

Global United Technology Services Co., Ltd.

Report No.: GTS202211000045F04

TEST REPORT

Applicant: Megatronix (Beijing) Technology Co., Ltd.

Address of Applicant: 12F, Tower C, Rongxin Center, No.34 Chuangyuan Rd.,

Chaoyang District, Beijing, China

Manufacturer: Megatronix (Beijing) Technology Co., Ltd.

Address of 12F, Tower C, Rongxin Center, No.34 Chuangyuan Rd.,

Chaoyang District, Beijing, China

Manufacturer:

Factory: XTRONICS (Kunshan) Electronics Technology Co. Ltd.

Address of Factory: 88 Hongyan Road, Economic and Technological Development

Zone, Kunshan City, Jiangsu Province, China

Equipment Under Test (EUT)

Product Name: Central Infotainment Module

Model No.: AKFD-003-AB

FCC ID: 2A9CU-AKFD003AB

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: November 07, 2022

Date of Test: November 07-14, 2022

Date of report issue: November 14, 2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 25

2 Version

Version No.	Date	Description
00	November 14, 2022	Original

Prepared By: Date: November 14, 2022

Project Engineer

Check By: Date: November 14, 2022

Reviewer

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

			Page
1	COVER PAG	E	1
2	VERSION		2
3	CONTENTS.		3
4	TEST SUMM	ARY	4
	4.1 MEASURI	EMENT UNCERTAINTY	4
5	GENERAL IN	NFORMATION	5
6	5.2 TEST MO 5.3 TEST FAC 5.4 TEST LOC 5.5 DESCRIP 5.6 DEVIATION 5.7 ADDITION 6 TEST INSTRU	L DESCRIPTION OF EUT DDE CILITY CATION PTION OF SUPPORT UNITS ON FROM STANDARDS NAL INSTRUCTIONS UMENTS LIST	6 6 6 6 6 6
7	7.1 ANTENNA 7.2 EMISSION 7.3 MAXIMUM 7.4 POWER S 7.5 BAND ED	LTS AND MEASUREMENT DATA	
8		P PHOTO	
9		RUCTIONAL DETAILS	

4 Test Summary

Test Item	Section	Result	
Antenna requirement	FCC part 15.203	PASS	
AC Power Line Conducted Emission	FCC part 15.207	N/A	
Emission Bandwidth	FCC part 15.407	PASS	
Maximum Conducted Output Power	FCC part 15.407(a)(1)	PASS	
Power Spectral Density	FCC part 15.407(a)(1)	PASS	
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS	
Radiated Emission	FCC part 15.205/15.209	PASS	
Band Edge	FCC part 15.407(b)(1)	PASS	
Frequency Stability	FCC part 15.407(g)	PASS	

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz-30MHz	3.1dB	(1)		
Radiated Emission	30MHz-200MHz	3.8039dB	(1)		
Radiated Emission	200MHz-1GHz	3.9679dB	(1)		
Radiated Emission	1GHz-18GHz	4.29dB	(1)		
Radiated Emission	18GHz-40GHz	3.30dB	(1)		
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB					
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.		

5 General Information

5.1 General Description of EUT

Product Name:	Central Infotair	Central Infotainment Module				
Model No.:	AKFD-003-AB	AKFD-003-AB				
Test sample(s) ID:	GTS20221100	0045-1				
Sample(s) Status:	Engineer samp	ole				
S/N:	M8100H27000	32201130005				
Hardware Version:	CIM-HW0400.	01.01				
Software Version:	HW Rev No.:CIM-HW0400.01.01					
Operation Frequency:	Band Mode Frequency Number Range(MHz) channe					
	U-NII Band	IEEE 802.11a	5180-5240	4		
	1	IEEE 802.11n/ac 20MHz	5180-5240	4		
		IEEE 802.11n/ac 40MHz	5190-5230	2		
		IEEE 802.11ac 80MHz	5210	1		
Modulation technology:	OFDM					
Antenna Type:	Integral Antenna					
Antenna gain:	3.17dBi(declare by applicant)					
Power supply:	DC 12V					

Channel list	Channel list for 802.11a/n/ac(HT20)									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz			

Channel list for 802.11n(HT40)/ac(HT40)							
Channel Frequency Channel Frequen							
38	5190MHz	46	5230MHz				

