

FCC Test Report

Report No. : 1812C50131012502

Applicant : SprintRay Inc

Address 2710 Media Center Dr, Suite 100A, Los

Angeles, CA 90065-1700, USA

Product Name : Midas

Report Date : 2025-05-14

Shenzhen Anbotek Compliance Laboratory Limited

Hotline

400-003-0500 www.anbotek.com

Contents

1. General Information	5
1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List	5
2. Conducted Emission at AC power line	12
2.1. EUT Operation	12
3. Maximum conducted output power	15
3.1. EUT Operation	16
4. Undesirable emission limits (below 1GHz)	21
4.1. EUT Operation	23
APPENDIX I TEST SETUP PHOTOGRAPH	26

TEST REPORT

Applicant SprintRay Inc

Zhejiang Xunshi Technology Co., Ltd Manufacturer

Product Name Midas

Test Standard(s)

Model No. SRP2304A

SprintRay Trade Mark

: Input: 100-240VAC, 50/60Hz,140W Rating(s)

> 47 CFR Part 15E ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 : KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

KDB 905462 D03 UNII Clients Without Radar Detection New Rules

v01r02

KDB 662911 D01 Multiple Transmitter Output v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	2025-03-31	
Date of Test:	2025-03-31 to 2025-04-15	
Prepared By:	Haidi Huang	
	(Haidi Huang)	
Approved & Authorized Signer:	(ingkong)in	
	(Kingkong Jin)	

Revision History

Report Version	Description	Issued Date
R00	Original Issue. (Note 1)	2025-01-16
R01	Original Issue. (Note 2)	2025-05-14

Note 1:

This is a Class II application which was based on the original report 18220WC40089602. The difference between the original device and current one described as following:

- 1. Change the wiring board in the EUT.
- 2. Change the Test Setup Photograph, External Photograph, Internal Photograph.
- 3. Change the Address of the Factory.

Based on the change, only Conducted emissions, Radiated spurious emissions were retested. Other tests were validated against the worst Modes of the original data.

Note 2:

This is a Class II application which was based on the original report 1812C40179312502. The difference between the original device and current one described as following:

- 1. Speakers are added to EUT.
- 2. Update a set of power supplies from a new power supply manufacturer.
- 3. Update internal photograph.

The changes are not related with the other RF parameters, only conducted emission and spurious emission(below 1GHz) were retested.

1. General Information

1.1. Client Information

Applicant	:	SprintRay Inc	
Address	:	2710 Media Center Dr, Suite 100A, Los Angeles, CA 90065-1700, USA	
Manufacturer	:	hejiang Xunshi Technology Co., Ltd	
Address	:	4 / F, building 2, Qihang building, science and Technology Park, 586 Xihuan Road, Kebei Economic Development Zone, Keqiao District, Shaoxing City, China	
Factory	:	Zhejiang Xunshi Technology Co., Ltd	
Address	:	No.79 Shuguang Road, Kebei Industrial Zone, Qixian Sub-district, Keqiao District,Shaoxing, Zhejiang,312000, China	

1.2. Description of Device (EUT)

.2. Description of Device (EUT)				
Product Name	:	Midas		
Model No.	:	SRP2304A		
Trade Mark	:	**SprintRay		
Test Power Supply	:	AC 120V/60Hz		
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)		
Adapter	:	N/A		
RF Specification				
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 5210MHz; U-NII Band 2A: 5290MHz; U-NII Band 2A: 5290MHz; U-NII Band 3: 5775MHz		
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11; U-NII Band 3: 5; 802.11n(HT40)/ac(VHT40)/ax(HEW40):		

		U-NII Band 1: 2; U-NII Band 2A: 2; U-NII Band 2C: 5; U-NII Band 3: 2;	U-NII Band 2A: 2; U-NII Band 2C: 5;		
		802.11ac(VHT80)/ax(HE U-NII Band 1: 1; U-NII Band 2A: 1; U-NII Band 2C: 2; U-NII Band 3: 1	W80):		
Modulation Type	:	802.11ac: OFDM (BPSK	QPSK, 16QAM, 64QAM); QPSK, 16QAM, 64QAM); , QPSK, 16QAM, 64QAM, K, QPSK, 16QAM, 64QAM		
Antenna Type	:	PCB Antenna			
Antenna Gain(Peak) Directional antenna gain	:	WiFi 5.2G ANT1: 3.92dB WiFi 5.2G ANT2: 3.92dB WiFi 5.3G ANT1: 4dBi WiFi 5.3G ANT2: 4dBi WiFi 5.6G ANT1: 3.31dB WiFi 5.6G ANT2: 3.31dB WiFi 5.8G ANT1: 3.35dB WiFi 5.8G ANT2: 3.35dB WiFi 5.2G: 6.93dBi WiFi 5.3G: 7.01dBi WiFi 5.6G: 6.32dBi	i i i		
		WiFi 5.8G: 6.36dBi ☐Outdoor AP	☐Indoor AP	☐Point-to-point AP	
Device Type	:	⊠Client			
TPC Function	:	☐With TPC	⊠Without 1	ГРС	
DFS Type	:	⊠Slave without radar de ☐Master	etection Slave wit	h radar detection	
(2) For a more detaile User's Manual.	ed fe 20)/	ation are provided by custo eatures description, please ac(VHT20)/ax(HEW20), 8	e refer to the manufacture	·	

