Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No....... CTA221114001 FCC ID....... : 2A9DM-B66

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Testing Laboratory Name..... Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Technolo

CTATESTIN

Applicant's name...... Intellibud Co.,Ltd

Address...... Floor4,Bldg3,Sanjia High tech zone,Dongkeng Town,Dongguan city

Test specification ::

Standard..... FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description......TWS earphone

Trade Mark..... intellibud

Manufacturer...... Intellibud Co.,Ltd

Model/Type reference..... B66

Listed Models: N/A

Modulation GFSK, Π/4DQPSK, 8DPSK

Frequency..... From 2402MHz to 2480MHz

Rating...... DC 3.7V From Battery and DC 5V From External circuit

Result...... PASS

Page 2 of 46 Report No.: CTA221114001

TEST REPORT

Equipment under Test TWS earphone

Model /Type **B66**

N/A Listed Models

Model Declaration N/A

Applicant Intellibud Co.,Ltd

Floor4,Bldg3,Sanjia High tech zone,Dongkeng Town,Dongguan city Address

Manufacturer Intellibud Co.,Ltd

Address Floor4, Bldg3, Sanjia High tech zone, Dongkeng Town, Dongguan city

	CTATES	Test Result:	-551	NG	PASS	
e ^{ra}			TE			

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATE CTATE laboratory.

Page 3 of 46 Report No.: CTA221114001

	1	TEST STANDARDS	4
	2	SUMMARY	5
	4	30 W W A K 1	
		ESTITUTE OF THE PROPERTY OF TH	
	2.1	General Remarks	5
	2.2	Product Description	5
	2.3	Product Description Equipment Under Test Short description of the Equipment under Test (EUT) EUT operation mode Block Diagram of Test Setup	5
	2.4	Short description of the Equipment under Test (EUT)	5
	2.5	EUT operation mode	6
	2.6		666
	2.7	Related Submittal(s) / Grant (s)	6
	2.8	Modifications	6
TATE	3	TEST ENVIRONMENT	7
CIL	•	ETINO	
7		TES	_
	3.1	Address of the test laboratory Test Facility Environmental conditions Summary of measurement results	7_
	3.2	Test Facility	7
	3.3	Environmental conditions	7 8 8
	3.4	Summary of measurement results	8
	3.5	Statement of the measurement uncertainty	1E-8
	3.6	Equipments Used during the Test	9
		Summary of measurement results Statement of the measurement uncertainty Equipments Used during the Test	
	4	TEST CONDITIONS AND RESULTS	1 0
			-
	4.1	AC Power Conducted Emission	10
	4.2	Radiated Emission	13
	4.3	Maximum Peak Output Power	19
	4.4	20dB Bandwidth	22
	4.5	Frequency Separation Number of hopping frequency Time of Occupancy (Dwell Time) Out-of-band Emissions Pseudorandom Frequency Hopping Sequence Antenna Requirement	26
	4.6	Number of hopping frequency	28
	4.7	Time of Occupancy (Dwell Time)	30
	4.8	Out-of-band Emissions	34
	4.9	Pseudorandom Frequency Hopping Sequence	40
	4.10	Antenna Requirement	41
	SING	TEST SETUP PHOTOS OF THE EUT	42
	51"		······································
STATE			
CTATE	6	PHOTOS OF THE EUT	4 3
		CIA	
		CTATESTING CTATESTING	
		CIA	
		CTA CTATE	EST !!
			1
		CIF	

Page 4 of 46 Report No.: CTA221114001

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

GTA TESTING

Report No.: CTA221114001 Page 5 of 46

SUMMARY

2.1 General Remarks

2.1 General Remarks		TESTING
Date of receipt of test sample	TO THE REAL PROPERTY.	Nov. 07, 2022
	1	
Testing commenced on		Nov. 07, 2022
Testing concluded on	:	Nov. 14, 2022

2.2 Product Description

2022
al circuit
ETA CTATES
C. C.
Engineer sample) Normal sample)
:5711
BDPSK
CTATE
(20)
Car Cir

Equipment Under Test

2.3 Equipment Under 1	est			STING	
Power supply system ut	ilised		CTAT		
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in bla	ank below)

DC 3.7V From Battery and DC 5V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a TWS earphone.

For more details, refer to the user's manual of the EUT.

Page 6 of 46 Report No.: CTA221114001


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

provided to the EUT and Channel 00/39/78 were selection	cted to test.	
On continuous Control Control	TESTING	
Operation Frequency:	Common on (MILE)	
Channel	Frequency (MHz)	
00	2402	
01	2403	CVA
TING	:	A TO HE WAS A STATE OF THE PARTY OF THE PART
38	2440	
39	2441	
40	2442	
Car Car	ESTIN	
77	2479	
78	2480	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Report No.: CTA221114001 Page 7 of 46

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

	0.11
Temperature:	24 ° C
	AZA
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
INC	
Humidity:	46 %
TIN	6
Atmospheric pressure:	950-1050mbar

Atmospheric pressure:	950-1050mbar
Conducted testing:	ESTING
Temperature:	25 ° C
Humidity:	44 %
	050 4050 1
Atmospheric pressure:	950-1050mbar

Page 8 of 46 Report No.: CTA221114001

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	1	orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK		Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

