

FCC Part 15C Test Report

FCC ID: 2A9HV-BOC244

Applicant: JinXuan Electronics (Hong Kong) Company Limited

Address: ROOM 07 7/F PROSPER COMM BLDG 9 YIN CHONG STREET KL

Manufacturer: Jinxuan Electronics(Shenzhen) Co., Ltd

Address: Room 901, Block A, Phase I, Galaxy World, Longgang District, Shenzhen City, Guangdong Province, China

Product Name: Wireless Speaker

Trade Mark: **HORA**
BOC244
BOC244N, BOC244N-1, BOC244N-2, BOC244R, BOC244R-1, BOC244-UK, BOC244N-UK, BOC244R-UK, BOC244-EU, BOC244N-EU, BOC244R-EU, BOC244-US, BOC244N-US, BOC244R-US, BOC244-KR, BOC244N-KR, BOC244R-KR, BOC244-E, BOC244N-E, BOC244R-E

Date of Receipt: Jun. 24, 2025

Test Date: Jun. 24, 2025 – Jul. 03, 2025

Date of Report: Jul. 03, 2025

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China

Applicable Standards: FCC PART 15 C 15.247
ANSI C63.10:2013

Test Result: Pass

Report Number: DLE-250624035R

Prepared (Test Engineer): Alisa Song

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	4
1.1 MEASUREMENT UNCERTAINTY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 DESCRIPTION OF TEST MODES	6
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	6
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	7
2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	7
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	8
3 . EMC EMISSION TEST	9
3.1 CONDUCTED EMISSION MEASUREMENT	9
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	9
3.1.2 TEST PROCEDURE	9
3.1.3 DEVIATION FROM TEST STANDARD	9
3.1.4 TEST SETUP	10
3.1.5 EUT OPERATING CONDITIONS	10
3.1.6 TEST RESULTS	11
3.2 RADIATED EMISSION MEASUREMENT	13
3.2.1 RADIATED EMISSION LIMITS	13
3.2.2 TEST PROCEDURE	14
3.2.3 DEVIATION FROM TEST STANDARD	14
3.2.4 TEST SETUP	14
3.2.5 EUT OPERATING CONDITIONS	15
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	16
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	17
3.2.8 TEST RESULTS (1GHZ~25GHZ)	19
3.3 RADIATED BAND EMISSION MEASUREMENT	21
3.3.1 TEST REQUIREMENT:	21
3.3.2 TEST PROCEDURE	21
3.3.3 DEVIATION FROM TEST STANDARD	21
3.3.4 TEST SETUP	22
3.3.5 EUT OPERATING CONDITIONS	22
4 . PEAK OUTPUT POWER	31
4.1 APPLIED PROCEDURES / LIMIT	31
4.1.1 TEST PROCEDURE	31
4.1.2 DEVIATION FROM STANDARD	31
4.1.3 TEST SETUP	31

Table of Contents	Page
4.1.4 EUT OPERATION CONDITIONS	31
4.1.5 TEST RESULTS	32
5 . NUMBER OF HOPPING CHANNEL	34
5.1 APPLIED PROCEDURES / LIMIT	34
5.1.1 TEST PROCEDURE	34
5.1.2 DEVIATION FROM STANDARD	34
5.1.3 TEST SETUP	34
5.1.4 EUT OPERATION CONDITIONS	34
5.1.5 TEST RESULTS	34
6 . BANDWIDTH TEST	36
6.1 APPLIED PROCEDURES / LIMIT	36
6.1.1 TEST PROCEDURE	36
6.1.2 DEVIATION FROM STANDARD	36
6.1.3 TEST SETUP	36
6.1.4 EUT OPERATION CONDITIONS	36
6.1.5 TEST RESULTS	37
7 . HOPPING CHANNEL SEPARATION MEASUREMENT	39
7.1 APPLIED PROCEDURES / LIMIT	39
7.1.1 TEST PROCEDURE	39
7.1.2 DEVIATION FROM STANDARD	39
7.1.3 TEST SETUP	39
7.1.4 EUT OPERATION CONDITIONS	39
7.1.5 TEST RESULTS	39
8 . DWELL TIME OF OCCUPANCY	41
8.1 APPLIED PROCEDURES / LIMIT	41
8.1.1 TEST PROCEDURE	41
8.1.2 DEVIATION FROM STANDARD	41
8.1.3 TEST SETUP	41
8.1.4 EUT OPERATION CONDITIONS	41
8.1.5 TEST RESULTS	42
9 . ANTENNA REQUIREMENT	44
9.1 STANDARD REQUIREMENT	44
9.2 EUT ANTENNA	44
10 . TEST SEUUP PHOTO	44
11 . EUT PHOTO	44

1.. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(c)	Radiated Spurious Emission	PASS	
15.205	Band Edge Emission	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$ providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	$\pm 2.56\text{dB}$
2	RF power,conducted	$\pm 0.42\text{dB}$
3	Spurious emissions,conducted	$\pm 2.76\text{dB}$
4	All emissions,radiated(<1G)	$\pm 3.65\text{dB}$
5	All emissions,radiated(>1G)	$\pm 4.89\text{dB}$
6	Temperature	$\pm 0.5^\circ\text{C}$
7	Humidity	$\pm 2\%$
8	20dB Bandwidth	$\pm 0.2\text{MHz}$

2.. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Product Name:	Wireless Speaker
Trade Mark:	1MORA
Model Number:	BOC244 BOC244N, BOC244N-1, BOC244N-2, BOC244R, BOC244R-1, BOC244-UK, BOC244N-UK, BOC244R-UK, BOC244-EU, BOC244N-EU, BOC244R-EU, BOC244-US, BOC244N-US, BOC244R-US, BOC244-KR, BOC244N-KR, BOC244R-KR, BOC244-E, BOC244N-E, BOC244R-E
Model Difference	All models are same as the samples except model name and appearance color, they have the same structure and circuit.
Operation Frequency:	2402~2480MHz
Channel numbers:	79 Channels
Channel separation:	1MHz
Modulation technology:	GFSK, $\pi/4$ DQPSK
Antenna Type:	Internal Antenna
Antenna gain:	-0.58dBi
Power supply:	DC 5V from adapter DC 3.7V from battery

Note:

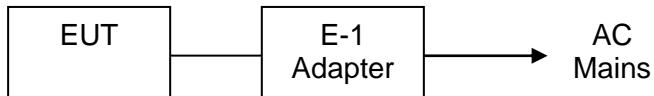
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
2. The EUT's all information provided by client.

2.

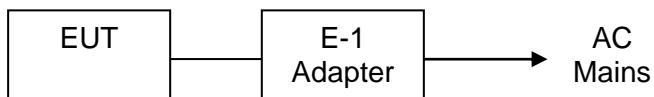
Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
~	~	~	~	~	~
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2441	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
~	~	~	~	~	~
14	2416	41	2443	68	2470
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

2.2. DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


Pretest Mode	Modulation	Channel
Mode 1	GFSK	CH00
Mode 2		CH39
Mode 3		CH78
Mode 4	PI/4 DQPSK	CH00
Mode 5		CH39
Mode 6		CH78

Note: (1) The measurements are performed at the highest, middle, lowest available channels.


(2) For the two items of conducted disturbance at the power supply end and space radiation below 1GHz, all modes have undergone pre-tests. The report only shows the worst test results of mode 4.

2.3. BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Power Line Conducted Emission Test

2.4. DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Adapter	HW-0501000E	N/A	Adapter (Provide by test lab): Manufacturer: HAIWEI Model: HW-0501000E I/P: AC 100-240V 50/60Hz O/P: DC 5V 1A

Item	Shielded Type	Ferrite Core	Length	Note

Note:

(1) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

2.5. TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

Test software Version	Test program: FCC_assist_1.0.2.2		
Frequency	2402 MHz	2441 MHz	2480 MHz
Power Setting of Softwave	10	10	10

2.6. EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 01, 2024	Oct. 31, 2025
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 01, 2024	Oct. 31, 2025
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 02, 2024	Nov. 01, 2025
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 02, 2024	Nov. 01, 2025
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 01, 2024	Oct. 31, 2025
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 01, 2024	Oct. 31, 2025
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 01, 2024	Oct. 31, 2025
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 01, 2024	Oct. 31, 2025
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 01, 2024	Oct. 31, 2025
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 01, 2024	Oct. 31, 2025
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 01, 2024	Oct. 31, 2025
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 01, 2024	Oct. 31, 2025
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 01, 2024	Oct. 31, 2025
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 01, 2024	Oct. 31, 2025
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 01, 2024	Oct. 31, 2025
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 01, 2024	Oct. 31, 2025

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	843 Shielded Room	YIHENG	843 Room	843	Nov. 05, 2023	Nov. 04, 2026
2	EMI Receiver	R&S	ESR	101421	Nov. 01, 2024	Oct. 31, 2025
3	LISN	R&S	ENV216	102417	Nov. 01, 2024	Oct. 31, 2025
4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 01, 2024	Oct. 31, 2025

Other

Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

3.. EMC EMISSION TEST

3.1. CONDUCTED EMISSION MEASUREMENT

3.1.1. POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

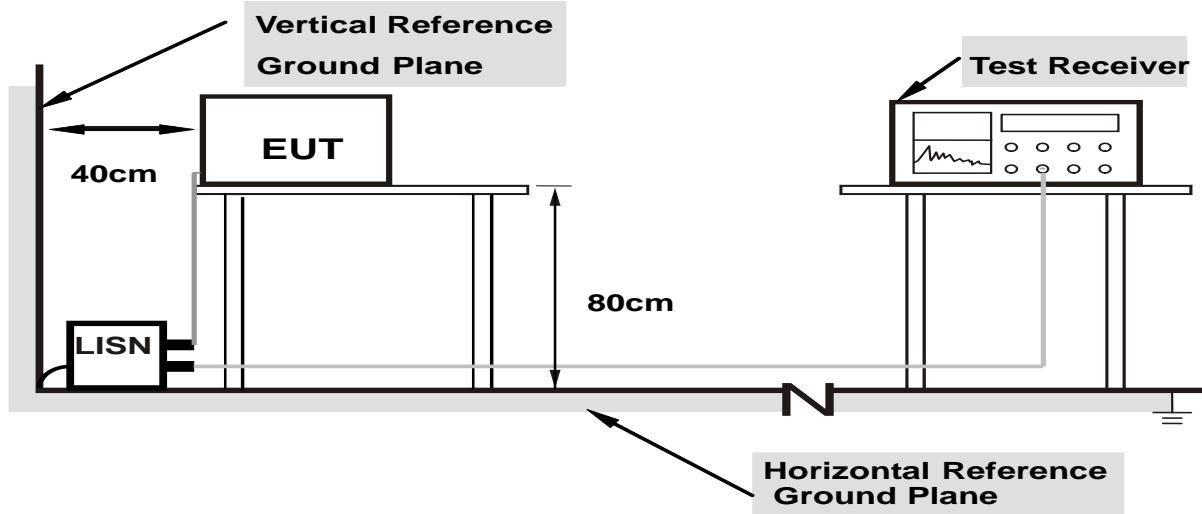
FREQUENCY (MHz)	Limit (dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.1.2. TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3. DEVIATION FROM TEST STANDARD