1.3. Auxiliary Equipment Used During Test

(4) Directional gain = 10 log[(10^{G1}/₂₀ + 10^{G2}/₂₀) ²/₂] dBi

Title	Manufacturer	Model No.	Serial No.

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	1
44	5220	1	1	1	/
48	5240	/	/	/	/

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310	/	/
60	5300	/	/	/	/
64	5320	/	1	1	1

Operation Band: U-NII Band 2C

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590	/	1
112	5560	126	5630	/	1
116	5580	134	5670	/	1
120	5600	/	/	/	1
124	5620	/	/	/	1
128	5640	1	/	/	1
132	5660	1	1	1	1
136	5680	1	1	/	1
140	5700	1	1	1	1

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795	/	/
157	5785	/	/	/	1
161	5805	1	1	1	1
165	5825	1	1	1	/

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM5	Keep the EUT works in normal operating mode and connect to companion device

Note: 802.11ax mode only support full resource unit size.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Conducted Output Power	0.76dB
Radiated emissions (Below 30MHz)	3.53dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	Р
Maximum conducted output power	Mode1,2,3,4	Р
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	Р
Note:		

P: Pass

N: N/A, not applicable

Report No.: 1812C50131012502

Page 10 of 26

FCC ID: 2A96L-SRP2304A

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.
- 7. The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

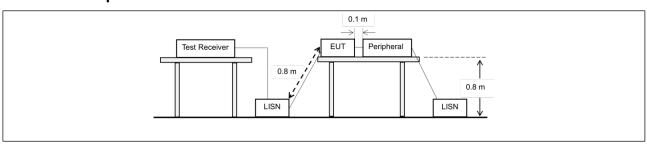
The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Conducted Emission at AC power line							
Item	Equipment Manufacturer Model No. Serial No. Last Cal. C					Cal.Due Date	
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08	
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2025-01-13	2026-01-12	
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	1	/	
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08	

Maxir	Maximum conducted output power							
Item	Equipment Manufacturer Model No. Serial No.				Last Cal.	Cal.Due Date		
	Constant			2023-10-16	2024-10-15			
1	Temperature Humidity Chamber	lumidity ZHONGJIAN KHWS80B		N/A	2024-10-14	2025-10-13		
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20 2024-09-09	2024-10-19 2025-09-08		
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2024-05-06	2025-05-05		
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21		
5	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03		

Unde	Undesirable emission limits (below 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13	
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13	
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22	
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11	
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	1	1	

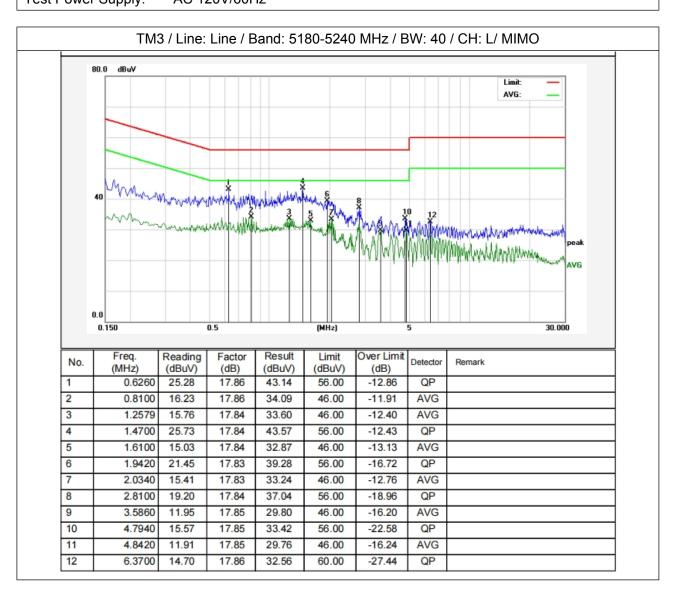

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)					
	Frequency of emission (MHz)	Conducted limit (dBµV)				
Test Limit:		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of t	he frequency.				
Test Method:	ANSI C63.10-2020 section 6.2					

2.1. EUT Operation

In 201 Operation					
Operating Envi	ronment:				
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.				

