

CALIBRATION DATA PROBE CALIBRATION DATA

COMOSAR E-Field Probe Calibration Report

Ref: ACR.121.5.24.BES.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAI STREET

BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 2023-EPGO-414

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 04/30/2024

Accreditations #2-6789 Scope available on www_cofrac.ft

The use of the Cofcac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR. Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 171.5.24 BES A

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	4/30/2024	filofing
Checked & approved by:	Jérôme Luc	Technical Manager	4/30/2024	馬
Authorized by:	Yann Toutain	Laboratory Director	Gan	DURAN

Yann Toutain ID

Signature numérique de Yann Toutain ID Date: 2024-04:30 19:35:52+02'00'

	Customer Name		
Distribution	ATTESTATION OF GLOBAL		
Distribution 1	COMPLIANCE		
	CO. LTD.		

Name	Date	Modifications
Pedro Ruiz	4/30/2024	Initial release
	-	
	51	
	NAME AND ADDRESS OF THE OWNER, TH	THE RESIDENCE OF THE PROPERTY

Page: 2/10

Translate ACR. DDD.N. YEAR GB. ISSUE COMOSAR Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which at it admitted and is not to be released to whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 171.5.24 BES A

TABLE OF CONTENTS

1	Dev	rice Under Test4	
2	Pro	duct Description	
	2.1	General Information	4
3	Mea	asurement Method	
	3.1	Sensitivity	4
	3.2	Linearity	5
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Results	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Ver	ification Results8	
7	List	t of Equipment9	

Page: 3/10

Translate ACR. DDD.N. YEAR GB. ISSUE COMOSAR Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which at it admitted and is not to be released to whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is accounted by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 121 5 24 BES A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	2023-EPGO-414		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.222 MΩ		
2004:175474 (1100-1101)	Dipole 2: R2=0.226 MΩ		
	Dipole 3: R3=0.248 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm	
Length of Individual Dipoles	2 mm	
Maximum external diameter	8 mm	
Probe Tip External Diameter	2.5 mm	
Distance between dipoles / probe extremity	1 mm	

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/10

Temptate ACR. DDD.N. YT.MV GB. ISSUE COMOSAR. Probe vt.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is admitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 121 5 24 BES A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{bs} + d_{aton} along lines that are approximately normal to the surface:

SAR uncertainty [%] =
$$\delta$$
SAR be $\frac{(d_{be} + d_{elop})^2}{2d_{elop}} \frac{(e^{-d_{be}/(\delta \rho_0)})}{\delta/2}$ for $(d_{be} + d_{elop}) < 10 \text{ mm}$

where

SARuncertainty is the uncertainty in percent of the probe boundary effect

is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

is the separation distance between the first and second measurement points that ∆step.

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz,

∆SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

distance dbe from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/10

Translate ACR.DDD.N. FY.MV GB. ISSUE COMOSAR Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is admitted and is not to be released in whole or part without written approval of MVG.

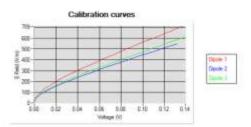
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 171 5 24 BES A

MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition				
Liquid Temperature 20 +/- 1 °C				
Lab Temperature	20 +/- 1 °C			
Lab Humidity	30-70 %			

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi-dipole sensitivity given below for the 3 channels of the probe

Page: 6/10

Translate ACR. DDD.N. FF.MV GB. ISSUE COMOSAR. Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is admitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

Ref ACR 171 5 24 BES A

Normx dipole 1 (μV/(V/m) ²)		
0.60	0.98	0.88

DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
115	104	98	

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

σ=the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4Pw}{ab\delta} e^{\frac{-1S}{\delta}}$$

a-the larger cross-sectional of the waveguide

b=the smaller cross-sectional of the waveguide

δ=the skin depth for the liquid in the waveguide

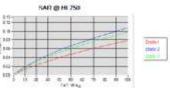
Pw=the power delivered to the liquid

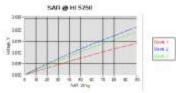
Page: 7/10

Temptate ACR. DDD.N. YT.MV GB. ISSUE COMOSAR. Probe vt.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is admitted and is not to be released in whole or part without written approval of MVG.

