axis.				

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

	J								
Frequency	QuasiPeak	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.	Margin -	Limit -
(MHz)	(dBuV/m)	Time	(kHz)	(cm)		(deg)	(dB)	QPK	QPK
		(ms)						(dB)	(dBuV/m)
47.800000	28.3	1000.0	120.000	150.0	Н	332.0	20.5	11.7	40.0
95.320000	35.6	1000.0	120.000	150.0	Н	152.0	15.5	7.9	43.5
119.160000	31.2	1000.0	120.000	150.0	Н	38.0	18.0	12.3	43.5
143.720000	34.7	1000.0	120.000	150.0	Н	257.0	20.6	8.8	43.5
238.400000	28.0	1000.0	120.000	150.0	Н	118.0	19.4	18.0	46.0
337.480000	29.2	1000.0	120.000	150.0	Н	328.0	22.6	16.8	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)


Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

Site: 3 meter chamber	Time: 2024/07/01 - 11:30			
Limit: FCC_Part15.209 and RSS-GEN 8.8_RE(3m)	Engineer: Wenqiang LU			
Probe: VULB9168	Polarity: Vertical			
UT: Tubular motor, Model no: YKV24SAED-DB-Z Power: 120VAC, 60Hz (Charging mode)				
Note: Transmit by at channel 2440MHz.				
Note: Pre-scan with three orthogonal axis and worst case as X axis.				

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

_	mm and	wai yiii								
	Frequency	QuasiPeak	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.	Margin -	Limit -
	(MHz)	(dBuV/m)	Time	(kHz)	(cm)		(deg)	(dB)	QPK	QPK
			(ms)						(dB)	(dBuV/m)
Ī	48.000000	33.5	1000.0	120.000	150.0	٧	250.0	20.5	6.5	40.0
	64.240000	26.8	1000.0	120.000	150.0	٧	22.0	19.5	13.2	40.0
	95.800000	36.3	1000.0	120.000	150.0	٧	336.0	15.6	7.2	43.5
	119.200000	26.7	1000.0	120.000	150.0	٧	315.0	18.0	16.8	43.5
	143.000000	38.8	1000.0	120.000	150.0	٧	291.0	20.6	4.7	43.5
	333.760000	28.1	1000.0	120.000	150.0	٧	167.0	22.6	17.9	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

10 Test Equipment List

List of Test Instruments Test Site1

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
С	Signal spectrum analyzer	Agilent	N9020B	MY59050168	2024-2-19	2025-2-18
	EMI Test Receiver	Rohde & Schwarz	ESR3	101906	2023-8-1	2024-7-31
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2023-8-1	2024-7-31
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2021-9-23	2024-9-22
RE	Double-ridged waveguide horn antenna	Rohde & Schwarz	HF907	102393	2021-4-13	2024-4-12
	Pre-amplifier	Shenzhen HzEMC	HPA- 081843	HYPA23026	2024-4-16	2025-4-15
	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2024-6-26	2025-6-25
	Double Ridged Horn Antenna	ETS-Lindgren	3116C	00246076	2023-7-7	2026-7-6
	3m Semi-anechoic chamber	TDK	9X6X6		2021-5-8	2024-5-7
CE	EMI Test Receiver	Rohde & Schwarz	ESR3	101907	2023-8-1	2024-7-31
CE	LISN	Rohde & Schwarz	ENV216	101924	2023-8-1	2024-7-31

Measurement Software Information					
Test Item	I SOTTWARE I WANTIACTURER I VERSION				
С	MTS 8310	MWRFtest	3.0.0.0		
RE	EMC 32	Rohde & Schwarz	V10.50.40		
CE	EMC 32	Rohde & Schwarz	V9.15.03		

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, 3.16dB
Radiated Disturbance	9kHz to 30MHz, 3.52dB
	30MHz to 1GHz, 5.03dB (Horizontal)
	5.12dB (Vertical)
	1GHz to 18GHz, 5.49dB
	18GHz to 40GHz, 5.63dB
RF Conducted Measurement	Power related: 1.16dB
	Frequency related: 6.00×10 ⁻⁸

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3.

12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

THE END