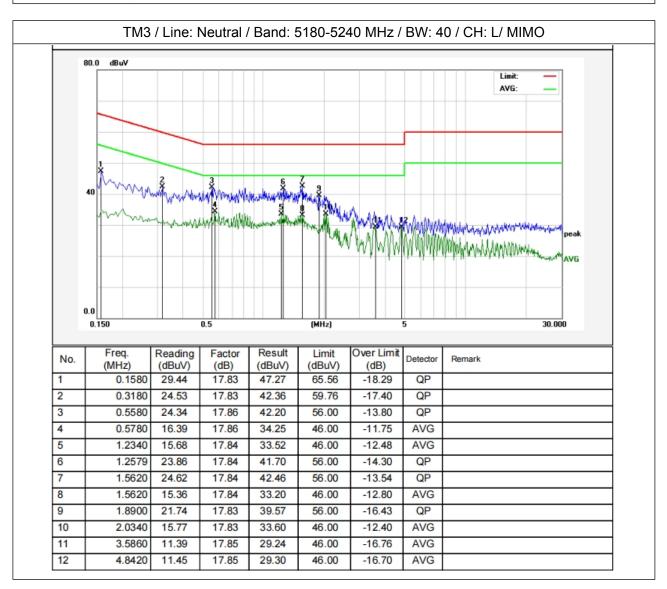
2.2. Test Setup



2.3. Test Data

Temperature: 24.7 °C Humidity: 48.1 % Atmospheric Pressure: 101 kPa

Test Power Supply: AC 120V/60Hz



Temperature: 24.7 °C Humidity: 48.1 % Atmospheric Pressure: 101 kPa

Test Power Supply: AC 120V/60Hz

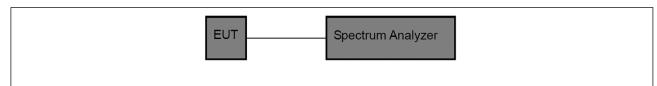
Note:

- 1. Only record the worst data (802.11ax(HEW20) MIMO) in the report.
- 2.Result($dB\mu V$) = Reading($dB\mu V$) + Factor(dB);

Over Limit(dB) = Result(dB μ V) - Limit(dB μ V)

3. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit.	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4


3.1. EUT Operation

Operating Envi	Operating Environment:					
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only					

the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature:	24.6 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Test Mode	Antenna	Frequency[MHz]	Channel Power [dBm]	Duty Cycle [%]	DC Factor [dBm]	Result [dBm]	Limit [dBm]	Verdict
11A	Ant1	5180	13.31	93.29	0.30	13.61	≤23.98	PASS
11A	Ant2	5180	13.32	93.33	0.30	13.62	≤23.98	PASS
11A	Ant1	5200	13.08	93.33	0.30	13.38	≤23.98	PASS
11A	Ant2	5200	13.52	93.29	0.30	13.82	≤23.98	PASS
11A	Ant1	5240	13.12	93.33	0.30	13.42	≤23.98	PASS
11A	Ant2	5240	12.52	93.29	0.30	12.82	≤23.98	PASS
11A	Ant1	5260	13.23	93.33	0.30	13.53	≤23.98	PASS
11A	Ant2	5260	12.17	93.33	0.30	12.47	≤23.98	PASS
11A	Ant1	5300	12.68	93.33	0.30	12.98	≤23.98	PASS
11A	Ant2	5300	10.77	93.29	0.30	11.07	≤23.98	PASS
11A	Ant1	5320	12.45	93.29	0.30	12.75	≤23.98	PASS
11A	Ant2	5320	10.65	93.29	0.30	10.95	≤23.98	PASS
11A	Ant1	5500	14.28	93.29	0.30	14.58	≤23.98	PASS