Channel list for 802.11ac(HT80)	
Channel	Frequency
42	5210MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode	g mode Keep the EUT in transmitting with modulation					
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:						
Pre-scan all kind of data	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.					
Mo	de	Data rate				
802.11a/n/	802.11a/n/ac(HT20) 6/6.5 Mbps					
802.11n/a	802.11n/ac(HT40) 13.5 Mbps					
802.11ad	802.11ac(HT80) 29.3 Mbps					

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Additional Instructions

Test Software	test command provided by manufacturer
Power level setup	Default

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023		
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023		
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023		
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023		
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023		
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023		
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023		
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023		
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023		
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022		
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023		
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 16, 2022	Oct. 15, 2023		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 16, 2022	Oct. 15, 2023		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 16, 2022	Oct. 15, 2023		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023		
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023		

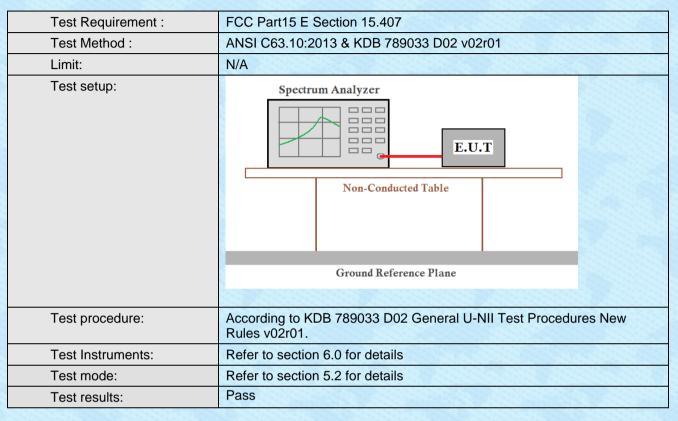
RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023			
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023			

(General used equipment:											
Ite	em Test Equipment		Manufacturer	Model No.	Inventory No.							
	1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023					
	2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023					

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203
15.203 requirement:	
	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an
	coupling to the intentional radiator, the manufacturer may design the unit


E.U.T Antenna:

electrical connector is prohibited.

The antenna is integral antenna, reference to the appendix II for details

7.2 Emission Bandwidth

Measurement Data: The detailed test data see Appendix.

7.3 Maximum Conducted Output Power

Test Requirement	FCC Part15 E Section	15.407					
Test Method :	ANSI C63.10:2013 & I	ANSI C63.10:2013 & KDB 789033 D02 v02r01					
Limit:	Frequency band (MHz)	Limit					
	5150-5250 ≤1W(30dBm) for master device ≤250Mw(23.98dBm) for client device						
	5250-5350	≤250Mw(23.98dBm) for client device or 11dBm+10logB*					
	5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*					
	Remark: *Where B is	s the 26Db emission bandwidth in MHz.					
		acted output power must be measured over any stransmission using instrumentation calibrated in valent voltage.					
Test setup:	Power Meter Non-Conducto	E.U.T					
	Ground Refere	nce Plane					
Duty Cycle set up:	RBW=VBW=8MHz						
Test procedure:	(i) Measurement meter with a the conditions listed a) The EUT is with a constant b) At all times transmitting at c) The integral repetition perifive. (ii) If the transmitting duty cycle, x, section B). (iii) Measure the ameasurement	s when the EUT is transmitting, it must be t its maximum power control level. ation period of the power meter exceeds the od of the transmitted signal by at least a factor of the does not transmit continuously, measure the of the transmitter output signal as described in average power of the transmitter. This is an average over both the on and off periods of					
		r. asurement in dBm by adding 10 log(1/x) where x is (e.g., 10log(1/0.25) if the duty cycle is 25 percent).					
Test Instruments:	Refer to section 6.0 fo						
Test mode:	Refer to section 5.2 fo	r details					
Test results:	Pass						

Measurement Data: The detailed test data see Appendix.