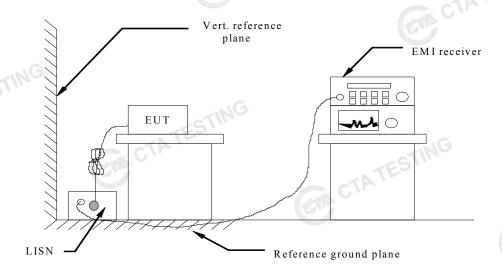
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters" (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.82 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Transmitter power conducted	1~40GHz	0.57 dB	(1)
Conducted spurious emission	1~40GHz	1.60 dB	(1)

Report No.: CTA221114001 Page 9 of 46

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


		B CMMARA				
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	GLISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
CTATE	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
J -	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2022/08/03	2023/08/02
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2022/08/03	2023/08/02
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2022/08/03	2023/08/02
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2022/08/03	2023/08/02
TE	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
		GW C	(A)	CTA CTA	TESTING	

Report No.: CTA221114001 Page 10 of 46

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

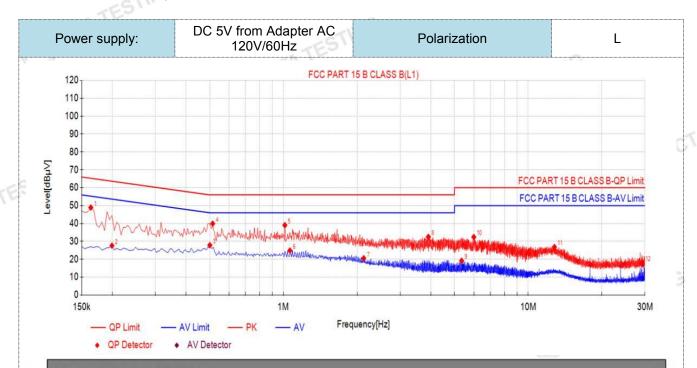
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguenov rango (MHz)	Limit (dBuV)							
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm of the frequency.								

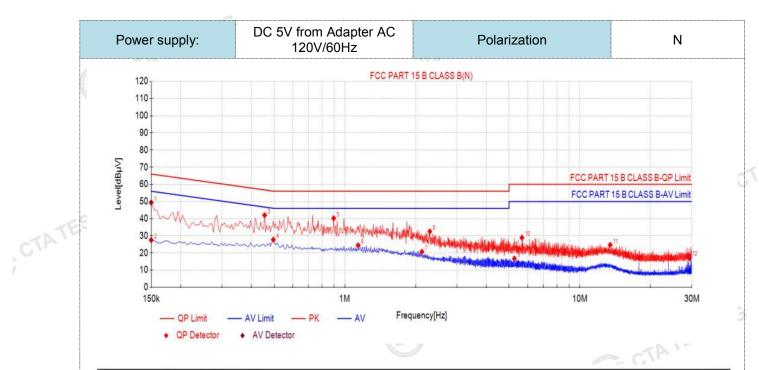

TEST RESULTS

Remark:

1. All modes of GFSK, ⊓/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Page 11 of 46 Report No.: CTA221114001

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

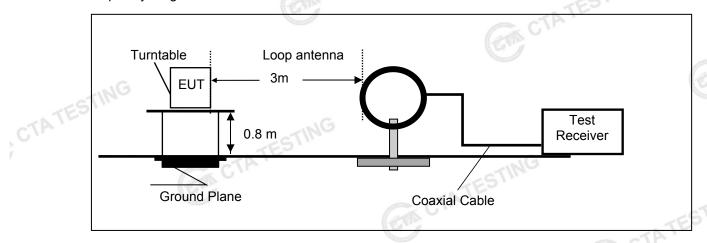

Suspected List											
NO.	Freq.	Reading [dBµV]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector	Туре	Verdict		
1	0.1635	38.44	48.94	10.50	65.28	16.34	PK	L1	PASS		
2	0.1995	17.11	27.61	10.50	53.63	26.02	AV	L1	PASS		
3	0.501	17.38	27.88	10.50	46.00	18.12	AV	L1	PASS		
4	0.5145	29.44	39.94	10.50	56.00	16.06	PK	L1	PASS		
5	1.014	28.54	39.04	10.50	56.00	16.96	PK	L1	PASS		
6	1.0635	14.39	24.89	10.50	46.00	21.11	AV	L1	PASS		
7	2.13	10.04	20.54	10.50	46.00	25.46	AV	L1	PASS		
8	3.912	22.03	32.53	10.50	56.00	23.47	PK	L1	PASS		
9	5.3475	8.68	19.18	10.50	50.00	30.82	AV	L1	PASS		
10	5.9955	21.94	32.44	10.50	60.00	27.56	PK	L1	PASS		
11	12.7995	16.36	26.86	10.50	60.00	33.14	PK	L1	PASS		
12	29.238	7.47	17.97	10.50	50.00	32.03	AV	L1	PASS		

Note:1).Level ($dB\mu V$)= Reading ($dB\mu V$)+ Factor (dB)