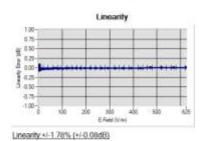
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

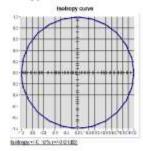



Ref ACR 171 5 24 BES A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

Liquid	Frequency (MHz*)	ConvF
HL750	750	2.04
HL850	835	1.89
HL900	900	1.91
HL1750	1750	2.28
HL1800	1800	1.99
HL1900	1900	2.08
HL2000	2000	2.24
HL2300	2300	2.20
HL2450	2450	2.16
HL2600	2600	2.06
HL5250	5250	1.53
HL5600	5600	1.24
HL5750	5750	1.37


+J-100MHz Non-B00MHz to BGHz and +J-700MHz above BGHz



VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Page: 8/10

Translate ACR. DDD.N. FF.MV GB. ISSUE COMOSAR. Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is admitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref ACR 171.5.24 BES A

7 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test	Version 2	NA NA	Validated. No cal	Validated. No ca
Bench Network Analyzer	Rohde & Schwarz ZVM	100203	required. 08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	NI-USB 5680	170100013	06/2021	06/2026
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Puoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL 1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated, No cal required,	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated, No cal	Validated. No cal required.

Page: 9/10

Translate ACR. DDD.N. YEAR GB. ISSUE COMOSAR Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which at it admitted and is not to be released to whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is accounted by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 171 5 24 BES A

Waveguide	MVG	SN 32/16 WG10_1	Validated, No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated, No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated, No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 10/10

Translate ACR. DDD.N. YEAR GB. ISSUE COMOSAR Probe v1.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which at it admitted and is not to be released to whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is accounted by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

SAR Reference Dipole Calibration Report

Ref: ACR.118.22.22.BES.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAI STREET

BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 29/15 DIP2G450-393

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 04/28/2022

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/13

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 118 22 22 BES A

	Name	Function	Date	Signature
Prepared by:	Jérôme Luc	Technical Manager	4/28/2022	75
Checked by :	Jérôme Luc	Technical Manager	4/28/2022	25
Approved by :	Yann Toutain	Laboratory Director	4/28/2022	Yann TOUTAAN

2022.04.28 17:03:42 +02'00'

	Customer Name
Distribution :	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Name	Date	Modifications
Jérôme Luc	4/28/2022	Initial release
170-20087-7-2008	100-31577/0-5-1	-04000000000000000000000000000000000000
		i
		1
		Jérôme Luc 4/28/2022

Page: 2/13

Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is only be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 118 22 22 BES A