Page 11 of 25

7.4 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40	07						
Test Method :	ANSI C63.10:2013 & KDB 789033 D02 v02r01							
Limit:	Frequency band (MHz)	Limit						
	5150-5250	≤17dBm in 1MHz for master device						
	3130-3230	≤11dBm in 1MHz for client device						
	5250-5350	≤11dBm in 1MHz for client device						
	5470-5725	≤11dBm in 1MHz for client device						
		wer spectral density is measured as a ect connection of a calibrated test instrument et.						
Test setup:	Spectrum Analyzer Non-Conducte Ground Referen							
Test procedure:	being tested by following measuring maximum con analyzer or EMI receive SA-2, SA-3, or alternative including, the step label 2) Use the peak search furthe spectrum. 3) Make the following adjunct applicable: a) If Method SA-2 or SA where x is the duty cycle b) If Method SA-3 Alternused in step E)2)g)(viii)	er spectrum for the EUT operating mode g the instructions in section E)2) for onducted output power using a spectrum r: select the appropriate test method (SA-1, wes to each) and apply it up to, but not ed, "Compute power". Inction on the instrument to find the peak of estments to the peak value of the spectrum, if ex-2 Alternative was used, add 10 log(1/x), e, to the peak of the spectrum. Inative was used and the linear mode was add 1 dB to the final result to compensate en linear averaging and power averaging.						
Test Instruments:	Refer to section 6.0 for deta	ils						
Test mode:	Refer to section 5.2 for deta							
Test results:	Pass							

Measurement Data: The detailed test data see Appendix.

7.5 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205								
Test Method:	ANSI C63.10:201	13							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value AV 1MHz 3MHz Average Value								
Limit:		MHz 6MHz 0MHz GHz 6Hz 6Hz ession limits:		5 5 0 0 0 0 2 -5.25 GHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Average Value Peak Value				
	dBm/MHz. (2) For transmitted outside of the dBm/MHz. If generate en applicable te band (include emission EIF) (3) For transmitted	ers operating e 5.15-5.35 Devices openissions in chnical requiring indoor RP limit of -2 ers operating	g in the 5.25-GHz band sherating in the the 5.15-5.2 direments for use) or alter 7 dBm/MHz in in the 5.47-8	5.35 GHz nall not exc e 5.25-5.3 5 GHz ba operation in rnatively m n the 5.15-5 5.725 GHz	band: all emissions eed an EIRP of -27 band: all emissions eed an EIRP of -27 band that and must meet all the 5.15-5.25 GHz eet an out-of-band band: all emissions eed an EIRP of -27				
Test Procedure:	a. The EUT was ground at a 3 determine the b. The EUT was antenna, whi tower. c. The antenna the ground to Both horizon make the me d. For each sus case and the meters and the degrees to fire. The test-rece Specified Ball of the limit specified by the limit specified by the EUT with the limit specified by the	s meter camble position of set 3 meter change of set 3 meter chang	ber. The table the highest raises away from a read from one the maximum cal polarization as tuned able was turned was set to Period Maximum Hole EUT in peakesting could be orted. Otherwij be re-tested of the highest re-tested of the rested	was rotate adiation. The interference of a variate meter to forwalue of the area of the ar	ur meters above e field strength. Intenna are set to ged to its worst rom 1 meter to 4 egrees to 360				

	sheet.
Test setup:	For radiated emissions above 1GHz Company Company
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows: E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Report No.: GTS202211000045F04

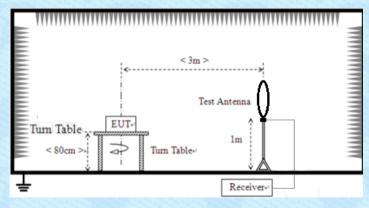
Maraa aaaa mada:								
Worse case r		802.11a		Test Frequ	ency:	5180MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5150	47.76	-3.63	44.13	68.2	-24.07	peak	Н	
5150	36.22	-3.63	32.59	54	-21.41	AVG	Н	
5150	47.89	-3.63	44.26	68.2	-23.94	peak	V	
5150	42.15	-3.63	38.52	54	-15.48	AVG	٧	
Worse case r	mode:	802.11n(H	Γ20)	Test Frequ	ency:	5180MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5150	49.34	-3.63	45.71	68.2	-22.49	peak	Н	
5150	36.02	-3.63	32.39	54	-21.61	AVG	Н	
5150	48.61	-3.63	44.98	68.2	-23.22	peak	V	
5150	39.19	-3.63	35.56	54	-18.44	AVG	V	
Worse case i	Norse case mode:		T40)	Test Frequ	ency:	5190MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V	
5150	48.92	-3.63	45.29	68.2	-22.91	peak	Н	
5150	38.94	-3.63	35.31	54	-18.69	AVG	Н	
5150	48.65	-3.63	45.02	68.2	-23.18	peak	V	
5150	40.2	-3.63	36.57	54	-17.43	AVG	٧	
Worse case r	mode:	802.11ac(H	HT20)	Test Frequ	ency:	5180MHz		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	IBμV) (dB) (dBμV/m)		(dBµV/m)	(dB)	Туре	H/V	
5150	49	-3.63	45.37	68.2	-22.83	peak	Н	
5150	36.87	-3.63	33.24	54	-20.76	AVG	Н	
5150	50.05	-3.63	46.42	68.2	-21.78	peak	V	
5150	36.21	-3.63	32.58	54	-21.42	AVG	V	