11A	Ant2	5500	13.40	93.33	0.30	13.70	≤23.98	PASS
11A	Ant1	5580	12.47	93.96	0.27	12.74	≤23.98	PASS
11A	Ant2	5580	12.45	93.29	0.30	12.75	≤23.98	PASS
11A	Ant1	5700	12.11	93.29	0.30	12.41	≤23.98	PASS
11A	Ant2	5700	12.06	93.33	0.30	12.36	≤23.98	PASS
11A	Ant1	5745	13.24	93.96	0.27	13.51	≤30.00	PASS
11A	Ant2	5745	13.25	93.33	0.30	13.55	≤30.00	PASS
11A	Ant1	5785	13.68	93.29	0.30	13.98	≤30.00	PASS
11A	Ant2	5785	13.70	93.33	0.30	14.00	≤30.00	PASS
11A	Ant1	5825	13.90	93.29	0.30	14.20	≤30.00	PASS
11A	Ant2	5825	13.93	93.29	0.30	14.23	≤30.00	PASS
11N20MIMO	Ant1	5180	14.33	92.91	0.32	14.65	≤23.98	PASS
11N20MIMO	Ant2	5180	14.32	92.91	0.32	14.64	≤23.98	PASS
11N20MIMO	total	5180				17.66	≤23.05	PASS
11N20MIMO	Ant1	5200	14.14	92.91	0.32	14.46	≤23.98	PASS
11N20MIMO	Ant2	5200	14.19	92.91	0.32	14.51	≤23.98	PASS
11N20MIMO	total	5200				17.50	≤23.05	PASS
11N20MIMO	Ant1	5240	13.60	92.86	0.32	13.92	≤23.98	PASS
11N20MIMO	Ant2	5240	13.67	92.91	0.32	13.99	≤23.98	PASS
11N20MIMO	total	5240				16.97	≤23.05	PASS
11N20MIMO	Ant1	5260	12.82	92.91	0.32	13.14	≤23.98	PASS
11N20MIMO	Ant2	5260	12.83	92.91	0.32	13.15	≤23.98	PASS
11N20MIMO	total	5260				16.16	≤22.97	PASS
11N20MIMO	Ant1	5300	12.54	92.91	0.32	12.86	≤23.98	PASS
11N20MIMO	Ant2	5300	12.48	92.91	0.32	12.80	≤23.98	PASS
11N20MIMO	total	5300				15.84	≤22.97	PASS
11N20MIMO	Ant1	5320	12.37	92.91	0.32	12.69	≤23.98	PASS
11N20MIMO	Ant2	5320	12.36	92.86	0.32	12.68	≤23.98	PASS
11N20MIMO	total	5320				15.70	≤22.97	PASS
11N20MIMO	Ant1	5500	13.11	92.86	0.32	13.43	≤23.98	PASS
11N20MIMO	Ant2	5500	13.10	93.57	0.29	13.39	≤23.98	PASS
11N20MIMO	total	5500				16.42	≤23.66	PASS