TABLE OF CONTENTS

2 Device Under Test		пш	oducacit	
3.1 General Information 4 Measurement Method	2	De	vice Under Test	
4 Measurement Method 5 4.1 Return Loss Requirements 4.2 Mechanical Requirements 5 Measurement Uncertainty 5 5.1 Return Loss 5 5.2 Dimension Measurement 5 5.3 Validation Measurement 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7 7.3 Body Liquid Measurement 7 7.4 SAR Measurement Result With Body Liquid 1	3			
4 Measurement Method 5 4.1 Return Loss Requirements 4.2 Mechanical Requirements 5 Measurement Uncertainty 5 5.1 Return Loss 5 5.2 Dimension Measurement 5 5.3 Validation Measurement 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7 7.3 Body Liquid Measurement 7 7.4 SAR Measurement Result With Body Liquid 1		3.1	General Information	4
4.2 Mechanical Requirements 5 5 Measurement Uncertainty 5 5.1 Return Loss 5 5.2 Dimension Measurement 5 6.2 Validation Measurement Results 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7 7.3 Body Liquid Measurement 7 7.4 SAR Measurement Result With Body Liquid 7	4	Me		
4.2 Mechanical Requirements 5 5 Measurement Uncertainty 5 5.1 Return Loss 5 5.2 Dimension Measurement 5 6.2 Validation Measurement Results 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7 7.3 Body Liquid Measurement 7 7.4 SAR Measurement Result With Body Liquid 7		4.1	Return Loss Requirements	5
5.1 Retum Loss 5.2 Dimension Measurement 5.3 Validation Measurement Results 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement 7.4 SAR Measurement Result With Body Liquid		4.2		5
5.2 Dimension Measurement 5.3 Validation Measurement 6 6 Calibration Measurement Results	5	Me	asurement Uncertainty5	
5.3 Validation Measurement 6 Calibration Measurement Results 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement 7.4 SAR Measurement Result With Body Liquid		5.1	Return Loss	5
6 Calibration Measurement Results 6 6.1 Return Loss and Impedance In Head Liquid 6 6.2 Return Loss and Impedance In Body Liquid 6 6.3 Mechanical Dimensions 7 7 Validation measurement 7 7.1 Head Liquid Measurement 7 7.2 SAR Measurement Result With Head Liquid 7 7.3 Body Liquid Measurement 7 7.4 SAR Measurement Result With Body Liquid 7		5.2	Dimension Measurement	5
6.1 Return Loss and Impedance In Head Liquid 6.2 Return Loss and Impedance In Body Liquid 6.3 Mechanical Dimensions 7 Validation measurement .7 7.1 Head Liquid Measurement .7 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement 7.4 SAR Measurement Result With Body Liquid		5.3	Validation Measurement	5
6.2 Return Loss and Impedance In Body Liquid 6.3 Mechanical Dimensions 7 Validation measurement	6	Cal	ibration Measurement Results6	
6.3 Mechanical Dimensions		6.1	Return Loss and Impedance In Head Liquid	6
6.3 Mechanical Dimensions 7 Validation measurement		6.2	Return Loss and Impedance In Body Liquid	6
7.1 Head Liquid Measurement 7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement 7.4 SAR Measurement Result With Body Liquid		6.3		7
7.2 SAR Measurement Result With Head Liquid 7.3 Body Liquid Measurement 7.4 SAR Measurement Result With Body Liquid	7	Val	idation measurement	
Body Liquid Measurement SAR Measurement Result With Body Liquid		7.1	Head Liquid Measurement	8
7.4 SAR Measurement Result With Body Liquid		7.2	SAR Measurement Result With Head Liquid	8
		7.3	Body Liquid Measurement	11
8 List of Equipment 13		7.4	SAR Measurement Result With Body Liquid	12
	8	Lis	t of Equipment	

Page: 3/13

Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is accounted by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID2450			
Serial Number	SN 29/15 DIP2G450-393			
Product Condition (new / used)	Used			

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/13

Template ACR. DDD.N. YEAR GBISSUE SAR Reference Dipole vi This document shall not be reproduced, except in fall or in part, without the written approval of MVO. The information contained herein it to be suced only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 22 22 BES.A.

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.08 LIN		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
0 - 300	0.20 mm 0.44 mm		
300 - 450			

5.3 VALIDATION MEASUREMENT

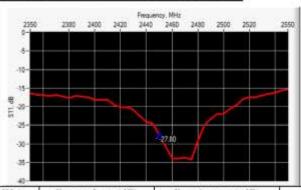
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13

Template ACK.DDD.N.YEAW GBISSUE SAR Reference Dipole vi

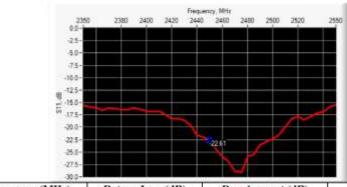
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be suced only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.



Ref. ACR 118 22 22 BES.A

Scan Volume	Expanded Uncertainty		
1 g	19 % (SAR)		
10 g	19 % (SAR)		


CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-27.80	-20	52.3 Ω + 3.4 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance	
2450	-22.61	÷20	57.3 Ω + 1.1 iΩ	

Page: 6/13

Template ACK, DDD, N. YEAW GBISSUE SAR Reference Dipole v1
This document chall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein a to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 22 22 BES.A.