Worse case mode:		802.11ac(\	/HT40)	Test Frequ	ency:	5190MHz	
Frequency	Frequency Meter Reading Factor		Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5150	46.53	-3.63	42.9	68.2	-25.3	peak	Н
5150	39.72	-3.63	36.09	54	-17.91	AVG	H
5150	49.6	-3.63	45.97	68.2	-22.23	peak	V
5150	40.07	-3.63	36.44	54	-17.56	AVG	V
Worse case	mode:	802.11ac(VHT80)		Test Frequency:		5210MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре	H/V
5150	47.38	-3.63	43.75	68.2	-24.45	peak	Н
5150	37.08	-3.63	33.45	54	-20.55	AVG	Н
5150	48.41	-3.63	44.78	68.2	-23.42	peak	V
5150	38.85	-3.63	35.22	54	-18.78	AVG	V
5350	51.31	-3.59	47.72	68.2	-20.48	peak	Н
5350	41.89	-3.59	38.3	54	-15.7	AVG	Н
5350	46.01	-3.59	42.42	68.2	-25.78	peak	V
5350 41.85 -3.5		-3.59	38.26	54	-15.74	AVG	V

7.6 Radiated Emission

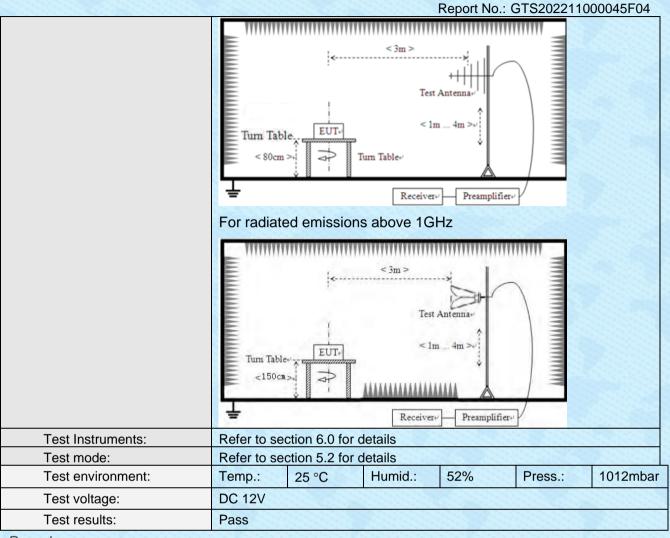
Total Dan Proceed	500 D 445 0		"- · 45 000 - ·	145.005					
Test Requirement :	FCC Part15 C Section 15.209 and 15.205 ANSI C63.10: 2013								
Test Method :			3						
Test Frequency Range:	9kHz to 40GHz Measurement Distance: 3m (Semi-Anechoic Chamber)								
Test site:									
Receiver setup:	Frequency		Detector	RBW	VBW	Value			
	9kHz-150KHz		Quasi-peak	200Hz	1kHz	Quasi-peak Value			
	150kHz-30MH		Quasi-peak	9kHz	30kHz	Quasi-peak Value			
	30MHz-1GH	Z	Quasi-peak Peak	120KHz 1MHz	300KHz 3MHz	Quasi-peak Value Peak Value			
	Above 1GHz	Z	AV	1MHz	3MHz	Average Value			
Limit:			710	TIVITIZ	OWITIZ	7tvolage value			
Liiiit.	Frequency (MHz)	Field	d strength (microvo	lts/meter)	Measuremen	nt distance (meters)			
	0.009-0.490	_	0/F(kHz)			300			
	0.490-1.705 1.705-30.0	30	00/F(kHz)			30 30			
	30-88	100	**			3			
	88-216	150°				3			
	216-960 Above 960	200°				3			
	Above 960	500			19/19/10/19/19/19				
Test Procedure:	Substitution me emission levels The following to 1>.Below 1GH: 1. The EUT voice 1GHz and meter camposition of 2. The EUT antenna, antenna to 3. The anterna the ground Both horizamake the 4. For each	etts e etho s of est z ter was 1.5 hber f the was whide owe nna d to zont mea sus	mploying an and was perform the EUT. procedure as the st procedure: placed on the meters for about the table was highest radiates set 3 meters on was mounted the determine the data and vertical and vertical asurement.	average de	ating table above the 60 degrees the interfere p of a variameter to fo value of the arwas arran	(0.8m for below ground at a 3 to determine the ence-receiving able-height ur meters above e field strength. Intenna are set to ged to its worst			
	case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 2>.Above 1GHz test procedure: 1. On the test site as test setup graph above,the EUT shall be placed at								