11N20MIMO	Ant1	5580	12.22	92.86	0.32	12.54	≤23.98	PASS
11N20MIMO	Ant2	5580	12.28	92.86	0.32	12.60	≤23.98	PASS
11N20MIMO	total	5580				15.58	≤23.66	PASS
11N20MIMO	Ant1	5700	10.95	92.91	0.32	11.27	≤23.98	PASS
11N20MIMO	Ant2	5700	10.94	92.91	0.32	11.26	≤23.98	PASS
11N20MIMO	total	5700				14.28	≤23.66	PASS
11N20MIMO	Ant1	5745	13.09	92.91	0.32	13.41	≤30.00	PASS
11N20MIMO	Ant2	5745	13.12	92.86	0.32	13.44	≤30.00	PASS
11N20MIMO	total	5745				16.44	≤29.64	PASS
11N20MIMO	Ant1	5785	13.59	92.91	0.32	13.91	≤30.00	PASS
11N20MIMO	Ant2	5785	13.60	92.91	0.32	13.91	≤30.00	PASS
			13.00	1				PASS
11N20MIMO	total	5785				16.93	≤29.64	
11N20MIMO	Ant1	5825	13.75	92.91	0.32	14.07	≤30.00	PASS
11N20MIMO	Ant2	5825	13.80	92.91	0.32	14.12	≤30.00	PASS
11N20MIMO	total	5825				17.11	≤29.64	PASS
11N40MIMO	Ant1	5190	13.99	90.48	0.43	14.42	≤23.98	PASS
11N40MIMO	Ant2	5190	14.30	90.48	0.43	14.73	≤23.98	PASS
11N40MIMO	total	5190				17.59	≤23.05	PASS
11N40MIMO	Ant1	5230	13.62	90.38	0.44	14.06	≤23.98	PASS
11N40MIMO	Ant2	5230	13.73	90.38	0.44	14.17	≤23.98	PASS
11N40MIMO	total	5230				17.13	≤23.05	PASS
11N40MIMO	Ant1	5270	12.29	90.48	0.43	12.72	≤23.98	PASS
11N40MIMO	Ant2	5270	12.29	90.38	0.44	12.73	≤23.98	PASS
11N40MIMO	total	5270				15.74	≤22.97	PASS
11N40MIMO	Ant1	5310	11.77	90.38	0.44	12.21	≤23.98	PASS
11N40MIMO	Ant2	5310	11.72	90.38	0.44	12.16	≤23.98	PASS
11N40MIMO	total	5310				15.20	≤22.97	PASS
11N40MIMO	Ant1	5510	12.60	90.38	0.44	13.04	≤23.98	PASS
11N40MIMO	Ant2	5510	12.58	90.38	0.44	13.02	≤23.98	PASS
11N40MIMO	total	5510				16.04	≤23.66	PASS
11N40MIMO	Ant1	5550	12.01	90.48	0.43	12.44	≤23.98	PASS
11N40MIMO	Ant2	5550	12.01	90.38	0.44	12.45	≤23.98	PASS
11N40MIMO	total	5550				15.46	≤23.66	PASS
11N40MIMO	Ant1	5670	10.51	90.38	0.44	10.95	≤23.98	PASS
11N40MIMO	Ant2	5670	10.57	90.38	0.44	11.01	≤23.98	PASS
11N40MIMO	total	5670				13.99	≤23.66	PASS
11N40MIMO	Ant1	5755	12.87	90.38	0.44	13.31	≤30.00	PASS
11N40MIMO	Ant2	5755	12.84	90.38	0.44	13.28	≤30.00	PASS
11N40MIMO	total	5755	12.04			16.31	≤29.64	PASS
11N40MIMO	Ant1	5795	13.46	90.38	0.44	13.90	≤30.00	PASS
11N40MIMO	Ant2	5795	13.41	90.38	0.44	13.85	≤30.00	PASS
11N40MIMO	total	5795				16.89	≤29.64	PASS
11AC20MIMO	Ant1	5180	14.55	92.91	0.32	14.87	≤23.98	PASS
11AC20MIMO	Ant2	5180	14.55	92.91	0.32	14.83	≤23.98	PASS
11AC20MIMO	total	5180		32.30		17.86	≤23.96	PASS
11AC20MIMO	Ant1	5200	14.33	92.91	0.32	14.65	≤23.05 ≤23.98	PASS
								PASS
11AC20MIMO	Ant2	5200	14.31	92.91	0.32	14.63	≤23.98	
11AC20MIMO	total	5200	12.00	02.06	0.22	17.65	≤23.05	PASS
11AC20MIMO	Ant1	5240	13.80	92.96	0.32	14.12	≤23.98	PASS
11AC20MIMO	Ant2	5240	13.81	92.96	0.32	14.13	≤23.98	PASS
11AC20MIMO	total	5240	40.70			17.14	≤23.05	PASS
11AC20MIMO	Ant1	5260	12.78	92.91	0.32	13.10	≤23.98	PASS
11AC20MIMO	Ant2	5260	12.80	92.91	0.32	13.12	≤23.98	PASS
11AC20MIMO	total	5260				16.12	≤22.97	PASS
11AC20MIMO	Ant1	5300	12.60	92.91	0.32	12.92	≤23.98	PASS
11AC20MIMO	Ant2	5300	12.61	92.96	0.32	12.93	≤23.98	PASS
11AC20MIMO	total	5300				15.94	≤22.97	PASS
11AC20MIMO	Ant1	5320	12.31	92.91	0.32	12.63	≤23.98	PASS
11AC20MIMO	Ant2	5320	12.33	92.91	0.32	12.65	≤23.98	PASS
11AC20MIMO	total	5320				15.65	≤22.97	PASS
11AC20MIMO	Ant1	5500	13.20	92.91	0.32	13.52	≤23.98	PASS
11AC20MIMO	Ant2	5500	13.07	92.96	0.32	13.39	≤23.98	PASS

