

TEST REPORT

Report No.: BCTC2507440513E

Applicant: Acer India PVT Limited

Product Name: Laptop

Test Model: Aspire 14 AS14H-53

Tested Date: 2025-07-02 to 2025-07-11

Issued Date: 2025-07-11

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-ICT-005 Page 1 of 96 ...

Edition: C.O.

FCC ID: 2A94K-AS14H-53

Product Name: Laptop

Trademark:

Model/Type Ref.: Aspire 14 AS14H-53

Applicant: Acer India PVT Limited

Address: Acer India PVT Limited,6th Floor, Embassy Heights, No.13, Magrath Road,

Bangalore, 560025, India

Manufacturer: Acer India PVT Limited

Address: Acer India PVT Limited,6th Floor, Embassy Heights, No.13, Magrath Road,

Bangalore, 560025, India

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road,

Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

Sample Received Date: 2025-07-02

Sample tested Date: 2025-07-02 to 2025-07-11

Issue Date: 2025-07-11

IEEE Std C95.1-2019

Test Standards: IEEE Std 1528-2013

FCC Part 2.1093

Test Results: PASS

Remark: This is SAR test report

l ested by:

Min zhi Cheng

Min Zhi Cheng / Project Handler

Approved by:

Zero Zhou / Reviewer

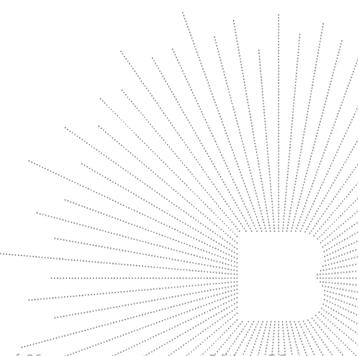
The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-ICT-005 Page 2 of 96

Edition: C.0

Table Of Content

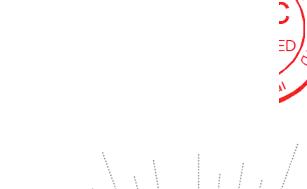
Test Report Declaration	Page
1. Version	5
2. Test Standards	6
3. Test Summary	
4. SAR Limits	8
5. Measurement Uncertainty	g
6. Product Information and Test Setup	
6.1 Product Information	
6.2 Test Setup Configuration	12
6.3 Support Equipment	12
6.4 Test Environment	12
7. Test Facility and Test Instrument Used	13
7.1 Test Facility	
7.2 Test Instrument Used	
8. Specific Absorption Rate (SAR)	15
8.1 Introduction	15
8.2 SAR Definition	
9. SAR Measurement System	
9.1 The Measurement System	16
9.2 Probe	
9.3 Probe Calibration Process	
9.4 Phantom	
9.5 Device Holder	
10. Tissue Simulating Liquids	
10.1 Composition of Tissue Simulating Liquid	
10.2 Limit	
10.3 Tissue Calibration Result	
11. System Check	23
11.1 Purpose of System Performance Check 11.2 System Setup 11.3 Validation Results 12. EUT Testing Position	
11.2 System Setup	
11.3 Validation Results	
12. EUT Testing Position	
13. SAR Measurement Procedures	26
13.1 Measurement Procedures	26
13.2 Spatial Peak SAR Evaluation	26
13.3 Area & Zoom Scan Procedures	21
13.4 Volume Scan Procedures	28
13.5 SAR Averaged Methods	28
13.6 Power Drift Monitoring	28
14. SAK Test Result	29
12. EUT Testing Position 13. SAR Measurement Procedures 13.1 Measurement Procedures 13.2 Spatial Peak SAR Evaluation 13.3 Area & Zoom Scan Procedures 13.4 Volume Scan Procedures 13.5 SAR Averaged Methods 13.6 Power Drift Monitoring 14. SAR Test Result 14.1 Conducted RF Output Power	29
14.2 Transmit Antennas and SAR Measurement Position	33
14.3 Measured and Reported (Scaled) SAR Results	34
14.4 SAK IVIEASUREMENT VARIABILITY	