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	hm	m	dı	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 % .		166.7±1 %.		6.35 ±1 % .	
750	176.0 ±1 %.		100.0 ±1 %,		6.35 ±1 % .	
835	161.0 ±1 %.		89.8 ±1.% .		3.6 ±1 %.	
900	149.0 11 % .		83.3 ±1 % ,		3.6-21 %.	
1450	891 11 % .		51.7 ±1 %.		3.6 ±1 % .	
1500	86.2 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1.%,		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 % .		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 % .	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 % .		3.6 ±1 % ,	
2000	64.5 ±1 %.		37.5 ±1 % .		3.6 ±1 %.	
2100	61.0 ±1 %.	3	35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 % .		32.6 ±1 %,		3.6 ±1 %.	
2450	51.5 ±1 % .		30.4 ±1 % .	. 8	3.6 ±1 %.	
2600	48.5 ±1.%.		28.8 ±1 %.		3.6 21 %.	
3000	41.5 ±1 %.		25.0 ±1 % .		3.6 ±1 % .	
3300	+8					
3500	37.0 ±1 % .		26.4 ±1 %.		3.6 ±1 % .	
3700	34.7±1 %.		26.4 ±1.%.		3.6 ±1 %.	
3900			50			
4200	2	0	- 2			
4600	¥1		29		8	
4900	- 8				- G	

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template ACR. DDD.N. YEAR GBISSUE SAR Reference Dipole vi This document shall not be reproduced, except in fall or in part, without the written approval of MVO. The information contained herein it to be suced only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 22 22 BES.A.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (g _c ')	Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	75
835	41.5 ±10 %		0.90 ±10 %	i i
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1,20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1,31 ±10 %	
1750	40.1 ±10 %		1.37±10%	
1800	40.0 ±10 %		1.40 ±10 %	1.
1900	40.0 ±10 %		1.40 ±10 %	1
1950	40.0 ±1.0 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40±10%	
2100	39.8 ±10 %		1.49±10%	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %	36.4	1.80 ±10 %	1.98
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 110%	į.	2.40 ±10 %	
3300	38.2 ±10 %		2.71.±10%	
3500	37.9 ±10 %		2.91 ±10 %	-
3700	37.7 ±10 %		3.12±10%	
3900	37.5 ±10 %		3,32±10%	
4200	37.1 ±10 %		3.63 ±10 %	
4600	36.7 ± 10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template ACR. DDD.N. YEAR GBISSUE SAR Reference Dipole vi This document shall not be reproduced, except in fall or in part, without the written approval of MVO. The information contained herein it to be suced only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

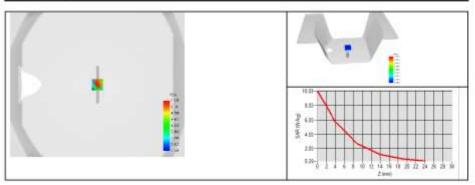
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 22 22 BES.A

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 36.4 sigma: 1.98
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 ±/- 1 °C
Lab Humidity	30-70%

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85	D. I	1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5	I.I.	16.8	
1640	34.2	J.	18.4	
1750	36.4	Ĭ.	19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	54.32 (5.43)	24	24.25 (2.42)
2600	55.3		24.6	
3000	63.8	1	25.7	L.
3300		1 1		
3500	67.1		25	
3700	67.4		24.2	
3900	100		17	
4200	-		19	
4600	*			
4900	59.5		10	

Page: 9/13


Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref ACR 118 22 22 BES A

Page: 10/13

Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is according to the submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref. ACR 118 22 22 BES.A