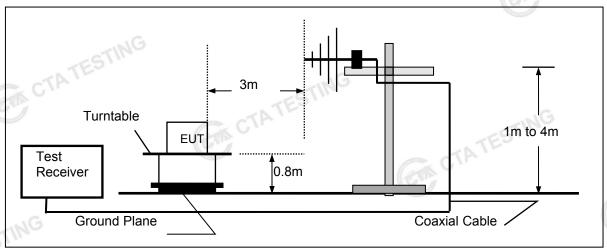
CTATE

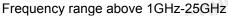
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dB μ V) Level (dB μ V) GTA TESTING

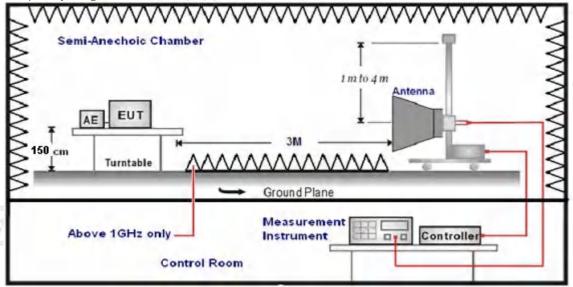
Report No.: CTA221114001 Page 12 of 46


	NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector	Туре	Verdic
ø	1	0.15	38.86	49.36	10.50	66.00	16.64	PK	N	PASS
	2	0.15	17.04	27.54	10.50	56.00	28.46	AV	N	PASS
	3	0.456	31.53	42.03	10.50	56.77	14.74	PK	N	PASS
	4	0.4965	17.27	27.77	10.50	46.06	18.29	AV	N	PASS
	5	0.897	29.75	40.25	10.50	56.00	15.75	PK	N	PASS
	6	1.14	13.97	24.47	10.50	46.00	21.53	AV	N	PASS
	7	2.13	10.21	20.71	10.50	46.00	25.29	AV	N	PASS
ATE	8	2.301	22.05	32.55	10.50	56.00	23.45	PK	N	PASS
	9	5.271	6.29	16.79	10.50	50.00	33.21	AV	N	PASS
	10	5.676	18.40	28.90	10.50	60.00	31.10	PK	N	PASS
	11	13.4745	14.21	24.71	10.50	60.00	35.29	PK	N	PASS
	12	29.238	7.12	17.62	10.50	50.00	32.38	AV	N CT	PASS

Page 13 of 46 Report No.: CTA221114001


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 14 of 46 Report No.: CTA221114001

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	75 mm
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
	Peak Value: RBW=1MHz/VBW=3MHz,			
1GHz-40GHz	Sweep time=Auto			
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,			
	Sweep time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:					
FS = RA + AF + CL - AG	CTATES				
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor	1-545				

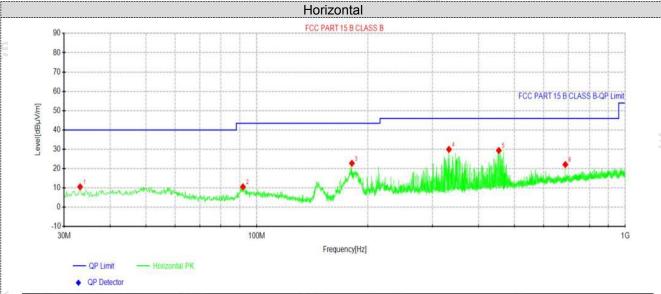
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

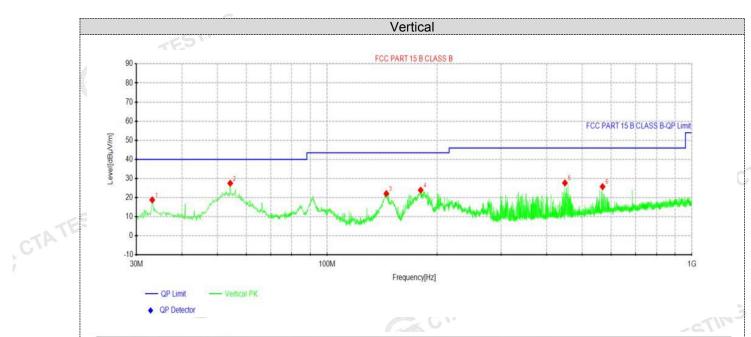

Page 15 of 46 Report No.: CTA221114001

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8-DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	33.1525	28.79	10.60	-18.19	40.00	29.40	100	163	Horizontal	
2	91.7162	30.27	10.61	-19.66	43.50	32.89	100	34	Horizontal	
3	181.198	43.24	22.78	-20.46	43.50	20.72	100	106	Horizontal	
4	332.276	46.50	29.98	-16.52	46.00	16.02	100	268	Horizontal	
5	453.89	44.45	29.40	-15.05	46.00	16.60	100	106	Horizontal	
6	687.538	33.87	22.13	-11.74	46.00	23.87	100	236	Horizontal	

CTA TESTING

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA221114001 Page 16 of 46

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	33.1525	36.99	18.80	-18.19	40.00	21.20	100	174	Vertical	
2	54.25	44.49	27.52	-16.97	40.00	12.48	100	60	Vertical	
3	145.308	43.88	22.11	-21.77	43.50	21.39	100	262	Vertical	
4	180.471	44.42	23.91	-20.51	43.50	19.59	100	165	Vertical	
5	448.676	42.77	27.67	-15.10	46.00	18.33	100	334	Vertical	
6	568.835	38.76	25.74	-13.02	46.00	20.26	100	360	Vertical	