11AC20MIMO	total	5500				16.47	≤23.66	PASS
11AC20MIMO	Ant1	5580	12.27	92.96	0.32	12.59	≤23.98	PASS
11AC20MIMO	Ant2	5580	12.26	92.91	0.32	12.58	≤23.98	PASS
11AC20MIMO	total	5580				15.60	≤23.66	PASS
11AC20MIMO	Ant1	5700	10.98	92.91	0.32	11.30	≤23.98	PASS
11AC20MIMO	Ant2	5700	10.97	92.96	0.32	11.29	≤23.98	PASS
11AC20MIMO	total	5700				14.31	≤23.66	PASS
11AC20MIMO		5745	13.07	92.91	0.32	13.39	≤30.00	PASS
-	Ant1						≤30.00	
11AC20MIMO	Ant2	5745	13.10	92.96	0.32	13.42		PASS
11AC20MIMO	total	5745				16.42	≤29.64	PASS
11AC20MIMO	Ant1	5785	13.63	92.96	0.32	13.95	≤30.00	PASS
11AC20MIMO	Ant2	5785	13.69	92.91	0.32	14.01	≤30.00	PASS
11AC20MIMO	total	5785				16.99	≤29.64	PASS
11AC20MIMO	Ant1	5825	13.72	92.91	0.32	14.04	≤30.00	PASS
11AC20MIMO	Ant2	5825	13.71	92.96	0.32	14.03	≤30.00	PASS
11AC20MIMO	total	5825				17.05	≤29.64	PASS
11AC40MIMO	Ant1	5190	14.32	86.84	0.61	14.93	≤23.98	PASS
11AC40MIMO	Ant2	5190	14.31	86.84	0.61	14.92	≤23.98	PASS
11AC40MIMO	total	5190				17.94	≤23.05	PASS
11AC40MIMO	Ant1	5230	13.67	86.67	0.62	14.29	≤23.98	PASS
11AC40MIMO	Ant2	5230	13.67	86.84	0.61	14.28	≤23.98	PASS
11AC40MIMO	total	5230				17.30	≤23.05	PASS
11AC40MIMO	Ant1	5270	12.41	86.84	0.61	13.02	≤23.98	PASS
11AC40MIMO	Ant2	5270	12.38	86.84	0.61	12.99	≤23.98	PASS
11AC40MIMO	total	5270				16.02	≤22.97	PASS
11AC40MIMO	Ant1	5310	11.79	86.67	0.62	12.41	≤23.98	PASS
11AC40MIMO	Ant2	5310	11.81	86.84	0.61	12.42	≤23.98	PASS
11AC40MIMO	total	5310				15.43	≤22.97	PASS
11AC40MIMO	Ant1	5510	12.57	86.84	0.61	13.43	≤23.98	PASS
11AC40MIMO	Ant2	5510	12.57	86.84	0.61	13.16	≤23.98	PASS
	-							
11AC40MIMO	total	5510	40.40		0.60	16.20	≤23.66	PASS
11AC40MIMO	Ant1	5550	12.12	86.67	0.62	12.74	≤23.98	PASS
11AC40MIMO	Ant2	5550	12.09	86.84	0.61	12.70	≤23.98	PASS
11AC40MIMO	total	5550				15.73	≤23.66	PASS
11AC40MIMO	Ant1	5670	10.56	86.84	0.61	11.17	≤23.98	PASS
11AC40MIMO	Ant2	5670	10.56	86.84	0.61	11.17	≤23.98	PASS
11AC40MIMO	total	5670				14.18	≤23.66	PASS
11AC40MIMO	Ant1	5755	12.90	86.67	0.62	13.52	≤30.00	PASS
11AC40MIMO	Ant2	5755	12.92	86.84	0.61	13.53	≤30.00	PASS
11AC40MIMO	total	5755				16.54	≤29.64	PASS
11AC40MIMO	Ant1	5795	13.46	86.84	0.61	14.07	≤30.00	PASS
11AC40MIMO	Ant2	5795	13.44	86.84	0.61	14.05	≤30.00	PASS
11AC40MIMO	total	5795				17.07	≤29.64	PASS
11AC80MIMO	Ant1	5210	13.85	76.74	1.15	15.00	≤23.98	PASS
11AC80MIMO	Ant2	5210	13.88	76.19	1.18	15.06	≤23.98	PASS
11AC80MIMO	total	5210				18.04	≤23.05	PASS
11AC80MIMO	Ant1	5290	12.31	76.19	1.18	13.49	≤23.98	PASS
11AC80MIMO	Ant2	5290	12.26	76.19	1.18	13.44	≤23.98	PASS
11AC80MIMO	total	5290				16.48	≤22.97	PASS
11AC80MIMO	Ant1	5530	12.80	76.19	1.18	13.98	≤23.98	PASS
11AC80MIMO	Ant2	5530	12.78	76.74	1.15	13.93	≤23.98	PASS
11AC80MIMO	total	5530				16.97	≤23.66	PASS
11AC80MIMO	Ant1	5610	11.45	76.19	1.18	12.63	≤23.98	PASS
11AC80MIMO	Ant2	5610	11.43	76.19	1.18	12.03	≤23.98	PASS
11AC80MIMO	total	5610	11.54	10.19	1.10	15.69	≤23.66	PASS
				76.40				
11AC80MIMO	Ant1	5775	13.08	76.19	1.18	14.26	≤30.00	PASS
11AC80MIMO	Ant2	5775	13.04	76.19	1.18	14.22	≤30.00	PASS
11AC80MIMO	total	5775	44.07	04.07	0.44	17.25	≤29.64	PASS
11AX20MIMO	Ant1	5180	14.97	91.07	0.41	15.38	≤23.98	PASS
11AX20MIMO	Ant2	5180	14.94	91.07	0.41	15.35	≤23.98	PASS
11AX20MIMO	total	5180				18.38	≤23.05	PASS
11AX20MIMO	Ant1	5200	14.75	73.38	1.34	16.09	≤23.98	PASS