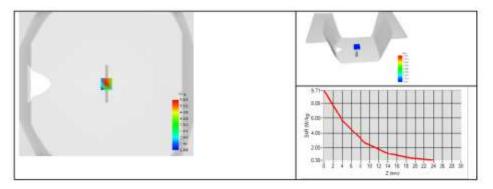
7.3 BODY LIQUID MEASUREMENT

Frequency	Relative per	mittivity (\mathbf{g}_c')	Conductiv	ity (a) S/m
MOTOR	required	measured	required	measured
150	61.9 ±10 %		0.80±10%	
300	58.2 ±10 %		0.92±10%	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5 ±10 %		0.96 ±10 %	4
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %	[1.05 ±10 %	
915	55.0 ±10 %	Ĭ,	1.06 ±10 %	
1450	54.0 ±10 %		1.30±10%	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 210 %	l.
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62±10%	
2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %	53.4	1.95 ±10 %	2.14
2600	52.5 ±10 %		2.16 ±10 %	
3000	52.0 ±10 %		2.73 ±10 %	
3300	51.6 ±10 %	į.	3.08 110 %	
3500	51.3 ±10 %		3.31.±10%	
3700	51,0 ±10 %		3.55 ±10 %	-
3900	50.8 ±10 %		3.78 ±10 %	
4200	50.4 ±10 %		4.13±10%	
4600	49.8 ±10 %		4,60 ±10 %	
4900	49.4 ±10 %		4.95 ±10 %	111
5200	49.0 ±10 %		5.30 ±10 %	į.
5300	48.9 ±10 %		5.42 110%	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %	Ĭ.	5.77 ±10%	
5800	482 ±10 %		6.00 ±10 %	

Page: 11/13

Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.



Ref ACR 118 22 22 BES A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps' : 53.4 sigma : 2.14
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	53.59 (5.36)	23.63 (2.36)

Page: 12/13

Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref ACR 118 22 22 BES A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	SN 41/18 EPGO333	10/2021	10/2022	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002		Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

Page: 13/13

Template ACK.DDD.N.YEAV GBISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released to whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

SAR Reference Dipole Calibration Report

Ref: ACR.118.24.22.BES.A

ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAI STREETBAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 5200-5800 MHZ SERIAL NO.: SN 17/22 DIP5G000-671

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 04/28/2022

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/14

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref. ACR 118 24 22 BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	4/28/2022	J.55
Checked by :	Jérôme Luc	Technical Manager	4/28/2022	235
Approved by :	Yann Toutain	Laboratory Director	4/28/2022	Gann TOUTAAN

2022.04.28 17:04:56 +02'00'

	Customer Name	
	ATTESTATION	
District of the state of the st	OF GLOBAL	
Distribution :	COMPLIANCE	
	CO. LTD.	

Issue	Name	Date	Modifications
A	Jérôme Luc	4/28/2022	Initial release

Page: 2/14

Template ACR, DDD.N. FY.MV GR. ISSUE SAR Reference Dipole 5GHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref. ACR 118 24 22 BES.A

TABLE OF CONTENTS

пии	oduction	
Dev	rice Under Test	
3.1	General Information	4
Me	asurement Method4	
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
Me	asurement Uncertainty	
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
Cal	ibration Measurement Results6	
6.1	Return Loss	6
6.2	Mechanical Dimensions	7
Val		
7.1	Head Liquid Measurement	7
7.2	Measurement Result	8
7.3	Body Measurement Result	11
Lis		
	Dev Pro 3.1 Me 4.1 4.2 Me 5.1 5.2 Cal 6.1 6.2 Val 7.1 7.2 7.3	Device Under Test

Page: 3/14

Template ACR, DDD.N. FY.AFV CR. LSSUE SAR Reference Dipole SGHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report is accounted by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref. ACR 118 24 22 BES.A.

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5200-5800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID5000
Serial Number	SN 17/22 DIP5G000-671
Product Condition (new / used)	New

PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/14

Template ACR, DDD.N. PEMV GB, USSUE. SAR Reference Dipole 5GHz vD

This document chall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 24 22 BES.A.