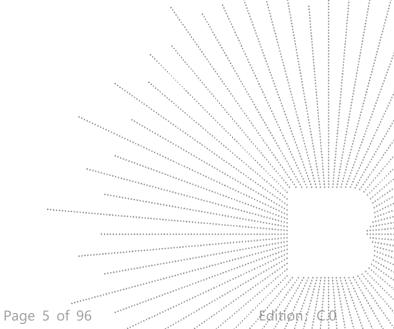


14.5	5 Simultaneous Transmission Evaluation	36
15.	Test Plots	37
15.1	1 System Performance Check	37
	2 SAR Test Graph Results	
	CALIBRATION CERTIFICATES	
17.	EUT Photographs	93
	Photographs Of The Liquid	
19.	EUT Test Setup Photographs	95

(Note: N/A Means Not Applicable)

Page 4 of 96


No.: BCTC/RF-ICT-005


Edition C.O.

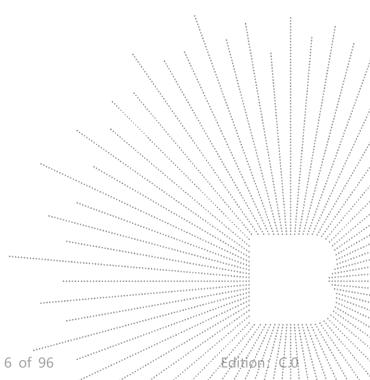
1. Version

Report No.	Issue Date	Description	Approved	
BCTC2507440513E	2025-07-11	Original	Valid	

No.: BCTC/RF-ICT-005

2. Test Standards

IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.


IEEE Std 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

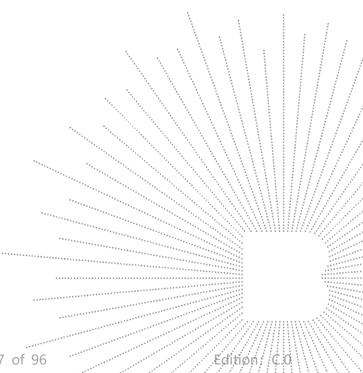
FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04: SAR Measurement Requirements for 100MHz to 6GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

No.: BCTC/RF-ICT-005 Page 6 of 96



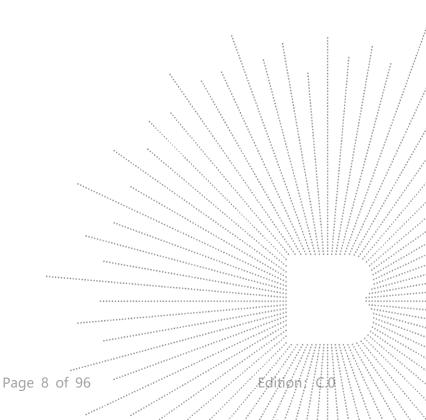
3. Test Summary

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Frequency Band	Maximum SAR _{1g} (W/kg)	Limit SAD. (\N/ka)
Frequency Band	Body (0mm Gap)	Limit SAR _{1g} (W/kg)
WIFI 2.4G(ANT-A)	0.295	
WIFI 2.4G(ANT-B)	0.245	
WIFI 5.2G(ANT-A)	0.506	
WIFI 5.2G(ANT-B)	0.388	1.6
WIFI 5.8G(ANT-A)	0.445	
WIFI 5.8G(ANT-B)	0.694	
Simultaneous Transmission	1.115	

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2013.

No.: BCTC/RF-ICT-005 Page 7 of 96


4. SAR Limits

FCC Limit (1g Tissue)

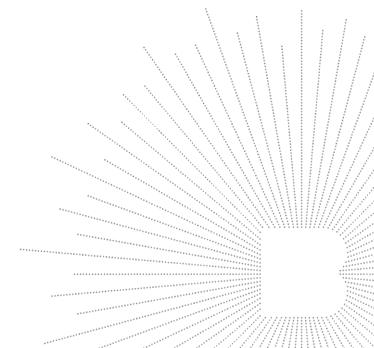
	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
EXPOSORE LIWITS	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average	0.08	0.4		
(averaged over the whole body)	0.06			
Spatial Peak	1.6	8.0		
(averaged over any 1g of tissue)	1.0	8.0		
Spatial Peak	4.0	20.0		
(hands/wrists/feet/anklesaveraged over 10g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

No.: BCTC/RF-ICT-005

5. Measurement Uncertainty


Per KDB 865664 D01 SAR Measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5W/kg and the measured 10-g SAR within a frequency band is <3.75W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k=2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

10 30

>PR

No.: BCTC/RF-ICT-005

Page 9 of 96

Edition C 0

Product Information and Test Setup 6.