ETA CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V/m$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA221114001 Page 17 of 46

For 1GHz to 25GHz

Note: GFSK, $\pi/4$ DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.93	PK	74	12.07	66.29	32.40	5.11	41.87	-4.36
4804.00	49.85	AV	54	4.15	54.21	32.40	5.11	41.87	-4.36
7206.00	61.68	PK	74	12.32	62.31	36.58	6.43	43.64	-0.63
7206.00	52.51	AV	54	1.49	53.14	36.58	6.43	43.64	-0.63

Freque	ncy(MHz)):	2402		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	62.22	PK	74	11.78	66.58	32.40	5.11	41.87	-4.36
4804.00	52.6	AV	54	1.40	56.96	32.40	5.11	41.87	-4.36
7206.00	61.8	PK	74	12.20	62.43	36.58	6.43	43.64	-0.63
7206.00	52.84	AV	54	1.16	53.47	36.58	6.43	43.64	-0.63

Freque	ncy(MHz):		2441		Polarity:		HORIZONTAL		\L
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	62.30	PK	74	11.70	66.25	32.56	5.34	41.85	-3.95
4882.00	53.04	AV	54	0.96	56.99	32.56	5.34	41.85	-3.95
7323.00	61.90	PK	74	12.10	62.26	36.54	6.81	43.71	-0.36
7323.00	52.59	AV	54	1.41	52.95	36.54	6.81	43.71	-0.36

Freque	Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	61.17	PK	74	12.83	65.12	32.56	5.34	41.85	-3.95	
4880.00	51.26	AV	54	2.74	55.21	32.56	5.34	41.85	-3.95	
7320.00	59.78	PK	74	14.22	60.14	36.54	6.81	43.71	-0.36	
7320.00	49.85	AV	54	4.15	50.21	36.54	6.81	43.71	-0.36	

Freque	ency(MHz):		24	80	Polarity:		HORIZONTAL		\L
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	57.80	PK	74	16.20	61.26	32.73	5.64	41.83	-3.46
4960.00	48.82	AV	54	5.18	52.28	32.73	5.64	41.83	-3.46
7440.00	63.90	PK	74	10.10	63.96	36.50	7.23	43.79	-0.06
7440.00	52.22	PK	54	1.78	52.28	36.50	7.23	43.79	-0.06

	-10	1G								
Freque	Frequency(MHz):		24	2480		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	63.02	PK	74	10.98	66.48	32.73	5.64	41.83	-3.46	
4960.00	50.97	AV	54	3.03	54.43	32.73	5.64	41.83	-3.46	
7440.00	60.81	PK	74	13.19	60.87	36.50	7.23	43.79	-0.06	
7440.00	50.79	PK	54	3.21	50.85	36.50	7.23	43.79	-0.06	

Page 18 of 46 Report No.: CTA221114001

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported. <u>G</u>FSK

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	51.45	PK	74	22.55	61.87	27.42	4.31	42.15	-10.42
2390.00	52.56	AV	54	1.44	62.98	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	57.99	PK	74	16.01	68.41	27.42	4.31	42.15	-10.42
2390.00	52.15	AV	54	1.85	62.57	27.42	4.31	42.15	-10.42
F	/B#11-\		0.4				HORIZONTAL		_
Freque	ncy(MHz)	:	24	80	Pola	arity:	H	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu)	sion /el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency	Emis	sion /el	Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
Frequency (MHz)	Emis Lev (dBu)	sion /el V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency (MHz) 2483.50 2483.50	Emis Lev (dBu'	sion /el V/m) PK AV	Limit (dBuV/m)	Margin (dB) 24.40 11.77	Raw Value (dBuV) 59.71 52.34	Antenna Factor (dB/m) 27.70	Cable Factor (dB) 4.47 4.47	Pre- amplifier (dB) 42.28	Correction Factor (dB/m) -10.11
Frequency (MHz) 2483.50 2483.50	Emis Lev (dBu' 49.60 42.23	sion /el V/m) PK AV : sion /el	Limit (dBuV/m) 74 54	Margin (dB) 24.40 11.77	Raw Value (dBuV) 59.71 52.34	Antenna Factor (dB/m) 27.70 27.70	Cable Factor (dB) 4.47 4.47	Pre- amplifier (dB) 42.28 42.28	Correction Factor (dB/m) -10.11
Frequency (MHz) 2483.50 2483.50 Freque Frequency	Emis Lev (dBu' 49.60 42.23 ncy(MHz) Emis Lev	sion /el V/m) PK AV : sion /el	Limit (dBuV/m) 74 54 24 Limit	Margin (dB) 24.40 11.77 80	Raw Value (dBuV) 59.71 52.34 Pola Raw Value	Antenna Factor (dB/m) 27.70 27.70 arity: Antenna Factor	Cable Factor (dB) 4.47 4.47 Cable Factor	Pre- amplifier (dB) 42.28 42.28 VERTICAL Pre- amplifier	Correction Factor (dB/m) -10.11 -10.11 Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Page 19 of 46 Report No.: CTA221114001