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Fr	equency band	Expanded Uncertainty on Return Loss
4	00-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm

5.3 VALIDATION MEASUREMENT

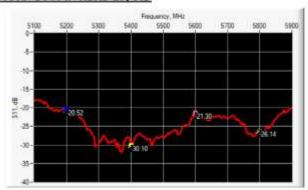
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	19 % (SAR)	
10 g	19 % (SAR)	

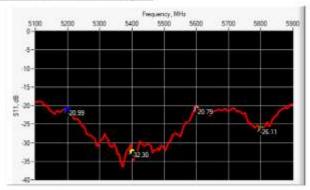
Page: 5/14

Template ACR, DDD.N. FY.MV GR. ISSUE. SAR Reference Dipole 5GHz vD

This document chall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref. ACR 118 24 22 BES.A


CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-20.52	-20	54.06 Ω + 8.44 jΩ
5400	-30.10	-20	$47.05 \Omega + 1.02 j\Omega$
5600	-21.30	-20	49.63 Ω + 8.57 jΩ
5800	-26.14	-20	47.44 Ω - 4.21 Ω

6.2 RETURN LOSS IN BODY LIQUID

Page: 6/14

Template ACR, DDD.N. FY.MV GR. ISSUE SAR Reference Dipole 5GHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Ref. ACR 118 24 22 BES.A.

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-20.99	-20	$54.17 \Omega + 7.83 j\Omega$
5400	-32.30	-20	$48.30 \Omega + 1.73 j\Omega$
5600	-20.79	-20	$48.10 \Omega + 8.89 j\Omega$
5800	-26.11	-20	48.36 Ω - 4.67 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		hmm		dı	nm
	required	measured	required	measured	required	measured
5000 to 6000	20.6 ±1 % .	20.77	40.3 ±1 %.	40.21	3.6 ±1 %.	3.61

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε/)		Conductivity (a) S/m	
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10%	
5100	36.1 ±10 %		4.56 ±10%	0
5200	36.0 ±10 %	34.44	4.66 ±10 %	4.64
5300	35.9 ±10%		4.76 ±10 %	
5400	35.8 ±10 %	33.63	4.86 ±10%	4.88
5500	35.5 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	32.80	5.07 ±10%	5.12
5700	35.4 ±10 %		5.17 ±10%	
5800	35.3 ±10 %	32.33	5.27 ±10%	5,31
5900	35.2 ±10%		5.38 ±10 %	:
6000	35.1 ±10 %		5.48 ±10%	

Page: 7/14

Template ACR, DDD.N. PEMV GB, USSUE. SAR Reference Dipole 5GHz vD

This document chall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 24 22 BES.A

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

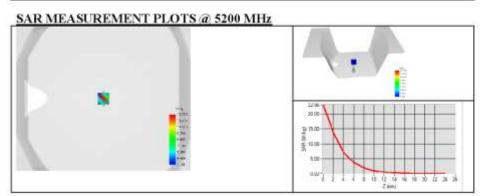
At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

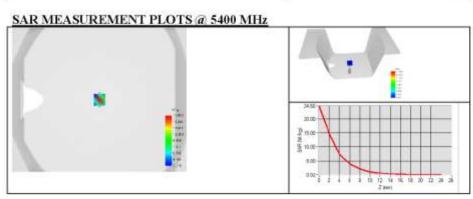
Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Head Liquid Values 5200 MHz: eps' :34.44 sigma Head Liquid Values 5400 MHz: eps' :33.63 sigma Head Liquid Values 5600 MHz: eps' :32.80 sigma Head Liquid Values 5800 MHz: eps' :32.33 sigma	
Distance between dipole and liquid	10 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/+ 1 °C	
Lab Humidity	30-70 %	

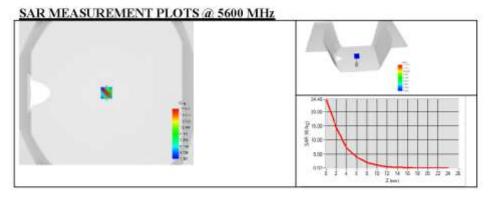
Frequency (MHz)	1 g SAR (W/kg)		(MHz) 1 g SAR (W/kg) 10		10 g SA	R (W/kg)
70 141 121	required	measured	required	measured		
5200	76.50	73.43 (7.34)	21.60	21.83 (2.18)		
5400	-	78.43 (7.84)	0.46	23.90 (2.39)		
5600	+	78.20 (7.82)		24.12 (2.41)		
5800	78.00	75.69 (7.57)	21.90	22.44 (2.24)		