6.1 Product Information

Model/Type Reference:	Aspire 14 AS14H-53
-----------------------	--------------------

Model Differences: N/A 5.2 Bluetooth Version: Hardware Version: N/A Software Version: N/A

DC 19V from adapter or DC 11.4V from battery Ratings:

MODEL: HKA09019047-6U Adapter:

INPUT: 100-240V~ 50/60Hz, 1.5A OUTPUT: 19V --- 4.74A 90.06W

Bluetooth

Operation Frequency: 2402-2480MHz

Type of Modulation: GFSK, π/ 4 DQPSK, 8DPSK

Number Of Channel: 79CH

Antenna installation: Internal antenna

Antenna Gain: 2.16 dBi

Remark:

☐ The antenna gain of the product comes from the antenna report provided by the

customer, and the test data is affected by the customer information.

The antenna gain of the product is provided by the customer, and the test data

is affected by the customer information.

BLE

2402-2480MHz Operation Frequency:

Type of Modulation: GFSK 1Mbps, GFSK 2Mbps

Number Of Channel: 40CH

Antenna installation: Internal antenna

Antenna Gain: 2.16 dBi

Remark:

☐ The antenna gain of the product comes from the antenna report provided by the

customer, and the test data is affected by the customer information.

☐ The antenna gain of the product is provided by the customer, and the test data

is affected by the customer information.

No.: BCTC/RF-ICT-005 Page 10 of 96

WIFI 2.4G

Type of Modulation:

Operation Frequency: 802.11b/g/n/ax20MHz:2412~2462 MHz

802.11n/ax40MHz:2422~2452 MHz

Bit Rate of Transmitter: 802.11b:11/5.5/2/1 Mbps

802.11a:54/48/36/24/18/12/9/6Mbps

802.11n Up to 300Mbps 802.11ax Up to 400Mbps WIFI: OFDM/DSSS/OFDMA

Number Of Channel: 802.11b/g/n/ax20MHz:11 CH

802.11n/ax40MHz: 7 CH

Antenna installation: Internal antenna*2 WiFi (2.4GHz): Antenna Gain:

Antenna A: 3.46 dBi, Antenna B: 2.16 dBi

Remark:

The antenna gain of the product comes from the antenna report provided by the

customer, and the test data is affected by the customer information.

☐ The antenna gain of the product is provided by the customer, and the test data

is affected by the customer information.

WIFI 5G

IEEE 802.11 WLAN 802.11a/n/ac/ax(20MHz channel bandwidth) 802.11n/ac/ax(40MHz channel bandwidth) Mode Supported: 802.11ac/ax(80MHz channel bandwidth)

Operation Frequency: 5180-5240MHz for 802.11a/n/ax(HT20);

5190-5230MHz for 802.11n/ax(HT40);

5210MHz for 802.11 ac/ax80;

5745-5825 MHz for 802.11a/n/ax(HT20); 5755-5795 MHz for 802.11n/ax(HT40);

5775MHz for 802.11 ac/ax80;

Data Rate: 802.11a: 6,9,12,18,24,36,48,54Mbps;

802.11n(HT20/HT40): MCS0-MCS15; 802.11ac(VHT20): MCS0-MCS8 802.11ac(VHT40/VHT80): MCS0-MCS9 802.11ax (HE 20/HE 40/HE 80): MCS0~MCS11

Type of Modulation: OFDM with BPSK/QPSK/16QAM/64QAM for 802.11a/n OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11ac

OFDMA with BPSK / BPSK DCM / QPSK / QPSK DCM / QAM16 / QAM16 DCM

/QAM64 /QAM256 /QAM1024 for 802.11ax

4 channels for 802.11a/n20/ax20 in the 5180-5240MHz band; Number Of Channel:

> 2 channels for 802.11 n40/ax40 in the 5190-5230MHz band; 1 channels for 802.11 ac80/ax80 in the 5210MHz band : 5 channels for 802.11a/n20/ax20 in the 5745-5825MHz band 2 channels for 802.11 n40/ax40 in the 5755-5795MHz band : 1 channels for 802.11 ac80/ax80 in the 5775MHz band

Antenna installation: Internal antenna*2

Antenna Gain: WIFI(5.1GHz): Antenna A: 1.57 dBi, Antenna B: 1.82 dBi

WIFI(5.8GHz): Antenna A: 2.1 dBi, Antenna B: 2.27 dBi

The antenna gain of the product comes from the antenna report provided by the

customer, and the test data is affected by the customer information.

The antenna gain of the product is provided by the customer, and the test data

is affected by the customer information.

No.: BCTC/RF-ICT-005 Page 11 of 96

6.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

6.3 Support Equipment

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1			Applicant		Yes/No	
2			встс		Yes/No	

No.	Device Type	Brand	Model	Series No.	Note
1.					
2.					

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6.4 Test Environment

1. Normal Test Conditions:

Humidity(%):	35-75
Atmospheric Pressure(kPa):	95-105
Temperature(°C):	18-25

2. Extreme Test Conditions:

No.: BCTC/RF-ICT-005

Page 12 of 96

Edition : C.C

7. Test Facility and Test Instrument Used

7.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212

ISED Registered No.: 23583 ISED CAB identifier: CN0017

No.: BCTC/RF-ICT-005 Page

7.2 Test Instrument Used

Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
PC	DELL	\	\	N/A	N/A
SAR Measurement system	SATIMO	\	\	N/A	N/A
Signal Generator	Keysight	83711B	US37100131	May 14, 2025	May 13, 2026
Multimeter	Keithley	1160271	\	Nov. 10, 2024	Nov 09, 2025
S-parameter Network Analyzer	R&S	ZVB 8	101353	Dec. 07, 2024	Dec. 06, 2025
Communication test set	R&S	CMW500	126173	Nov. 11. 2024	Nov. 10, 2025
E SAR PROBE 6GHz	MVG	SSE2	2623-EPGO-420	July 18, 2024	July 17, 2025
DIPOLE 2450	SATIMO	SID2450	SN 47/21 DIP 2G450-627	Nov. 25, 2024	Nov. 24, 2027
DIPOLE 5000	SATIMO	SID5000	SN 47/21 DIP 5G000-629	Nov. 25, 2024	Nov. 24, 2027
COMOSAR OPEN Coaxial Probe	SATIMO	\	\	Nov. 25, 2024	Nov. 24, 2027
SAR Locator	SATIMO	\	\	Nov. 25, 2024	Nov. 24, 2027
Communication Antenna	SATIMO	\	\	Nov. 25, 2024	Nov. 24, 2027
FEATURE PHONEPOSITIONING DEVICE	SATIMO	\	\	N/A	N/A
LIMESAR DIELECTRIC PROBE	SATIMO	\	\	N/A	N/A
SAM Phantom	MVG	\	SN 13/09 SAM68	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A08186	N/A	N/A
Power meter	Keysight	E4419	A00065	May 14, 2025	May 13, 2026
Power sensor	Keysight	E9300A	US39211659	May 14, 2025	May 13, 2026
Power sensor	Keysight	E9300A	US39211305	May 14, 2025	May 13, 2026
Directional Coupler	Krytar 158020	131467	\	Nov. 10, 2024	Nov 09, 2025
Thermometer	BTE	\	\	Dec. 02, 2024	Dec. 01, 2025
Broad Band Tissue Simulation Liquid	Schmid	\	\	N/Ą	N/A

Note:

Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- 1. There is no physical damage on the dipole;
- 2. System check with specific dipole is within 10% of calibrated values;
- 3. The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- 4. The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.

Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

No.: BCTC/RF-ICT-005 Page 14 of 96 Editjon/ C.0

8. Specific Absorption Rate (SAR)

8.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

8.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δ T is the temperature rise and δ t is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

No.: BCTC/RF-ICT-005 Page 15 of 96 Edition: C.