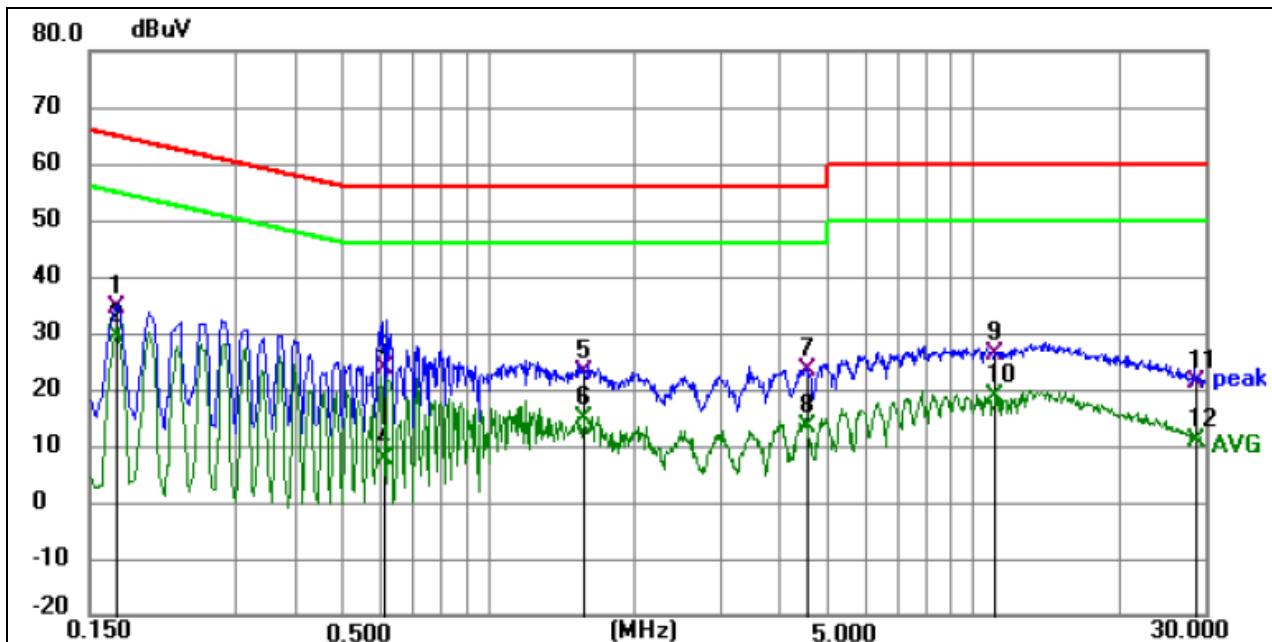
No deviation

3.1.4. TEST SETUP

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

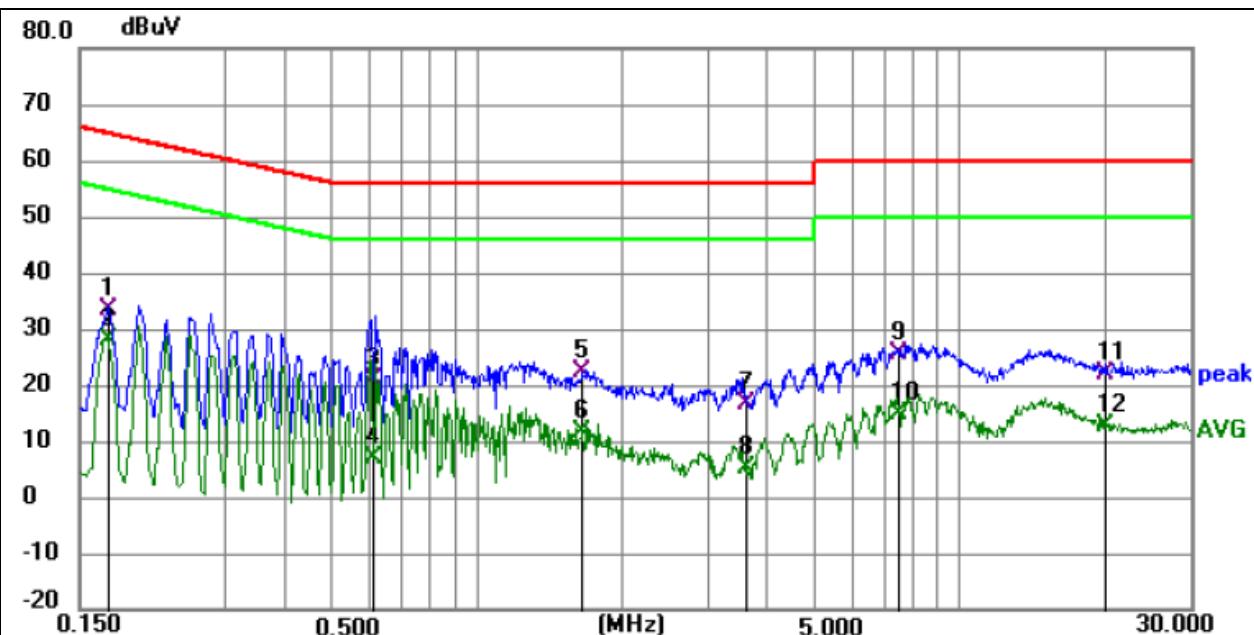
3.1.5. EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

3.1.6. TEST RESULTS

Temperature:	25 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4


Remark:

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1712	24.60	10.03	34.63	64.90	-30.27	QP	P	
2 *	0.1712	19.51	10.03	29.54	54.90	-25.36	AVG	P	
3	0.6090	13.70	10.13	23.83	56.00	-32.17	QP	P	
4	0.6090	-2.47	10.13	7.66	46.00	-38.34	AVG	P	
5	1.5809	12.85	10.06	22.91	56.00	-33.09	QP	P	
6	1.5809	4.65	10.06	14.71	46.00	-31.29	AVG	P	
7	4.5329	13.06	10.30	23.36	56.00	-32.64	QP	P	
8	4.5329	3.10	10.30	13.40	46.00	-32.60	AVG	P	
9	11.0985	14.93	11.34	26.27	60.00	-33.73	QP	P	
10	11.0985	7.33	11.34	18.67	50.00	-31.33	AVG	P	
11	28.8420	8.11	13.22	21.33	60.00	-38.67	QP	P	
12	28.8420	-2.24	13.22	10.98	50.00	-39.02	AVG	P	

Temperature:	25 °C	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 4

Remark:

Margin = Limit – Level, Correct Factor = Cable loss + LISN insertion loss, Level= Reading + Correct factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1722	23.11	10.15	33.26	64.85	-31.59	QP	P	
2 *	0.1722	17.85	10.15	28.00	54.85	-26.85	AVG	P	
3	0.6090	10.73	10.16	20.89	56.00	-35.11	QP	P	
4	0.6090	-3.11	10.16	7.05	46.00	-38.95	AVG	P	
5	1.6620	12.43	10.07	22.50	56.00	-33.50	QP	P	
6	1.6620	1.41	10.07	11.48	46.00	-34.52	AVG	P	
7	3.6375	6.51	10.11	16.62	56.00	-39.38	QP	P	
8	3.6375	-4.82	10.11	5.29	46.00	-40.71	AVG	P	
9	7.4895	14.80	10.80	25.60	60.00	-34.40	QP	P	
10	7.4895	4.01	10.80	14.81	50.00	-35.19	AVG	P	
11	20.1525	10.18	11.94	22.12	60.00	-37.88	QP	P	
12	20.1525	0.79	11.94	12.73	50.00	-37.27	AVG	P	

3.2. RADIATED EMISSION MEASUREMENT

3.2.1. RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	25GHz
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2. TEST PROCEDURE

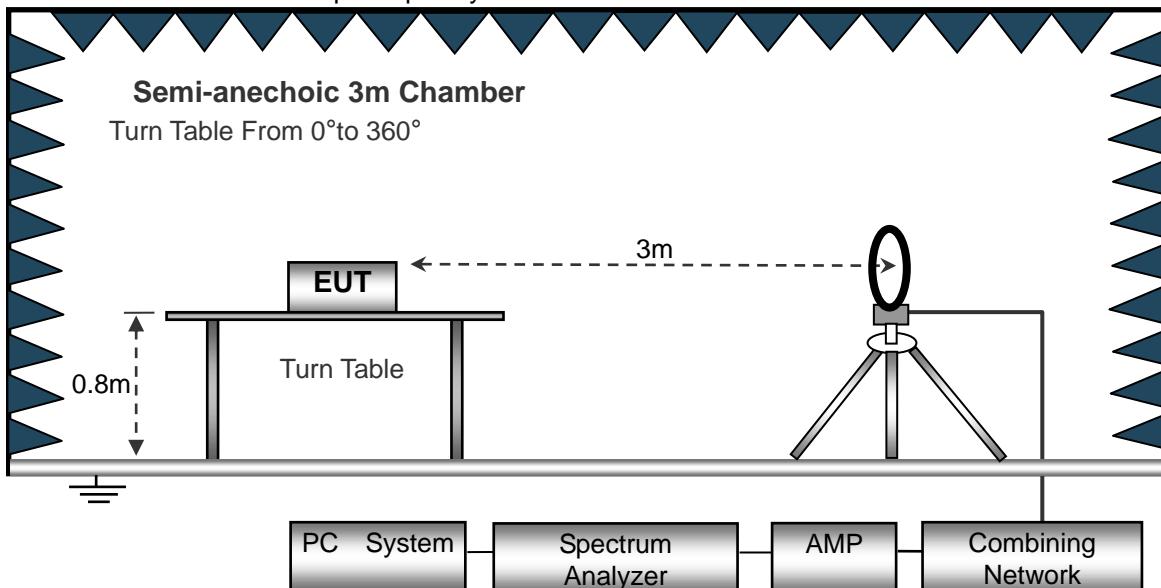
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