Maximum Peak Output Power

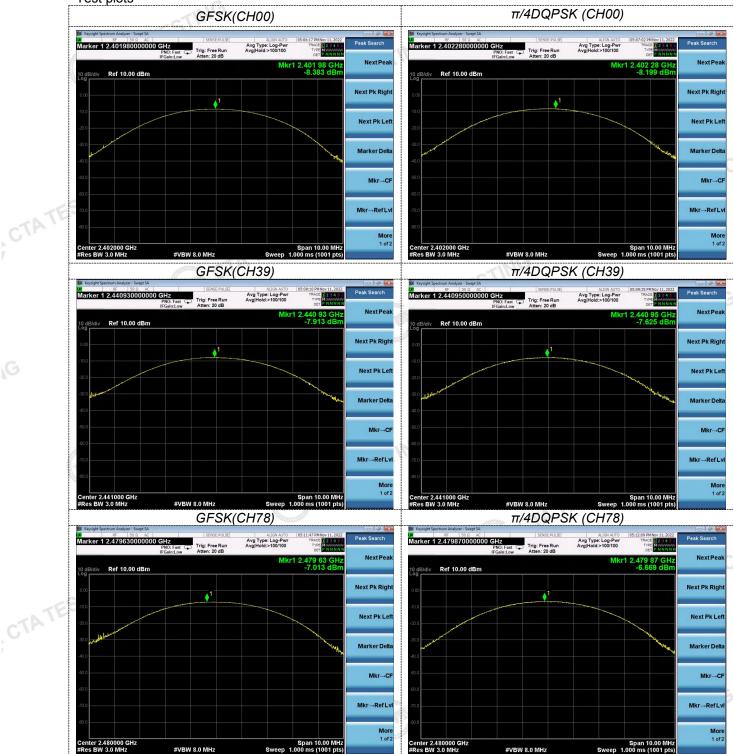
Limit

The Maximum Peak Output Power Measurement is 30dBm(for GFSK)/20.97dBm(for EDR)

Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 8MHz. Sweep = auto; Detector Function =
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Test Configuration


Test Results

(CO)	■ UT	SPECTR ANALYZ		ATESTING
Test Results				AIL
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-8.383		
GFSK	39	-7.913	30.00	Pass
CTATA	78	-7.013		
	00	-8.199	16	
π/4DQPSK	39	-7.625	20.97	Pass
	78	-6.669	CTA	
	00	-8.127	NA CONTRACTOR OF THE PARTY OF T	
8-DPSK	39	-6.755	20.97	Pass
TING	78	-6.523		7.5 Mark 11. 11.

Note: 1.The test results including the cable lose. CTATES

Page 20 of 46 Report No.: CTA221114001

Test plots

Report No.: CTA221114001 Page 21 of 46

Page 22 of 46 Report No.: CTA221114001

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>Test Results</u>			
Modulation	Channel	20dB bandwidth (MHz)	Resu
ING	CH00	0.689	
GFSK	CH39	0.688	
CTA	CH78	0.681	
CAL	CH00	1.107	NG.
π/4DQPSK	CH39	1.107	Pass
	CH78	1.106	
	CH00	1.152	
8-DPSK	CH39	1.151	
ING	CH78	1.155	

CTATESTING Test plot as follows:

Report No.: CTA221114001 Page 23 of 46

Report No.: CTA221114001 Page 24 of 46

Page 25 of 46 Report No.: CTA221114001

Page 26 of 46 Report No.: CTA221114001

Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

TEST RESULTS		CTATES		TESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	0.996	25KHz or 2/3*20dB	Pass
Gran	CH39	0.990	bandwidth	Fass
π/4DQPSK	CH38	0.990	25KHz or 2/3*20dB	Pass
II/4DQF3K	CH39	0.990	bandwidth	Fass
8-DPSK	CH38	0.982	25KHz or 2/3*20dB	Page
0-DF3K	CH39	0.902	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 27 of 46 Report No.: CTA221114001

Page 28 of 46 Report No.: CTA221114001

Number of hopping frequency

Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

Test Results

Test Results	CTAT	Es	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8-DPSK	79		

Test plot as follows:

Page 29 of 46 Report No.: CTA221114001

Page 30 of 46 Report No.: CTA221114001

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW, Span 0Hz.