,TC

) C

9. SAR Measurement System

9.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

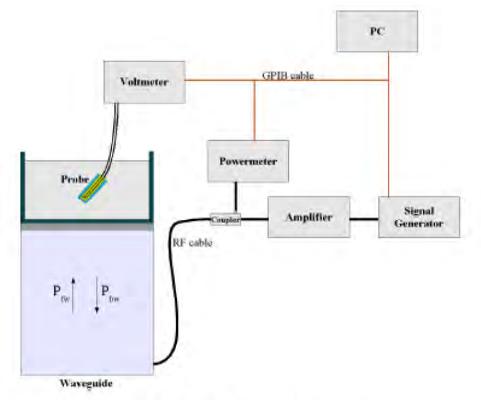
- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

9.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 46/21 EPGO362 with following specifications is used


- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Distance between probe tip and sensor center: 2.10mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1 mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line:1ess than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annex technique using reference guide at the five frequencies.

No.: BCTC/RF-ICT-005 Page 16 of 96

$$SAR = \frac{4(p_{\int w} - p_{\text{pbw}})}{ab\delta} \cos^2 (\pi \frac{y}{a}) c^{(2\pi/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N)) (N=1,2,3)$$

where DCP is the diode compression point in mV.

No.: BCTC/RF-ICT-005 Page 17 of 96

Dosimetric Assessment Procedure

9.3 Probe Calibration Process

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

$$SAR = C \frac{\Delta T}{\Delta t}$$

 Δ t = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 \triangle T = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$SAR = \frac{\left| \mathbf{E} \right|^2 \cdot \sigma}{\rho}$$

Where:

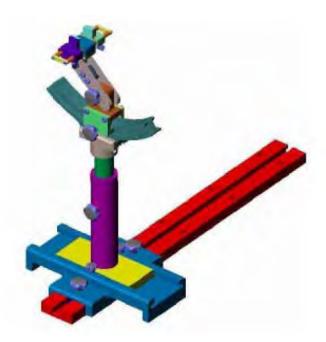
σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

No.: BCTC/RF-ICT-005

Page 18 of 96

Edition: C.



9.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

9.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

No.: BCTC/RF-ICT-005 Page 19 of 96

10. Tissue Simulating Liquids

10.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Body SAR

The Composition of Tissue Simulating Liquid

Frequency (MHz)	Water (%)	Salt (%)	1,2-Propane diol (%)	HEC (%)	Preventol (%)	DGBE (%)
			Head/Body			
835	40.3	1.4	57.9	0.2	0.2	0
900	40.3	1.4	57.9	0.2	0.2	0
1800-2000	55.2	0.3	0	0 .	.0	44.5
2450	55.0	0.1	0	0	0	44.9
2600	54.9	0.1	0	0 .	0	45.0

Frequency (MHz)	Water (%)	Hexyl Carbitol (%)	Triton X-100 (%)
		Head/Body	
5000-6000	65.52	17.24	17.24

No.: BCTC/RF-ICT-005 Page 20 of 96 Edition C0

No.: BCTC/RF-ICT-005

Report No: BCTC2507440513E

10.2 Limit

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters

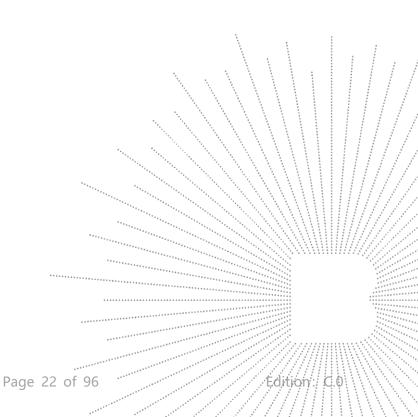
computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Toward Francisco ou (BALLE)	He	ad
Target Frequency (MHz)	Conductivity (σ)	Permittivity (E r)
150	0.76	52.3
300	0.87	45.3
450	0.87	43.5
750	0.89	41.9
835	0.90	41.5
900	0.97	41.5
915	0.98	41.5
1450	1.20	40.5
1610	1.29	40.3
1800-2000	1.40	40.0
2450	1.80	39.2
2600	1.96	39.0
3000	2.40	38.5
5200	4.66	36.0
5400	4.86	35.8
5600	5.07	35.5
5800	5.27	35.3

Page 21 of 96 Edition C.0

,TC

10.3 Tissue Calibration Result


The dielectric parameters of the liquids were verified prior to the SAR evaluation using an R&S ZVB 8. Dielectric Probe Kit and an Agilent Network Analyzer.