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



- the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi)

Pg is the generator output power into the substitution antenna.


Test setup:

For radiated emissions from 9kHz to 30MHz

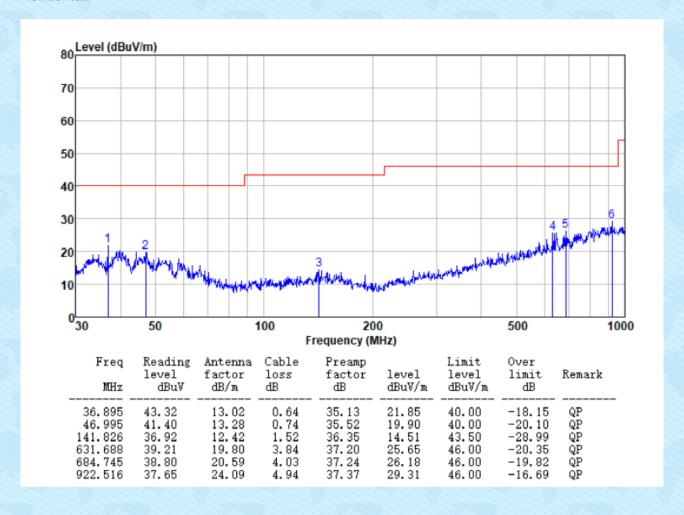
For radiated emissions from 30MHz to1GHz

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

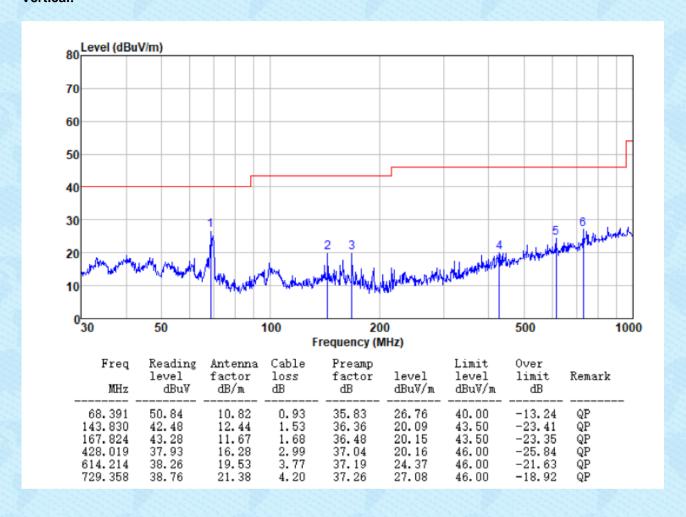
Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~1GHz

Pre-scan all test modes, found worst case at 802.11ac(VHT80) 5210MHz, and so only show the test result of 802.11ac(VHT80) 5210MHz


Horizontal:

Vertical:

Report No.: GTS202211000045F04

Above 1GHz:

	802.1	1ac(HT20)			Test Frequency: 5180MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10360	36.35	38.96	8.27	35.64	47.94	68.2	-20.26	Vertical		
15540	34.96	38.4	10.57	35.35	48.58	68.2	-19.62	Vertical		
10360	35	38.96	8.27	35.64	46.59	68.2	-21.61	Horizontal		
15540	30.86	38.4	10.57	35.35	44.48	68.2	-23.72	Horizontal		
10360	28.46	38.96	8.27	35.64	40.05	54	-13.95	Vertical		
15540	24.56	38.4	10.57	35.35	38.18	54	-15.82	Vertical		
10360	25.99	38.96	8.27	35.64	37.58	54	-16.42	Horizontal		
15540	24.98	38.4	10.57	35.35	38.6	54	-15.4	Horizontal		