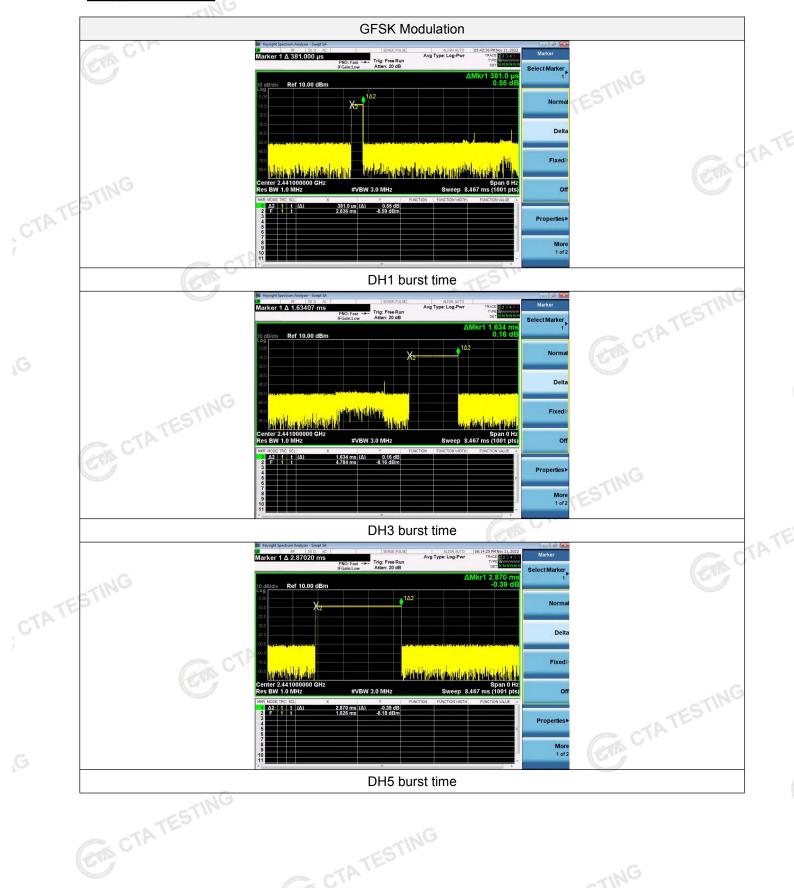
Test Configuration

Test Results

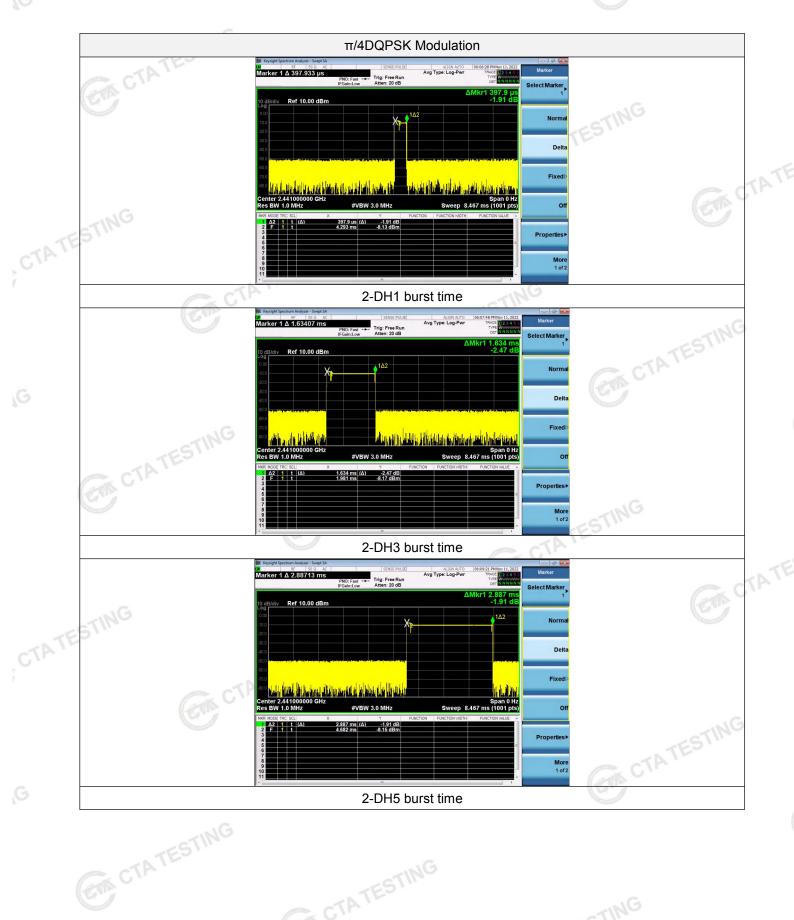
Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.381	0.122	75	
GFSK	DH3	1.634	0.261	0.40	Pass
TES	DH5	2.870	0.306		
CIL	2-DH1	0.397	0.127		
π/4DQPSK	2-DH3	1.634	0.261	0.40	Pass
	2-DH5	2.887	0.308	TESTIN	
	3-DH1	0.389	0.124	CTA	
8-DPSK	3-DH3	1.634	0.261	0.40	Pass
	3-DH5	2.887	0.308		C