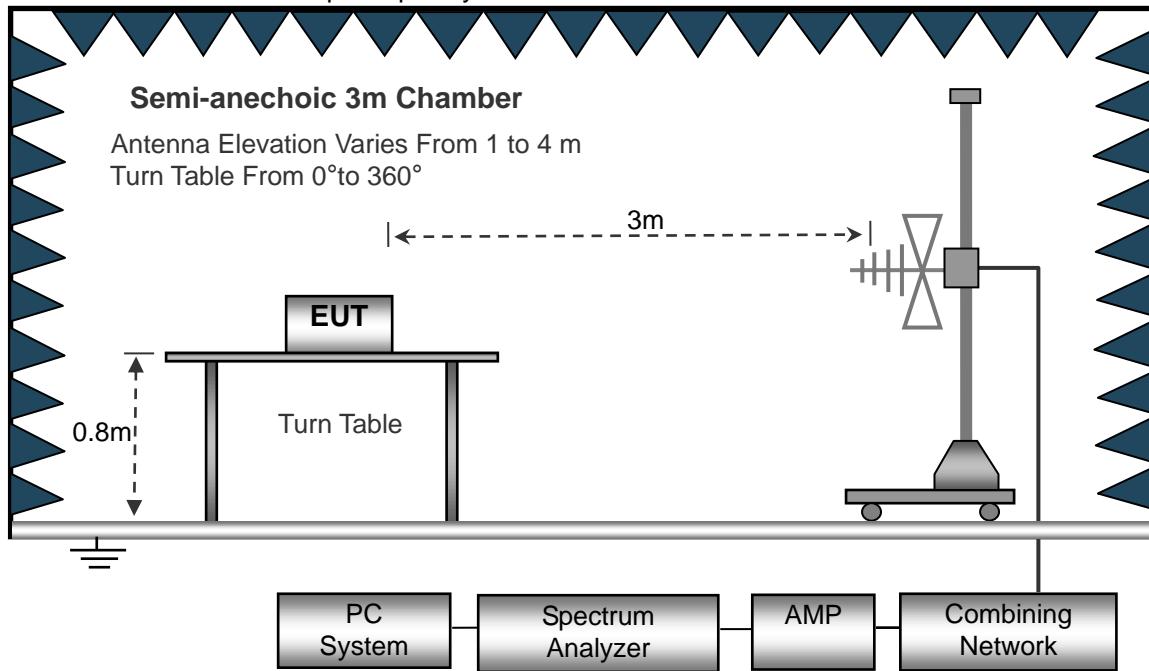
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber (Above 18GHz the distance is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

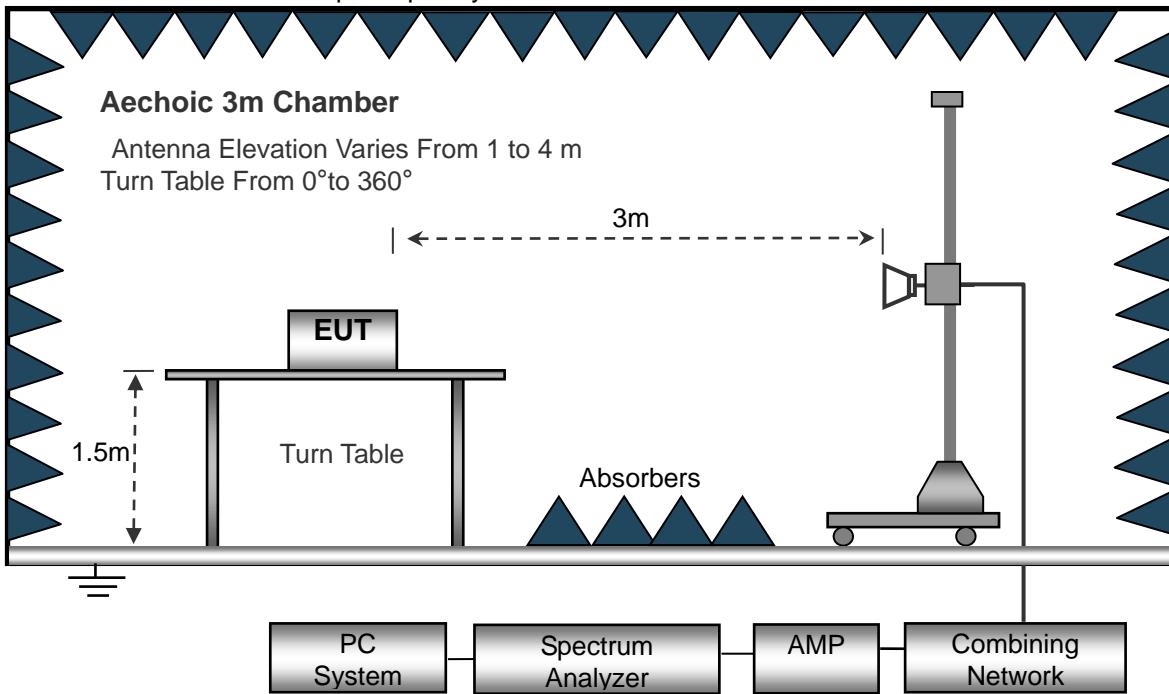
Note:


The horizontal and vertical polarities of the antenna were tested, and a pre-test was conducted on the EUT placement as three orthogonal axes X,Y,Z. The worst display of the test results was the Y-axis. The worst case emissions were reported.

3.2.3. DEVIATION FROM TEST STANDARD


No deviation

3.2.4. TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5. EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

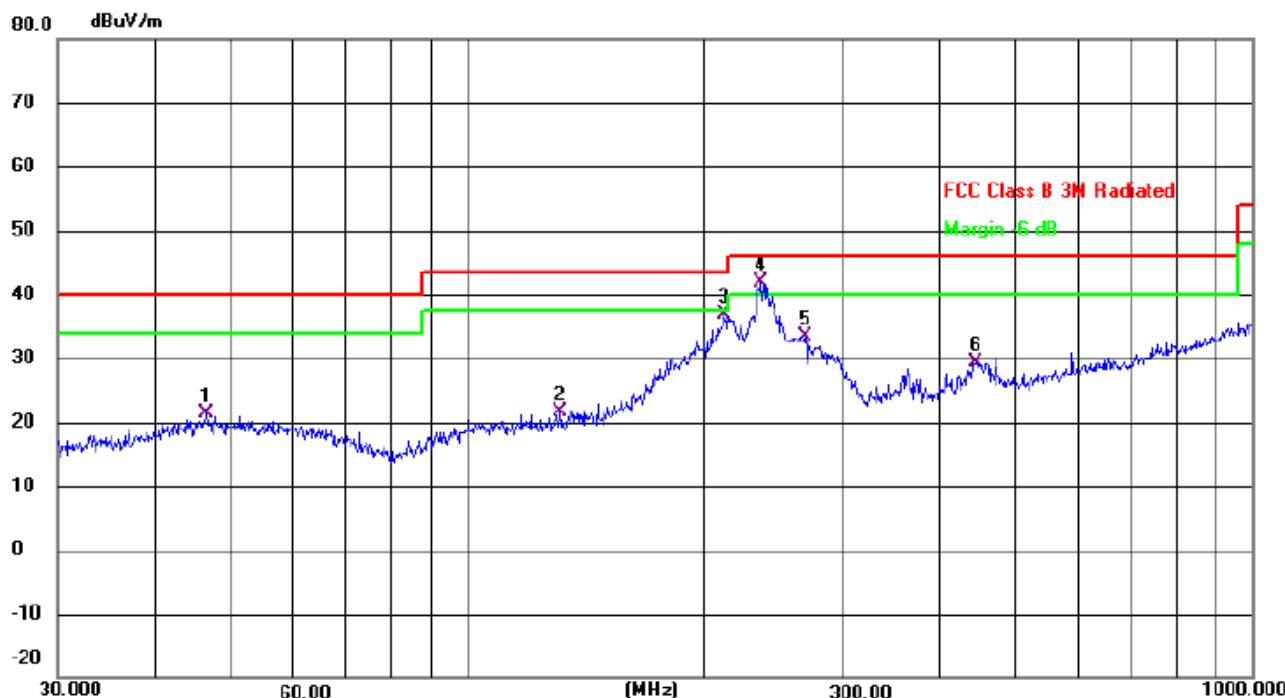
3.2.6. TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)

Temperature:	20°C	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 4	Polarization :	--

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
--	--	--	--	PASS
--	--	--	--	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

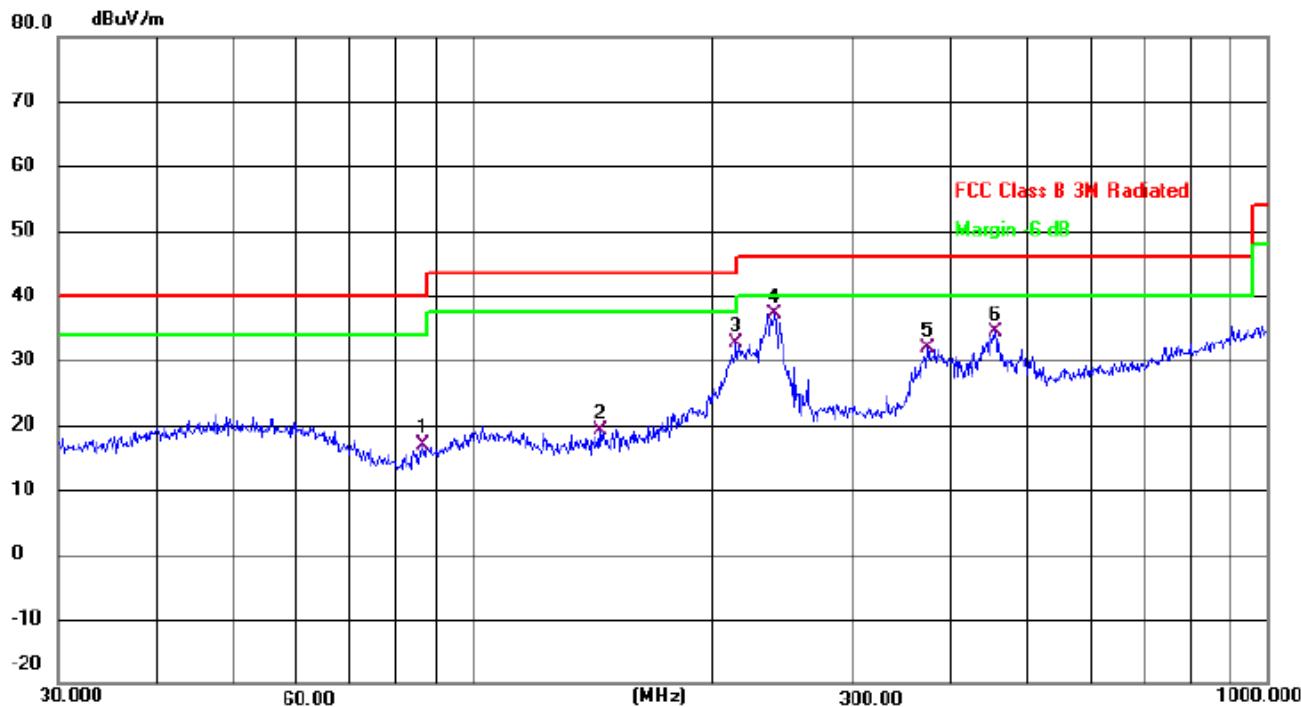

Distance extrapolation factor = $40 \log (\text{specific distance}/\text{test distance})$ (dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7. TEST RESULTS (BETWEEN 30MHZ – 1GHZ)

Temperature:	26°C	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Horizontal
Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 4		