Page: 8/14

Template ACR, DDD.N. FY.MV GR. ISSUE SAR Reference Dipole 5GHz vD


This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

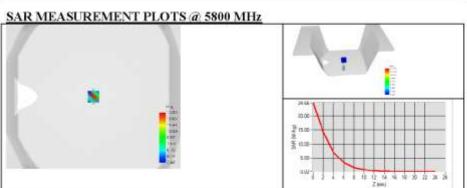

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$



Ref. ACR 118 24 22 BES.A

Page: 9/14

Template ACR, DDD.N. FY.MV GR. ISSUE SAR Reference Dipole 5GHz vD


This document chall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein it to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 24 22 BES.A

Page: 10/14

Template ACR, DDD.N. FY.AFV CR. LSSUE SAR Reference Dipole SGHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Ref. ACR 118 24 22 BES.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductiv	ity (o) \$/m
	required	measured	required	measured
5200	49.0 ±10 %	45.50	5.30 ±10 %	5.63
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %	44.78	5.53 ±10 %	5.95
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %	44,85	5.77 ±10 %	6.26
5800	48.2 110 %	44.45	6.00 ±10%	6.58

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

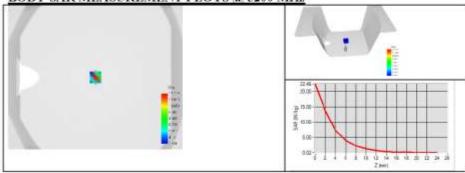
Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Body Liquid Values 5200 MHz: eps': 45.50 sigma: 5.63 Body Liquid Values 5400 MHz: eps': 44.78 sigma: 5.95 Body Liquid Values 5600 MHz: eps': 44.85 sigma: 6.26 Body Liquid Values 5800 MHz: eps': 44.45 sigma: 6.58	
Distance between dipole and liquid	10 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

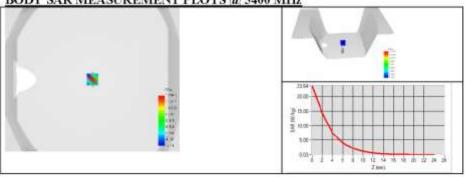
Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	72.30 (7.23)	22.09 (2.21)
5400	75.13 (7.51)	22.91 (2.29)
5600	74.81 (7.48)	23.01 (2.30)
5800	71.92 (7.19)	22.41 (2.24)

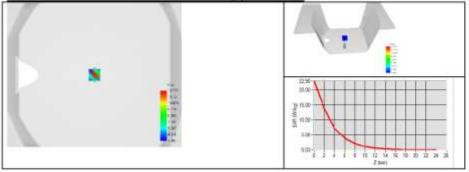
Page: 11/14

Template ACR, DDD.N. FY.AFV CR. LSSUE SAR Reference Dipole SGHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

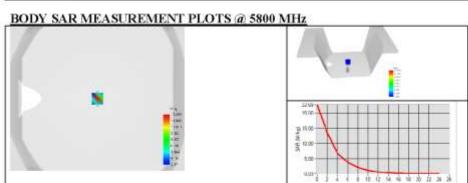



BODY SAR MEASUREMENT PLOTS @ 5200 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 12/14

Template ACR, DDD.N. FY.MV GR. ISSUE SAR Reference Dipole 5GHz vD


This document chall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein it to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 24 22 BES.A

Page: 13/14

Template ACR, DDD.N. FY.AFV CR. LSSUE SAR Reference Dipole SGHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$

Ref. ACR 118 24 22 BES.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	SN 41/18 EPGO333	10/2021	10/2022
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002		Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022
Directional Coupler	Krytar 158020	131467		Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 14/14

Template ACR, DDD.N. FY.AFV CR. LSSUE SAR Reference Dipole SGHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein at to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.