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

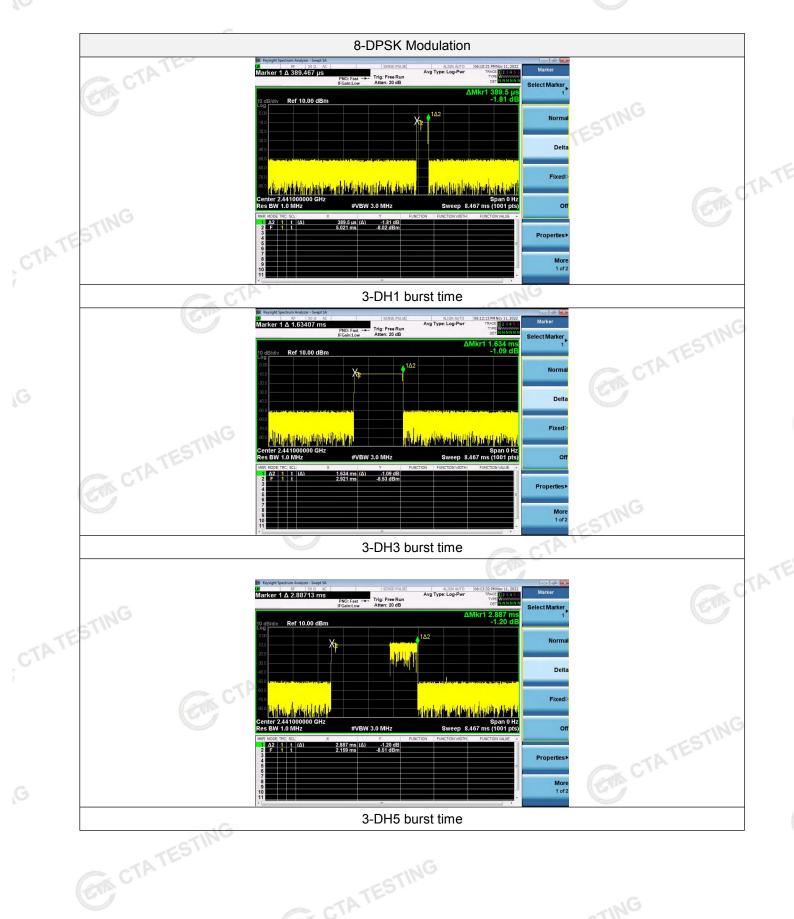
Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH2

Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH3


Shenzhen CTA Testing Technology Co., Ltd.

Report No.: CTA221114001 Page 31 of 46


Test plot as follows:

Report No.: CTA221114001 Page 32 of 46

Report No.: CTA221114001 Page 33 of 46

Page 34 of 46 Report No.: CTA221114001

Out-of-band Emissions 4.8

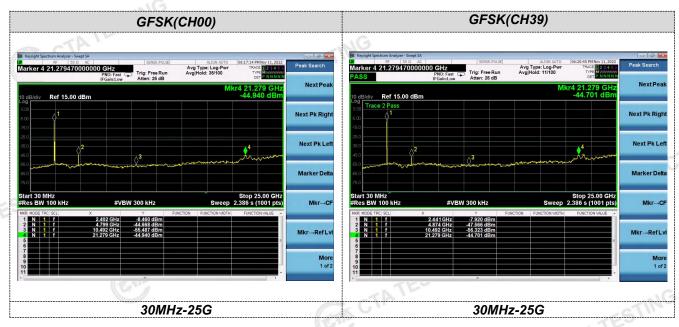
Limit C

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

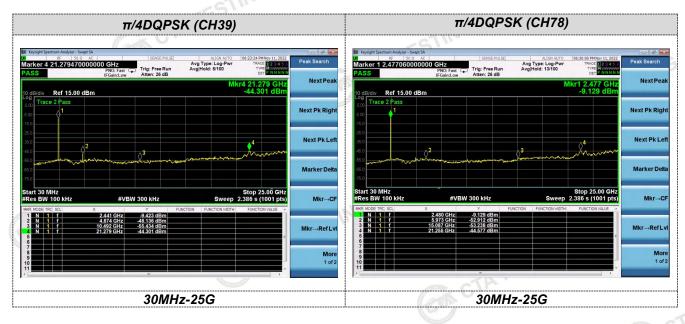
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

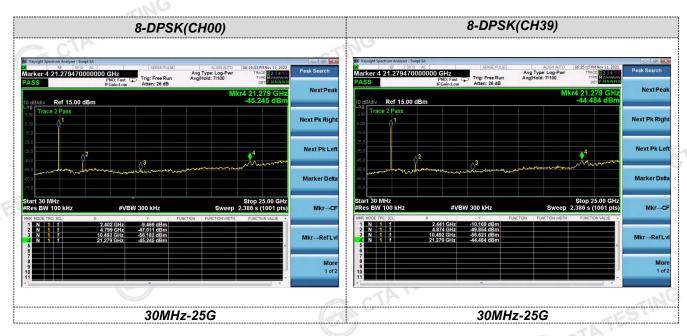
Test Configuration

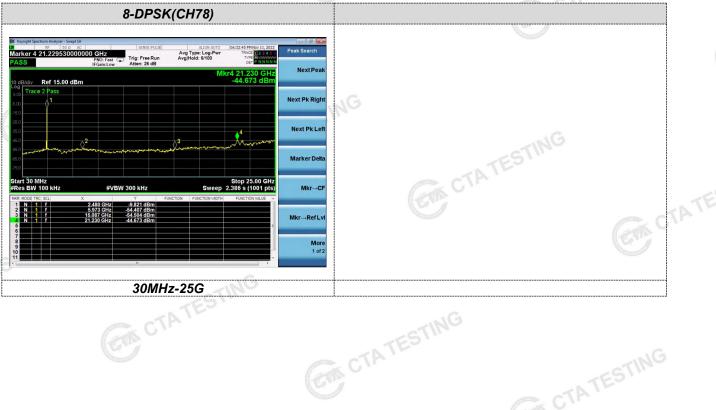

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:


Page 35 of 46 Report No.: CTA221114001



Report No.: CTA221114001 Page 36 of 46

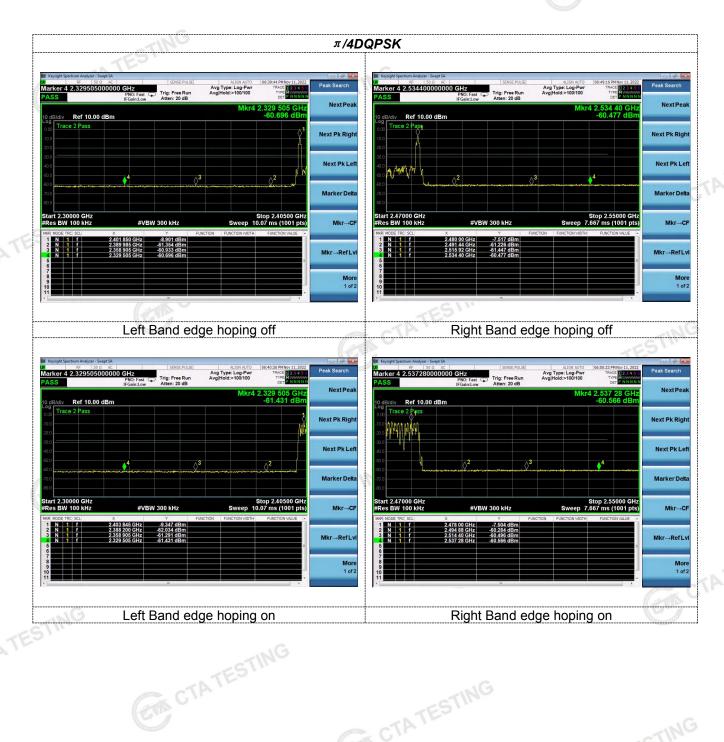
Page 37 of 46 Report No.: CTA221114001

Band-edge Measurements for RF Conducted Emissions: Avg Type: Log-Pwr Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold:>100/100 Ref 10.00 dBn Next Pk Le Marker Del Marker Delt #VBW 300 kHz Mkr→C Mkr→CF Mkr→RefLv Left Band edge hoping off Right Band edge hoping off Avg Type: Log-Pwr Avg|Hold:>100/100 Avg Type: Log-Pwr Avg|Hold:>100/100 Ref 10.00 dB Ref 10.00 dE Next Pk Le Marker Delt Marker Delt **#VBW 300 kHz** Mkr→C #VBW 300 kHz Mkr→Cl

Mkr→RefL

Left Band edge hoping on

CTA TESTING


More 1 of 2

Mkr-Ref Lv

Right Band edge hoping on

More 1 of 2

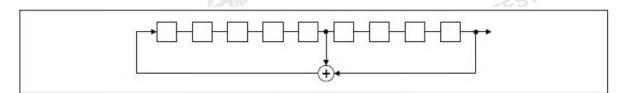
Page 38 of 46 Report No.: CTA221114001

Page 39 of 46 Report No.: CTA221114001

Report No.: CTA221114001 Page 40 of 46

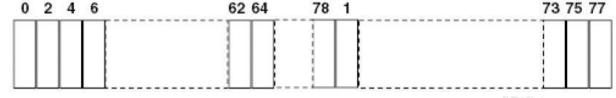
4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 41 of 46 Report No.: CTA221114001

4.10 Antenna Requirement

Standard Applicable

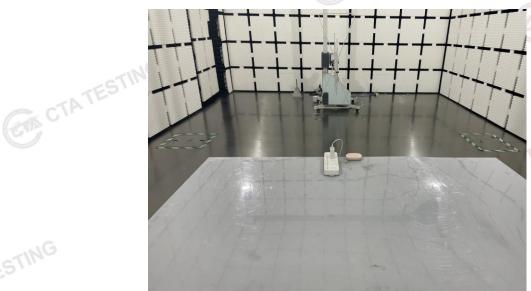
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

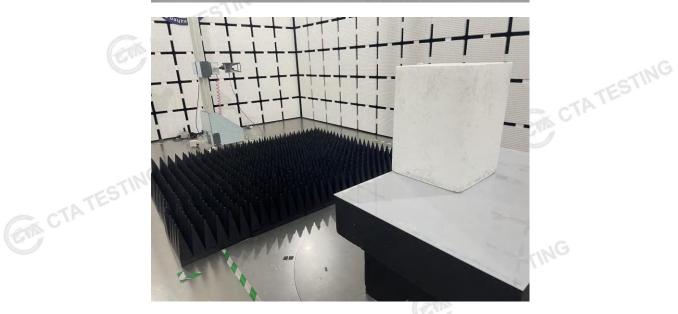
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The maximum gain of antenna was 2.0 dBi.


Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

Report No.: CTA221114001 Page 42 of 46

5 Test Setup Photos of the EUT

Page 43 of 46 Report No.: CTA221114001

Photos of the EUT

Report No.: CTA221114001 Page 44 of 46

Page 45 of 46 Report No.: CTA221114001

Page 46 of 46 Report No.: CTA221114001

************* End of Report ***************