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin
			Level	Factor	ment		
		MHz	dBuV	dB	dBuV/m	dB/m	dB
1		46.5030	27.97	-6.49	21.48	40.00	-18.52
2		131.2965	33.68	-12.07	21.61	43.50	-21.89
3		212.2693	45.22	-8.37	36.85	43.50	-6.65
4	*	236.6447	49.44	-7.68	41.76	46.00	-4.24
5		269.4282	39.85	-6.52	33.33	46.00	-12.67
6		443.2941	31.94	-2.45	29.49	46.00	-16.51


Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

Temperature:	26°C	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 4		

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dB/m	Margin dB	Detector
1		86.5029	28.47	-11.70	16.77	40.00	-23.23	QP
2		144.3348	31.80	-12.75	19.05	43.50	-24.45	QP
3		214.5143	40.80	-8.23	32.57	43.50	-10.93	QP
4	*	239.1473	44.82	-7.66	37.16	46.00	-8.84	QP
5		373.3112	36.35	-4.55	31.80	46.00	-14.20	QP
6		454.3100	36.39	-1.95	34.44	46.00	-11.56	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

3.2.8. TEST RESULTS (1GHZ~25GHZ)

GFSK

Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	Pre-amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Detector Type
operation frequency:2402									
V	4804.00	67.25	50.65	6.88	31.29	54.77	74	-19.23	PK
V	4804.00	55.89	50.65	6.88	31.29	43.41	54	-10.59	AV
V	7206.00	66.65	49.98	7.16	36.63	60.46	74	-13.54	PK
V	7206.00	46.51	49.98	7.16	36.63	40.32	54	-13.68	AV
V	16132.00	48.68	51.53	11.34	41.52	50.01	74	-23.99	PK
H	4804.00	66.63	50.65	6.88	31.29	54.15	74	-19.85	PK
H	4804.00	55.35	50.65	6.88	31.29	42.87	54	-11.13	AV
H	7206.00	69.21	49.98	7.16	36.63	63.02	74	-10.98	PK
H	7206.00	45.96	49.98	7.16	36.63	39.77	54	-14.23	AV
H	16132.00	48.84	51.53	11.34	41.52	50.17	74	-23.83	PK
operation frequency:2441									
V	4882.00	67.85	50.67	6.89	31.38	55.45	74	-18.55	PK
V	4882.00	55.26	50.67	6.89	31.38	42.86	54	-11.14	AV
V	7323.00	69.54	50.02	7.24	36.63	63.39	74	-10.61	PK
V	7323.00	46.88	50.02	7.24	36.63	40.73	54	-13.27	AV
V	16132.00	48.63	51.53	11.34	41.52	49.96	74	-24.04	PK
H	4882.00	66.35	50.67	6.89	31.38	53.95	74	-20.05	PK
H	4882.00	55.21	50.67	6.89	31.38	42.81	54	-11.19	AV
H	7323.00	69.56	50.02	7.24	36.63	63.41	74	-10.59	PK
H	7323.00	47.28	50.02	7.24	36.63	41.13	54	-12.87	AV
H	16132.00	48.32	51.53	11.34	41.52	49.65	74	-24.35	PK
operation frequency:2480									
V	4960.00	67.39	50.67	6.89	31.38	54.99	74	-19.01	PK
V	4960.00	55.85	50.67	6.89	31.38	43.45	54	-10.55	AV
V	7440.00	69.68	50.02	7.24	36.63	63.53	74	-10.47	PK
V	7440.00	46.54	50.02	7.24	36.63	40.39	54	-13.61	AV
V	16132.00	48.31	51.53	11.34	41.52	49.64	74	-24.36	PK
H	4960.00	66.16	50.67	6.89	31.38	53.76	74	-20.24	PK
H	4960.00	55.68	50.67	6.89	31.38	43.28	54	-10.72	AV
H	7440.00	69.84	50.02	7.24	36.63	63.69	74	-10.31	PK
H	7440.00	47.13	50.02	7.24	36.63	40.98	54	-13.02	AV
H	16132.00	48.21	51.53	11.34	41.52	49.54	74	-24.46	PK

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,
Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

 $\pi/4$ DQPSK

Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	Pre-amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Detector Type
operation frequency:2402									
V	4804.00	67.23	50.65	6.88	31.29	54.75	74	-19.25	PK
V	4804.00	55.58	50.65	6.88	31.29	43.1	54	-10.9	AV
V	7206.00	66.55	49.98	7.16	36.63	60.36	74	-13.64	PK
V	7206.00	46.36	49.98	7.16	36.63	40.17	54	-13.83	AV
V	16132.00	49.87	51.53	11.34	41.52	51.2	74	-22.8	PK
H	4804.00	69.52	50.65	6.88	31.29	57.04	74	-16.96	PK
H	4804.00	52.36	50.65	6.88	31.29	39.88	54	-14.12	AV
H	7206.00	66.41	49.98	7.16	36.63	60.22	74	-13.78	PK
H	7206.00	47.85	49.98	7.16	36.63	41.66	54	-12.34	AV
H	16132.00	47.56	51.53	11.34	41.52	48.89	74	-25.11	PK
operation frequency:2441									
V	4882.00	67.14	50.67	6.89	31.38	54.74	74	-19.26	PK
V	4882.00	55.83	50.67	6.89	31.38	43.43	54	-10.57	AV
V	7323.00	66.48	50.02	7.24	36.63	60.33	74	-13.67	PK
V	7323.00	46.66	50.02	7.24	36.63	40.51	54	-13.49	AV
V	16132.00	48.54	51.53	11.34	41.52	49.87	74	-24.13	PK
H	4882.00	66.88	50.67	6.89	31.38	54.48	74	-19.52	PK
H	4882.00	55.66	50.67	6.89	31.38	43.26	54	-10.74	AV
H	7323.00	65.52	50.02	7.24	36.63	59.37	74	-14.63	PK
H	7323.00	47.55	50.02	7.24	36.63	41.4	54	-12.6	AV
H	16132.00	48.21	51.53	11.34	41.52	49.54	74	-24.46	PK
operation frequency:2480									
V	4960.00	67.85	50.79	6.83	31.36	55.25	74	-18.75	PK
V	4960.00	55.63	50.79	6.83	31.36	43.03	54	-10.97	AV
V	7440.00	66.21	50.11	7.25	36.58	59.93	74	-14.07	PK
V	7440.00	47.63	50.11	7.25	36.58	41.35	54	-12.65	AV
V	16132.00	46.28	51.53	11.34	41.52	47.61	74	-26.39	PK
H	4960.00	66.61	50.79	6.83	31.36	54.01	74	-19.99	PK
H	4960.00	54.56	50.79	6.83	31.36	41.96	54	-12.04	AV
H	7440.00	65.52	50.11	7.25	36.58	59.24	74	-14.76	PK
H	7440.00	45.81	50.11	7.25	36.58	39.53	54	-14.47	AV
H	16132.00	47.39	51.53	11.34	41.52	48.72	74	-25.28	PK

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,
Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.3 RADIATED BAND EMISSION MEASUREMENT

3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

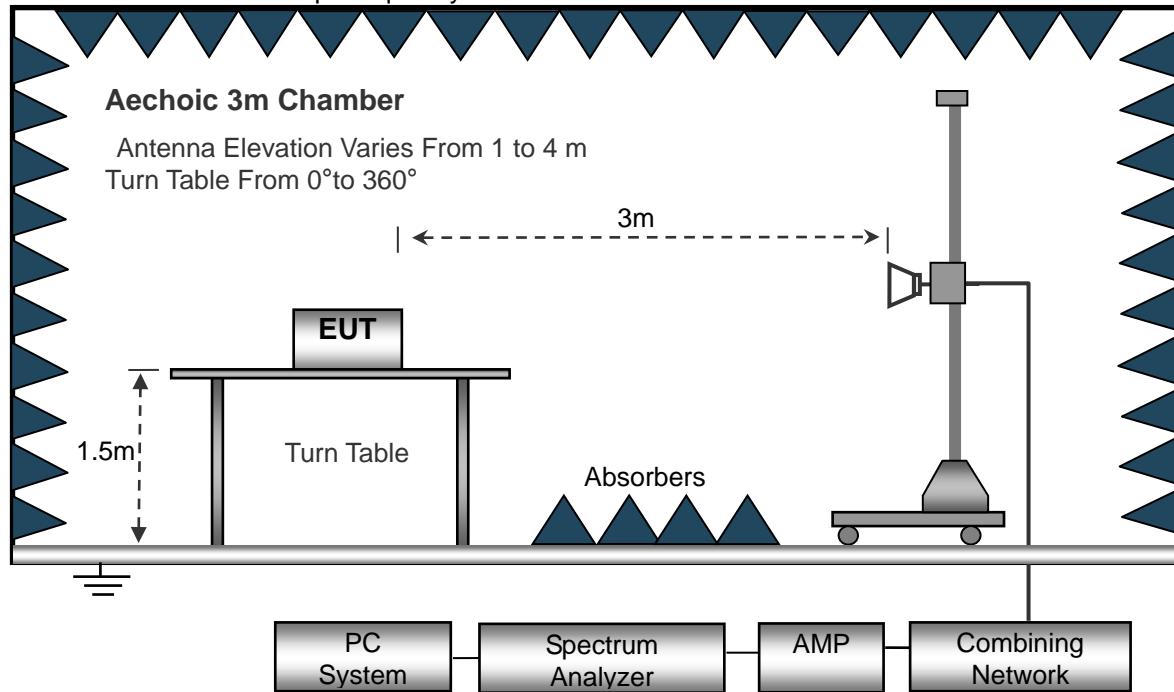
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

3.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:


The horizontal and vertical polarities of the antenna were tested, and a pre-test was conducted on the EUT placement as three orthogonal axes X,Y,Z. The worst display of the test results was the Y-axis. The worst case emissions were reported.