11AX20MIMO	Ant2	5200	14.64	91.07	0.41	15.05	≤23.98	PASS
11AX20MIMO	total	5200				18.61	≤23.05	PASS
11AX20MIMO	Ant1	5240	14.29	91.07	0.41	14.70	≤23.98	PASS
11AX20MIMO	Ant2	5240	14.40	91.07	0.41	14.81	≤23.98	PASS
11AX20MIMO	total	5240				17.77	≤23.05	PASS
11AX20MIMO	Ant1	5260	13.86	91.07	0.41	14.27	≤23.98	PASS
11AX20MIMO	Ant2	5260	13.87	91.07	0.41	14.28	≤23.98	PASS
11AX20MIMO	total	5260				17.29	≤22.97	PASS
11AX20MIMO	Ant1	5300	13.56	91.07	0.41	13.97	≤23.98	PASS
11AX20MIMO	Ant2	5300	13.57	91.07	0.41	13.98	≤23.98	PASS
11AX20MIMO		5300		91.07		16.99		PASS
	total			04.00	0.27		≤22.97	
11AX20MIMO	Ant1	5320	13.58	91.89	0.37	13.95	≤23.98	PASS
11AX20MIMO	Ant2	5320	13.51	91.07	0.41	13.92	≤23.98	PASS
11AX20MIMO	total	5320				16.95	≤22.97	PASS
11AX20MIMO	Ant1	5500	14.44	91.07	0.41	14.85	≤23.98	PASS
11AX20MIMO	Ant2	5500	14.41	91.07	0.41	14.82	≤23.98	PASS
11AX20MIMO	total	5500				17.85	≤23.66	PASS
11AX20MIMO	Ant1	5580	13.46	91.89	0.37	13.83	≤23.98	PASS
11AX20MIMO	Ant2	5580	13.56	91.89	0.37	13.93	≤23.98	PASS
11AX20MIMO	total	5580				16.89	≤23.66	PASS
11AX20MIMO	Ant1	5700	12.06	91.89	0.37	12.43	≤23.98	PASS
11AX20MIMO	Ant2	5700	12.12	91.07	0.41	12.53	≤23.98	PASS
11AX20MIMO	total	5700				15.49	≤23.66	PASS
11AX20MIMO	Ant1	5745	14.23	91.07	0.41	14.64	≤30.00	PASS
11AX20MIMO	Ant2	5745	14.31	91.07	0.41	14.72	≤30.00	PASS
11AX20MIMO	total	5745				17.69	≤29.64	PASS
11AX20MIMO	Ant1	5785	15.00	91.89	0.37	15.37	≤30.00	PASS
11AX20MIMO	Ant2	5785	14.98	91.07	0.41	15.39	≤30.00	PASS
11AX20MIMO	total	5785				18.39	≤29.64	PASS
11AX20MIMO	Ant1	5825	14.99	91.07	0.41	15.40	≤30.00	PASS
11AX20MIMO	Ant2	5825	15.02	91.07	0.41	15.43	≤30.00	PASS
11AX20MIMO	total	5825				18.43	≤29.64	PASS
11AX40MIMO	Ant1	5190	13.57	84.38	0.74	14.31	≤23.98	PASS
11AX40MIMO	Ant2	5190	13.69	84.38	0.74	14.43	≤23.98	PASS
11AX40MIMO	total	5190		04.50		17.38	≤23.05	PASS
11AX40MIMO		5230	12.75	84.38	0.74	13.49	≤23.98	PASS
	Ant1	5230	12.75	84.38			≤23.98	PASS
11AX40MIMO 11AX40MIMO	Ant2				0.74	13.62		
	total	5230	40.55		0.74	16.57	≤23.05	PASS
11AX40MIMO	Ant1	5270	13.55	84.38	0.74	14.29	≤23.98	PASS
11AX40MIMO	Ant2	5270	13.55	84.38	0.74	14.29	≤23.98	PASS
11AX40MIMO	total	5270			0.74	17.30	≤22.97	PASS
11AX40MIMO	Ant1	5310	12.93	84.38	0.74	13.67	≤23.98	PASS
11AX40MIMO	Ant2	5310	13.05	84.38	0.74	13.79	≤23.98	PASS
11AX40MIMO	total	5310				16.74	≤22.97	PASS
11AX40MIMO	Ant1	5510	13.92	84.38	0.74	14.66	≤23.98	PASS
11AX40MIMO	Ant2	5510	13.90	84.38	0.74	14.64	≤23.98	PASS
11AX40MIMO	total	5510				17.66	≤23.66	PASS
11AX40MIMO	Ant1	5550	13.37	84.38	0.74	14.11	≤23.98	PASS
11AX40MIMO	Ant2	5550	13.35	84.38	0.74	14.09	≤23.98	PASS
11AX40MIMO	total	5550				17.11	≤23.66	PASS
11AX40MIMO	Ant1	5670	11.80	84.38	0.74	12.54	≤23.98	PASS
11AX40MIMO	Ant2	5670	11.86	84.38	0.74	12.60	≤23.98	PASS
11AX40MIMO	total	5670				15.58	≤23.66	PASS
11AX40MIMO	Ant1	5755	14.19	84.38	0.74	14.93	≤30.00	PASS
11AX40MIMO	Ant2	5755	14.18	84.38	0.74	14.92	≤30.00	PASS
11AX40MIMO	total	5755				17.94	≤29.64	PASS
11AX40MIMO	Ant1	5795	14.71	84.38	0.74	15.45	≤30.00	PASS
11AX40MIMO	Ant2	5795	14.73	84.38	0.74	15.47	≤30.00	PASS
11AX40MIMO	total	5795				18.47	≤29.64	PASS
11AX80MIMO	Ant1	5210	12.97	74.36	1.29	14.26	≤23.98	PASS
11AX80MIMO	Ant2	5210	12.95	74.36	1.29	14.24	≤23.98	PASS
11AX80MIMO	total	5210	12.93		1.29	17.26	≤23.95	PASS
LITANOUIVIIIVIO	เบเสเ	JZ 10				17.20	_≥∠3.03	FASS