	802.1	1ac(HT20)			Test Frequency: 5200MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10400	32.46	39.01	8.29	35.67	44.09	68.2	-24.11	Vertical		
15600	33.84	38.3	10.62	35.36	47.4	68.2	-20.8	Vertical		
10400	33.01	39.01	8.29	35.67	44.64	68.2	-23.56	Horizontal		
15600	32.82	38.3	10.62	35.36	46.38	68.2	-21.82	Horizontal		
10400	28.67	39.01	8.29	35.67	40.3	54	-13.7	Vertical		
15600	28.32	38.3	10.62	35.36	41.88	54	-12.12	Vertical		
10400	27.9	39.01	8.29	35.67	39.53	54	-14.47	Horizontal		
15600	24.16	38.3	10.62	35.36	37.72	54	-16.28	Horizontal		

	802.1	1ac(HT20)			Test Frequency: 5240MHz					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480	35.6	39.15	8.32	35.78	47.29	68.2	-20.91	Vertical		
15720	31.31	38	10.72	35.37	44.66	68.2	-23.54	Vertical		
10480	32.95	39.15	8.32	35.78	44.64	68.2	-23.56	Horizontal		
15720	33.66	38	10.72	35.37	47.01	68.2	-21.19	Horizontal		
10480	27.2	39.15	8.32	35.78	38.89	54	-15.11	Vertical		
15720	24.92	38	10.72	35.37	38.27	54	-15.73	Vertical		
10480	26.07	39.15	8.32	35.78	37.76	54	-16.24	Horizontal		
15720	26.26	38	10.72	35.37	39.61	54	-14.39	Horizontal		

802.11ac(HT40)					Test Frequency: 5190MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380	35.88	39.01	8.28	35.67	47.5	68.2	-20.7	Vertical
15570	32.05	38.3	10.6	35.36	45.59	68.2	-22.61	Vertical
10380	31.31	39.01	8.28	35.67	42.93	68.2	-25.27	Horizontal
15570	32.46	38.3	10.6	35.36	46	68.2	-22.2	Horizontal
10380	26.4	39.01	8.28	35.67	38.02	54	-15.98	Vertical
15570	25.5	38.3	10.6	35.36	39.04	54	-14.96	Vertical
10380	24.07	39.01	8.28	35.67	35.69	54	-18.31	Horizontal
15570	22.29	38.3	10.6	35.36	35.83	54	-18.17	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11ac(HT40)					Test Frequency: 5230MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460	33.17	39.11	8.31	35.75	44.84	68.2	-23.36	Vertical
15690	31.71	38.1	10.7	35.37	45.14	68.2	-23.06	Vertical
10460	33.56	39.11	8.31	35.75	45.23	68.2	-22.97	Horizontal
15690	33.34	38.1	10.7	35.37	46.77	68.2	-21.43	Horizontal
10460	27.28	39.11	8.31	35.75	38.95	54	-15.05	Vertical
15690	27.13	38.1	10.7	35.37	40.56	54	-13.44	Vertical
10460	27.63	39.11	8.31	35.75	39.3	54	-14.7	Horizontal
15690	26.19	38.1	10.7	35.37	39.62	54	-14.38	Horizontal

802.11ac(HT80)					Test Frequency: 5210MHz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420	32.41	39.06	8.29	35.71	44.05	68.2	-24.15	Vertical
15630	34.58	38.2	10.65	35.36	48.07	68.2	-20.13	Vertical
10420	35.18	39.06	8.29	35.71	46.82	68.2	-21.38	Horizontal
15630	29.07	38.2	10.65	35.36	42.56	68.2	-25.64	Horizontal
10420	27.59	39.06	8.29	35.71	39.23	54	-14.77	Vertical
15630	27.57	38.2	10.65	35.36	41.06	54	-12.94	Vertical
10420	23.9	39.06	8.29	35.71	35.54	54	-18.46	Horizontal
15630	25.2	38.2	10.65	35.36	38.69	54	-15.31	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

7.7 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data: The detailed test data see Appendix.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---