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.6 TEST RESULT

GFSK

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2402									
V	2390.00	77.35	52.11	2.68	27.32	55.24	74	-18.76	PK
V	2390.00	65.85	52.11	2.68	27.32	43.74	54	-10.26	AV
V	2400.00	76.81	52.13	2.52	27.46	54.66	74	-19.34	PK
V	2400.00	64.29	52.13	2.52	27.46	42.14	54	-11.86	AV
H	2390.00	76.35	52.11	2.68	27.32	54.24	74	-19.76	PK
H	2390.00	65.82	52.11	2.68	27.32	43.71	54	-10.29	AV
H	2400.00	76.56	52.13	2.52	27.46	54.41	74	-19.59	PK
H	2400.00	65.28	52.13	2.52	27.46	43.13	54	-10.87	AV

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2480									
V	2483.50	77.66	52.23	2.86	27.44	55.73	74	-18.27	PK
V	2483.50	65.21	52.23	2.86	27.44	43.28	54	-10.72	AV
V	2500.00	76.46	52.26	2.88	27.49	54.57	74	-19.43	PK
V	2500.00	65.67	52.26	2.88	27.49	43.78	54	-10.22	AV
H	2483.50	76.52	52.23	2.86	27.44	54.59	74	-19.41	PK
H	2483.50	66.26	52.23	2.86	27.44	44.33	54	-9.67	AV
H	2500.00	78.54	52.26	2.88	27.49	56.65	74	-17.35	PK
H	2500.00	67.16	52.26	2.88	27.49	45.27	54	-8.73	AV

Remark:

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

 $\pi/4$ DQPSK

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2402									
V	2390.00	76.21	52.11	2.68	27.32	54.1	74	-19.9	PK
V	2390.00	65.56	52.11	2.68	27.32	43.45	54	-10.55	AV
V	2400.00	76.85	52.13	2.52	27.46	54.7	74	-19.3	PK
V	2400.00	64.31	52.13	2.52	27.46	42.16	54	-11.84	AV
H	2390.00	76.26	52.11	2.68	27.32	54.15	74	-19.85	PK
H	2390.00	65.22	52.11	2.68	27.32	43.11	54	-10.89	AV
H	2400.00	76.52	52.13	2.52	27.46	54.37	74	-19.63	PK
H	2400.00	65.86	52.13	2.52	27.46	43.71	54	-10.29	AV

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2480									
V	2483.50	76.76	52.23	2.86	27.44	54.83	74	-19.17	PK
V	2483.50	65.28	52.23	2.86	27.44	43.35	54	-10.65	AV
V	2500.00	76.62	52.26	2.88	27.49	54.73	74	-19.27	PK
V	2500.00	65.53	52.26	2.88	27.49	43.64	54	-10.36	AV
H	2483.50	76.38	52.23	2.86	27.44	54.45	74	-19.55	PK
H	2483.50	65.56	52.23	2.86	27.44	43.63	54	-10.37	AV
H	2500.00	76.84	52.26	2.88	27.49	54.95	74	-19.05	PK
H	2500.00	65.31	52.26	2.88	27.49	43.42	54	-10.58	AV

Remark:

1. Emission Level = Meter Reading + Factor, Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.4 CONDUCTED BAND EDGE EMISSION&CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

3.4.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

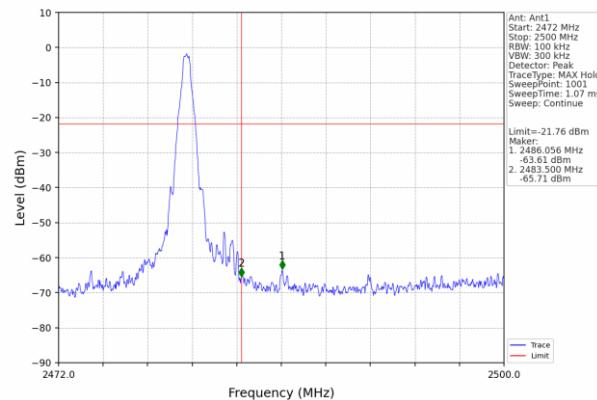
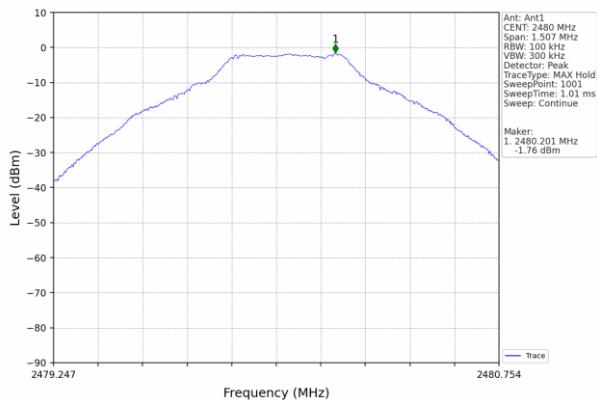
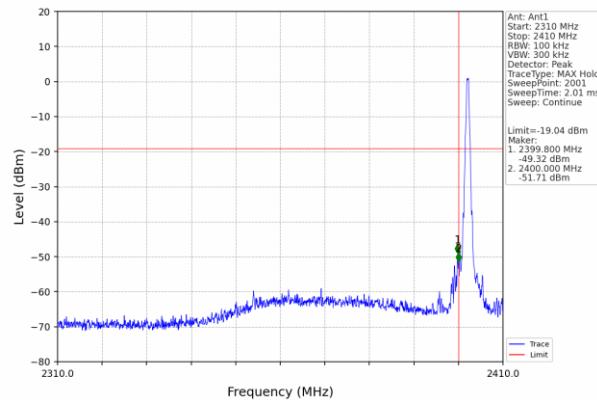
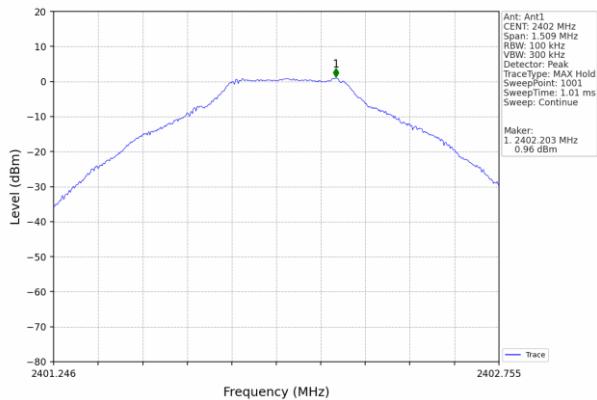
3.4.2 TEST PROCEDURE

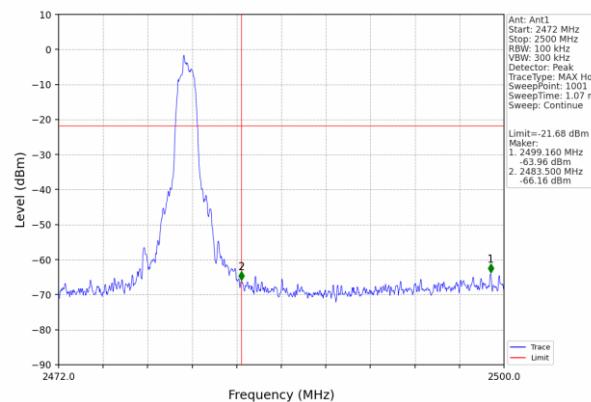
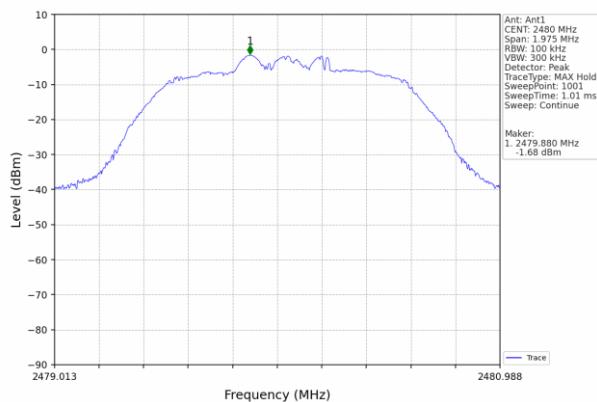
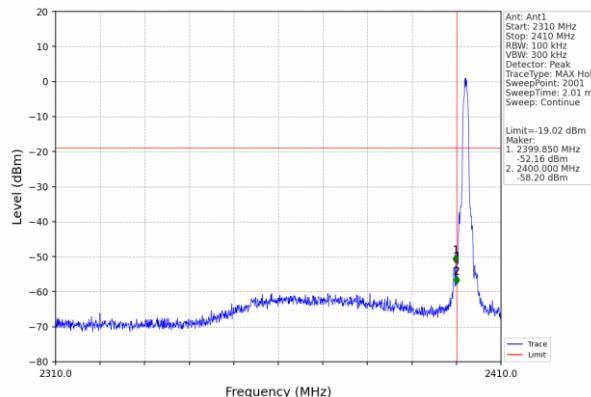
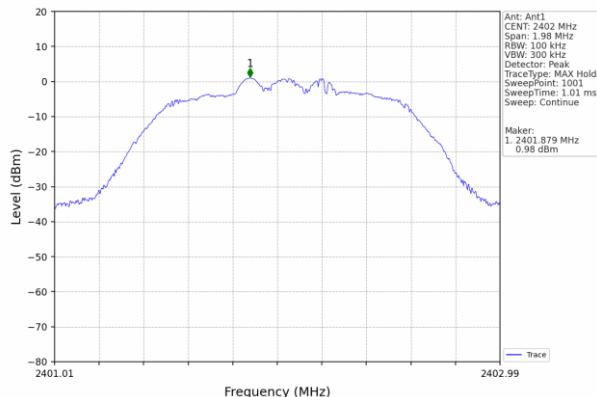
Using the following spectrum analyzer setting:
Set the RBW = 100KHz.
Set the VBW = 300KHz.
Sweep time = auto couple.
Detector function = peak.
Trace mode = max hold.
Allow trace to fully stabilize.

3.4.3 DEVIATION FROM STANDARD

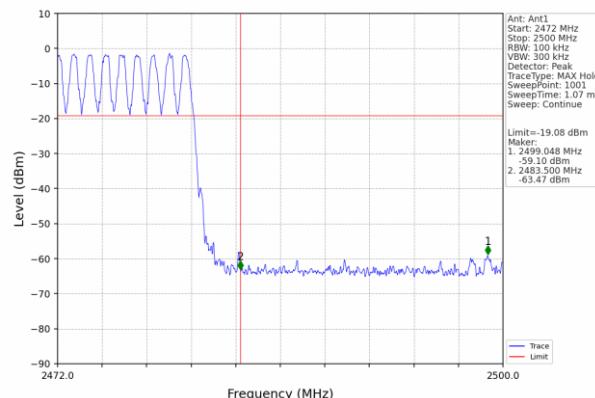
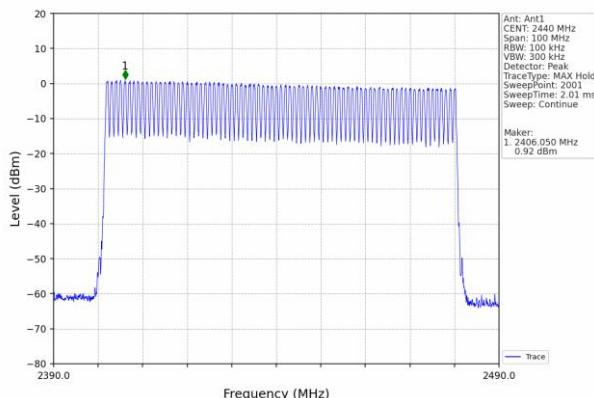
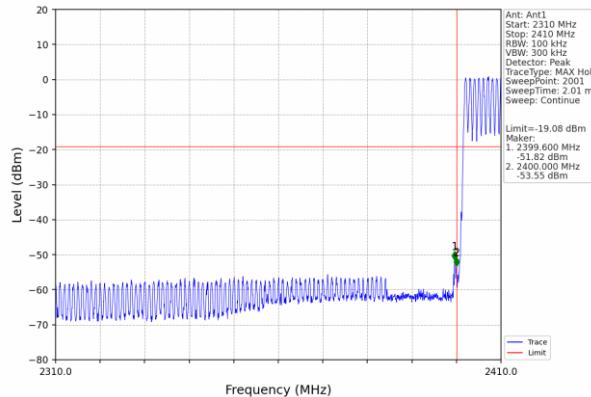
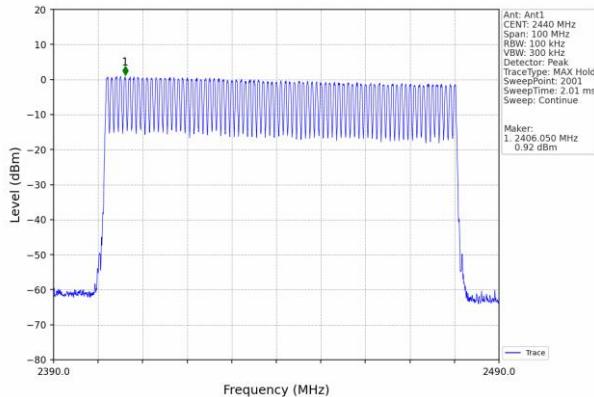
No deviation.