11AX80MIMO	Ant1	5290	13.54	74.36	1.29	14.83	≤23.98	PASS
11AX80MIMO	Ant2	5290	13.55	74.36	1.29	14.84	≤23.98	PASS
11AX80MIMO	total	5290				17.85	≤22.97	PASS
11AX80MIMO	Ant1	5530	12.98	74.36	1.29	14.27	≤23.98	PASS
11AX80MIMO	Ant2	5530	12.91	74.36	1.29	14.20	≤23.98	PASS
11AX80MIMO	total	5530				17.25	≤23.66	PASS
11AX80MIMO	Ant1	5610	11.64	74.36	1.29	12.93	≤23.98	PASS
11AX80MIMO	Ant2	5610	11.66	74.36	1.29	12.95	≤23.98	PASS
11AX80MIMO	total	5610				15.95	≤23.66	PASS
11AX80MIMO	Ant1	5775	14.23	74.36	1.29	15.52	≤30.00	PASS
11AX80MIMO	Ant2	5775	14.19	74.36	1.29	15.48	≤30.00	PASS
11AX80MIMO	total	5775				18.51	≤29.64	PASS

Note: For pre-scan, the result is equal to original, so the original data is referenced.

4. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)							
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the							
	following table:							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2020, section 12.7.4, 12.7.5							
Procedure:	meters above the groun was rotated 360 degrees b. The EUT was set 3 or antenna, which was more. The antenna height is ground to determine the and vertical polarizations d. For each suspected eand then the antenna watest frequency of below and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testi would be reported. Other would be re-tested one of the reported in a data set.	f the EUT in peak mode was 1 ng could be stopped and the perwise the emissions that did noby one using quasi-peak meth	chamber. The table the highest radiation. erference-receiving height antenna tower. It meters above the trength. Both horizontal like the measurement. It worst case ter to 4 meters (for the led to heights 1 meter) af degrees to find the function and Specified and lode lower than the peak values of the EUT not have 10dB margin and as specified and					

- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

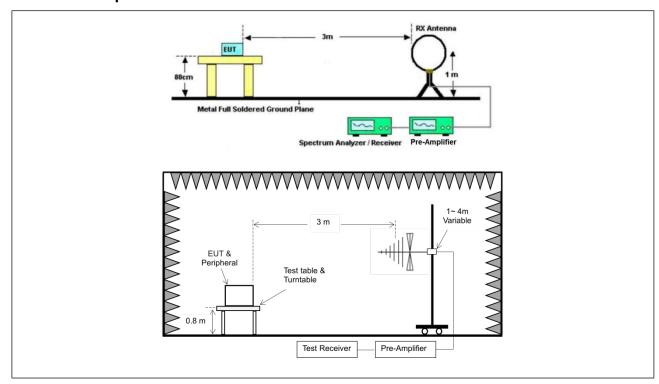
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the

highest point could be found when testing, so only the above harmonics had been displayed.

4.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

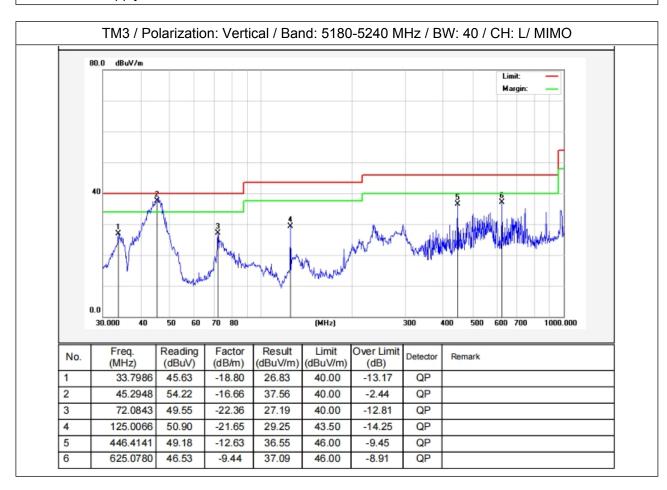
4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 24.6 °C Humidity: 46 % Atmospheric Pressure: 101 kPa


Test Power Supply: AC 120V/60Hz

Temperature: 24.6 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Test Power Supply: AC 120V/60Hz

Note:

- 1. Only record the worst data (802.11ax(HEW20) MIMO) in the report.
- 2. Result($dB\mu V/m$) = Reading($dB\mu V$) + Factor(dB/m); Over Limit(dB) = Result($dB\mu V/m$) - Limit($dB\mu V/m$)

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