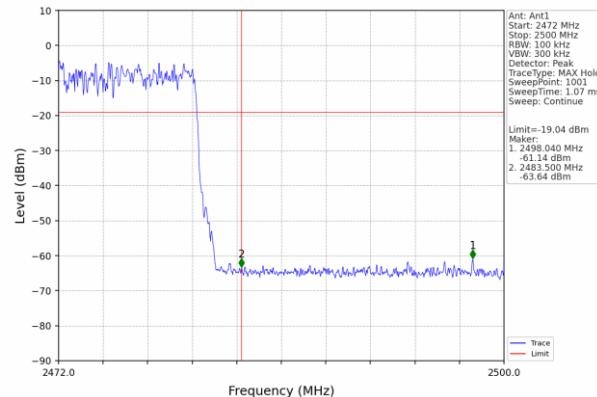
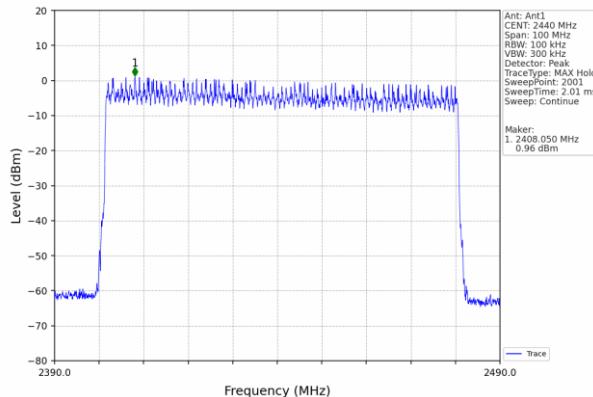
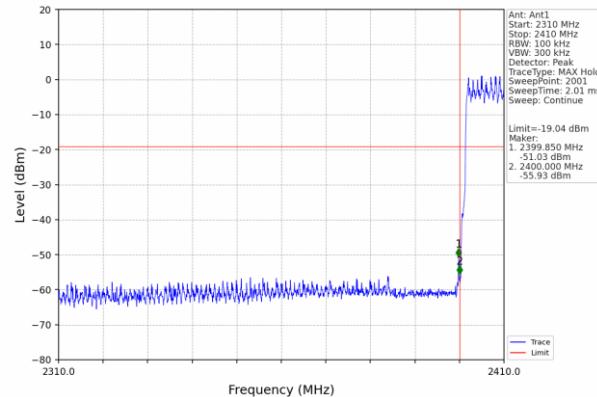
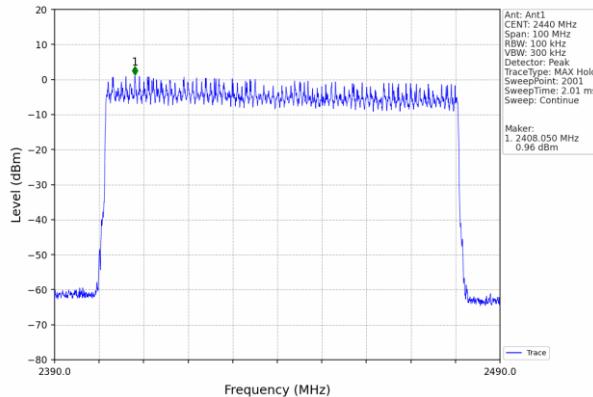
3.4.4 TEST SETUP





3.4.5 EUT OPERATION CONDITIONS





The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

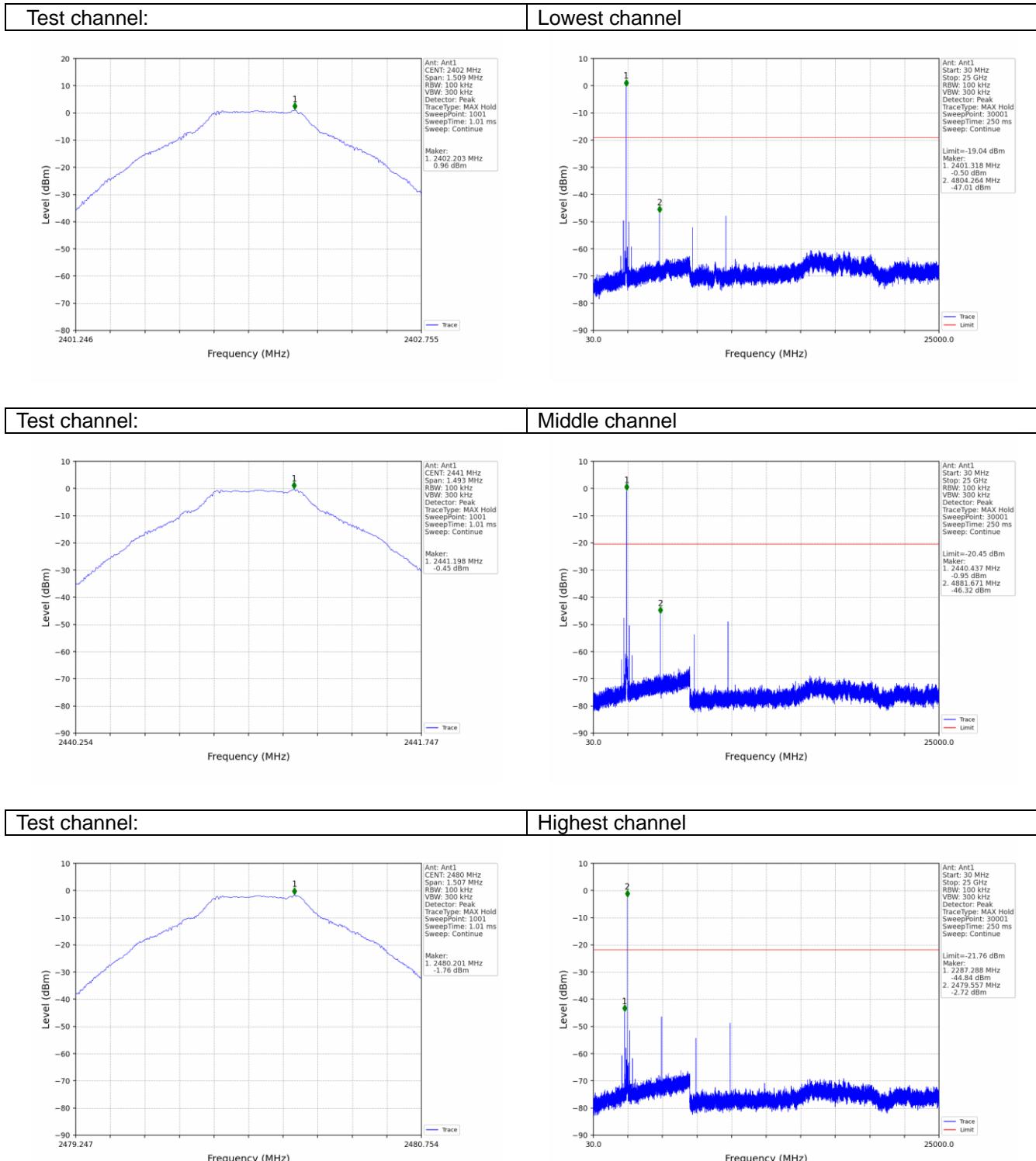
3.4.6 TEST RESULTS





For Conducted
Unhopping
GFSK

 $\pi/4$ DQPSK

Hopping Mode GFSK



 $\pi/4$ DQPSK

For Conducted

During the test, pre-scan the GFSK, Pi/4QPSK modulation, and found the GFSK modulation which it is worse case.

4.. PEAK OUTPUT POWER

4.1. APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (b)(i)	Peak Output Power	21dBm	2400-2483.5	PASS

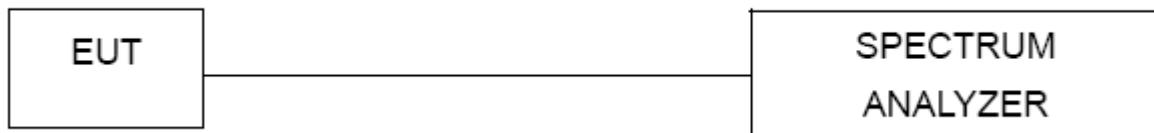
4.1.1. TEST PROCEDURE

- The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- Spectrum Setting : RBW=%1OBW

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

VBW \geq RBW

Sweep = auto


Detector function = peak

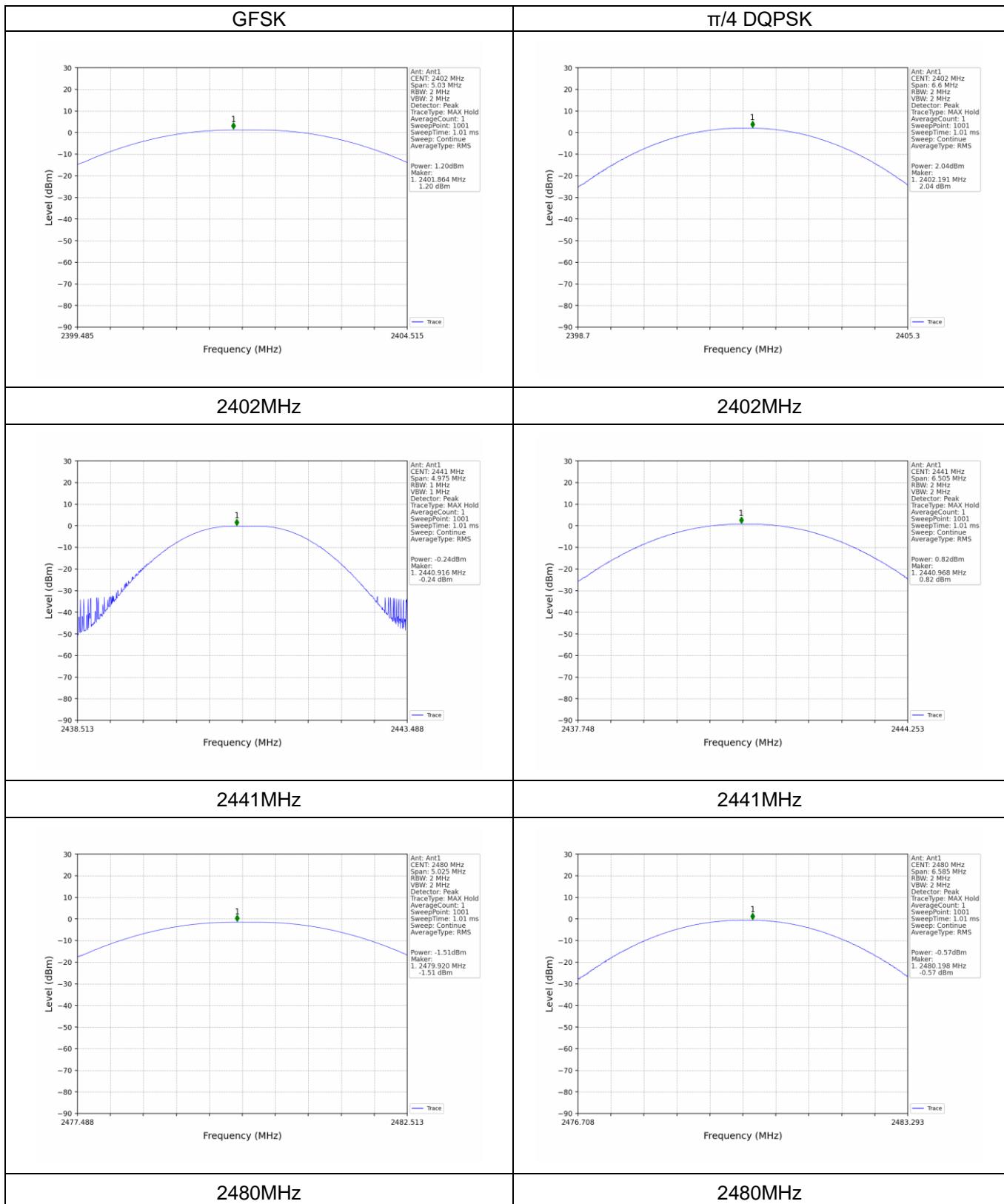
Trace = max hold

4.1.2. DEVIATION FROM STANDARD

No deviation.

4.1.3. TEST SETUP

4.1.4. EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5. TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Pressure:	1012 hPa	Test Mode :	/

Mode	Test Channel	Peak Output Power (dBm)	LIMIT (dBm)
GFSK	CH00	1.20	21
	CH39	-0.24	21
	CH78	-1.51	21
$\pi/4$ DQPSK	CH00	2.04	21
	CH39	0.82	21
	CH78	-0.57	21

5.. NUMBER OF HOPPING CHANNEL

5.1. APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	= the frequency band of operation
RB	RBW= 100KHz
VB	VBW \geq RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.1.1. TEST PROCEDURE

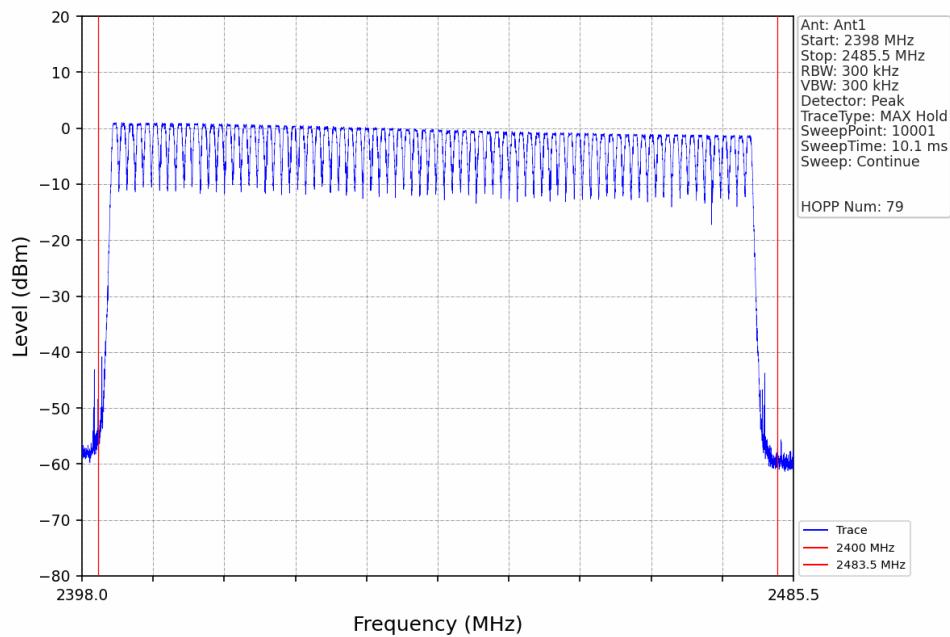
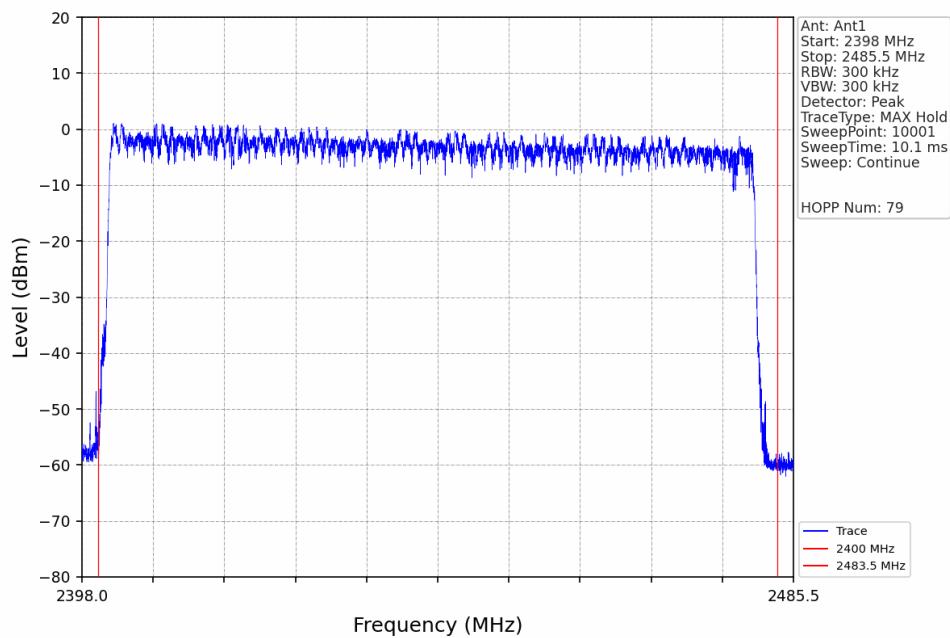
- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = Auto.

5.1.2. DEVIATION FROM STANDARD

No deviation.

5.1.3. TEST SETUP

5.1.4. EUT OPERATION CONDITIONS



The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5. TEST RESULTS

Test Mode :	Hopping Mode	
Number of Hopping Channel	GFSK	79
	$\pi/4$ DQPSK	79

GFSK

 $\pi/4$ DQPSK

6.. BANDWIDTH TEST

6.1. APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C	
Section	Test Item
15.247(a)(2)	Bandwidth

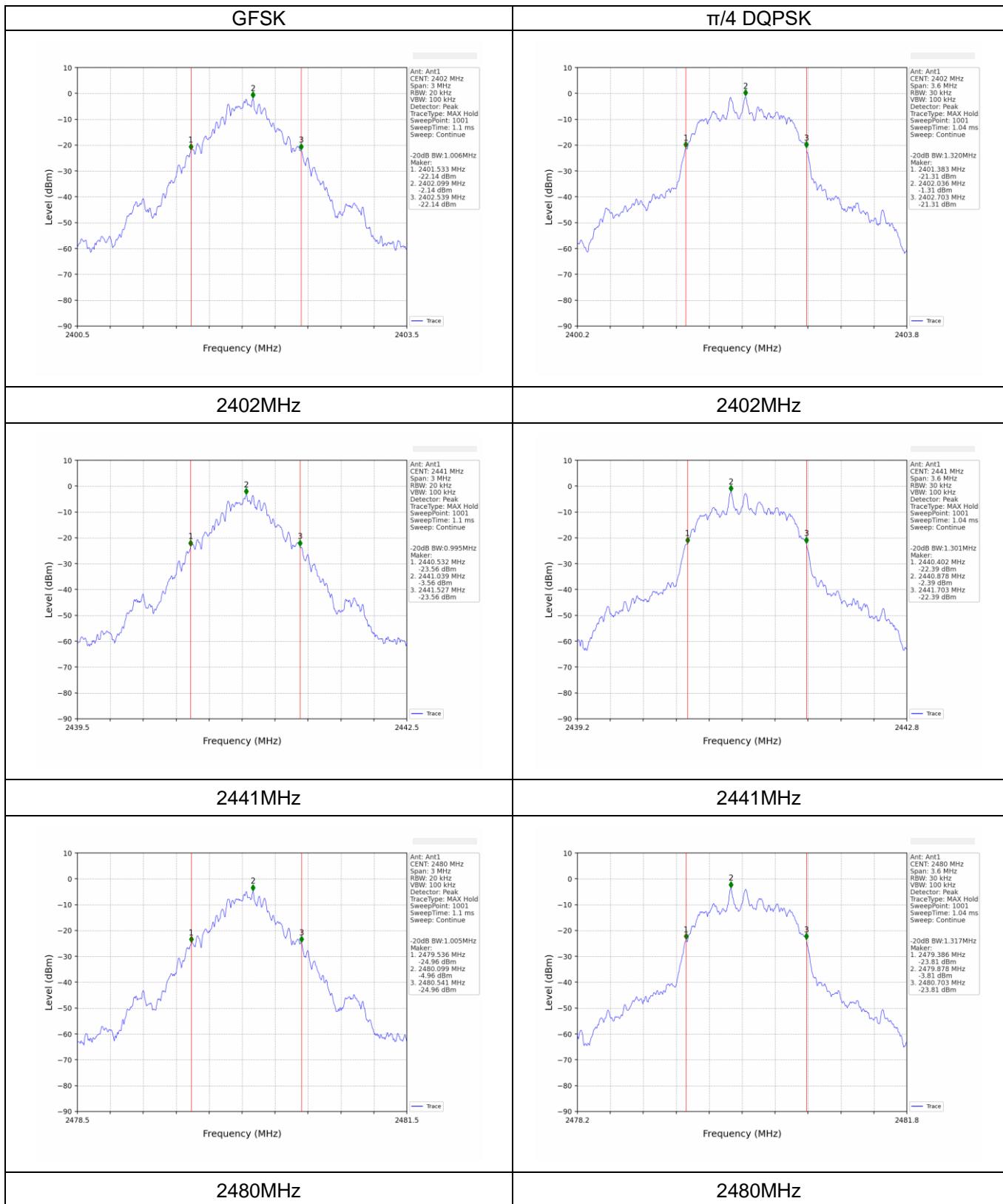
6.1.1. TEST PROCEDURE

1. Set RBW = 30 kHz.
2. Set the video bandwidth (VBW) \geq RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

6.1.2. DEVIATION FROM STANDARD

No deviation.

6.1.3. TEST SETUP


6.1.4. EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5. TEST RESULTS

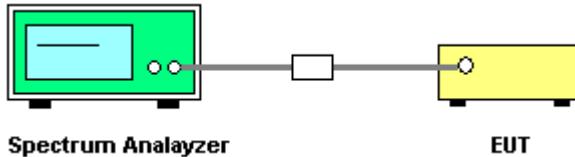
	Frequency (MHz)	20dB Bandwidth (MHz)	Result
GFSK	2402	1.006	Pass
	2441	0.995	Pass
	2480	1.005	Pass
$\pi/4$ DQPSK	2402	1.320	Pass
	2441	1.301	Pass
	2480	1.317	Pass

7.. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1. APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	300 kHz (Channel Separation)
VB	300 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.1.1. TEST PROCEDURE

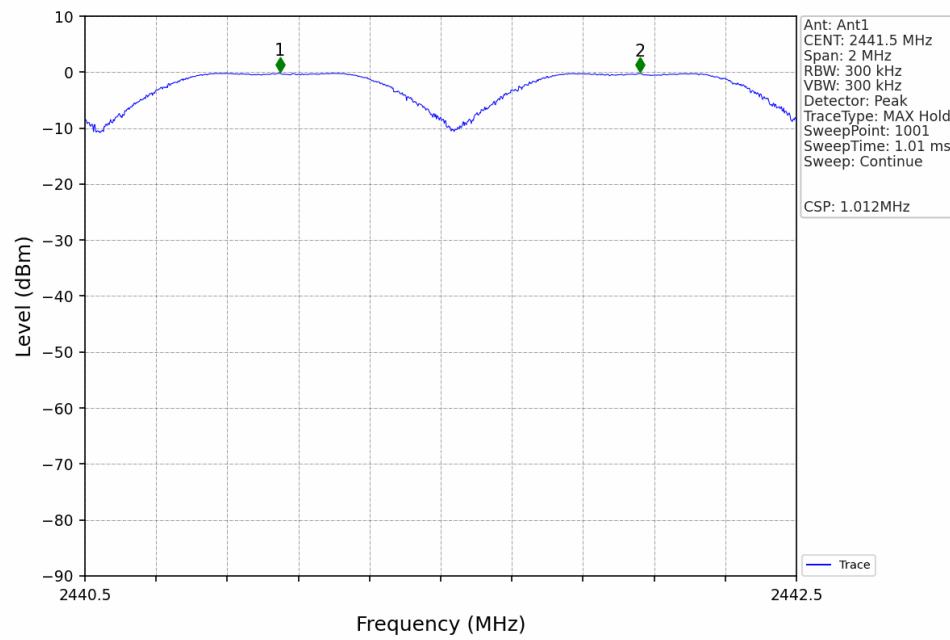
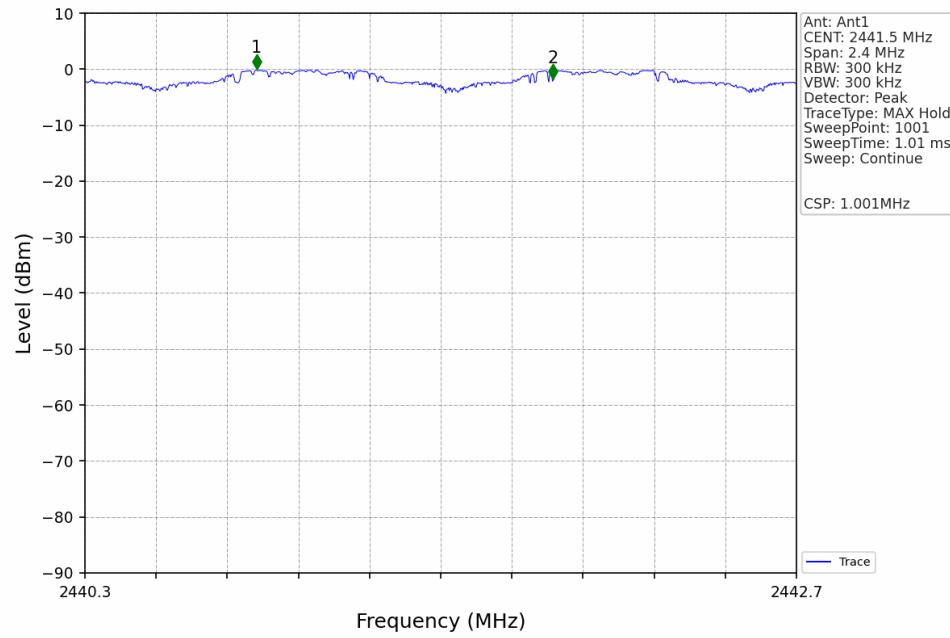
- The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- The resolution bandwidth of 300 kHz and the video bandwidth of 300 kHz were utilised for channel separation measurement.

7.1.2. DEVIATION FROM STANDARD

No deviation.

7.1.3. TEST SETUP

7.1.4. EUT OPERATION CONDITIONS



The EUT was programmed to be in continuously transmitting mode.

7.1.5. TEST RESULTS

Test Mode	Ch. Separation (MHz)	Max 20dB bandwidth(MHz)	Limit (MHz)	Result
GFSK	1.012	1.006	>=0.67	Pass
$\pi/4$ DQPSK	1.001	1.320	>=0.88	Pass

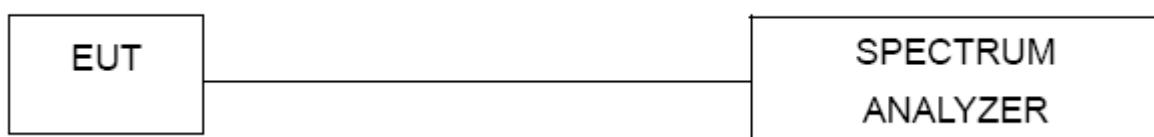
GFSK

 $\pi/4$ DQPSK

8.. DWELL TIME OF OCCUPANCY

8.1. APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS


8.1.1. TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. A Period Time = (channel number)*0.4
DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)

8.1.2. DEVIATION FROM STANDARD

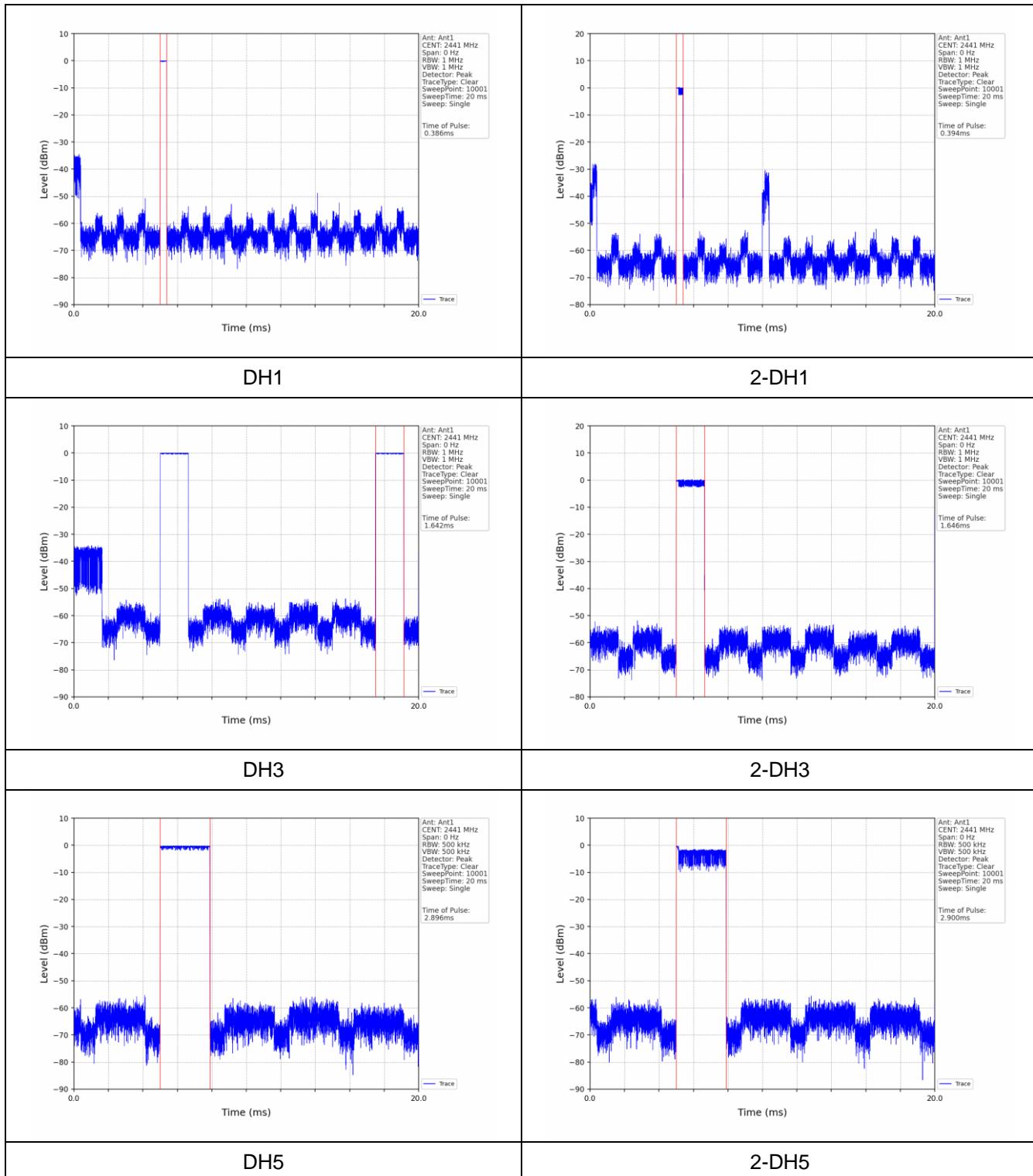
No deviation.

8.1.3. TEST SETUP

8.1.4. EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5. TEST RESULTS


Test Mode :	CH39-DH5, 2DH5
-------------	----------------

Mode	Packet	Pulse time (ms)	Dwell time(ms)	Limit(s)	Result
GFSK	DH1	0.386	317	0.4	Pass
	DH3	1.642	160	0.4	Pass
	DH5	2.896	125	0.4	Pass
Pi/4DQPSK	2-DH1	0.394	318	0.4	Pass
	2-DH3	1.646	161	0.4	Pass
	2-DH5	2.900	104	0.4	Pass

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5

9.. ANTENNA REQUIREMENT

9.1. STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2. EUT ANTENNA

The EUT antenna is internal antenna,. It comply with the standard requirement.

10.. TEST SEUUP PHOTO

Reference to the appendix I for details.

11.. EUT PHOTO

Reference to the appendix II for details.

***** END OF REPORT *****