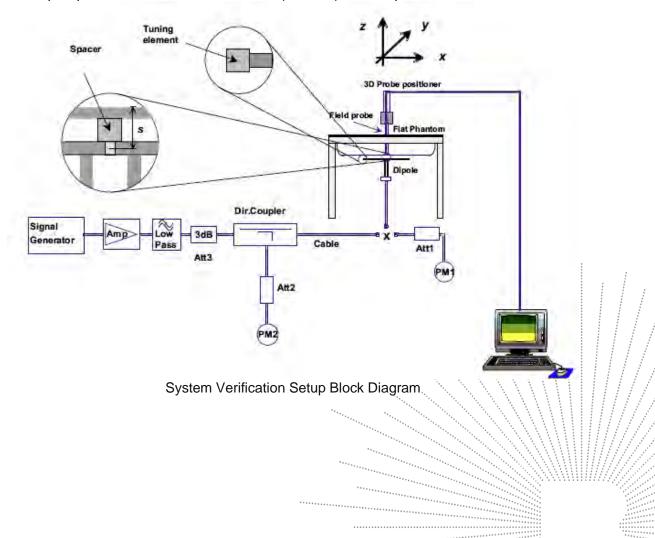
Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

Frequency	Liquid	Tar	get	Mea	sured	Devi	ation	Limit	Air	Doto
(MHz)	Liquid	(σ)	(E r)	(σ)	(E r)	(σ)	(E r)	(%) (°C)		Date
2450	Head	1.80	39.20	1.766	40.600	-1.89	3.57	±5	23.2	10/7/2025
5200	Head	4.66	36.00	4.624	37.197	-0.77	3.33	±5	23.2	10/7/2025
5800	Head	5.27	35.30	5.471	35.956	3.81	1.86	±5	23.2	10/7/2025

Remark:

- 1. The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within ± 2°C of the temperature when the tissue parameters are characterized.
- 2. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

No.: BCTC/RF-ICT-005


11. System Check

11.1 Purpose of System Performance Check

At the device test frequencies. System check verifies the measurement repeatability of a SAR system before compliance testing and is not a validation of all system specifications. The latter is not required for testing a device but is mandatory before the system is deployed. The system check detects possible short-term drift and unacceptable measurement errors or uncertainties in the system.

11.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 600MHz-6000MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

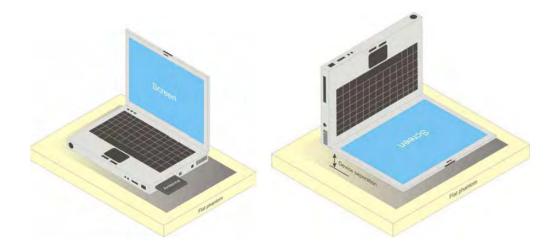
No.: BCTC/RF-ICT-005 Page 23 of 96 Edition C.0

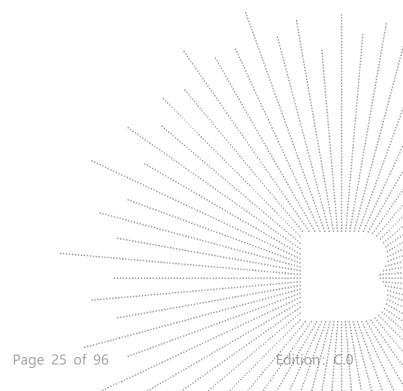
Setup Photo of Dipole Antenna

11.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. The following table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Frequency (MHz)	Measured SAR _{1g} (W/Kg)	Measured Normalized	Target Normalized	Drift	Limit (%)	Liquid (°C)	Date
2450	13.068	52.273	55.16	-5.23	±10	23.1	10/7/2025
5200	19.938	79.752	76.41	4.37	±10	23.1	10/7/2025
5800	18.976	75.902	76.49	-0.77	±10	23.1	10/7/2025


No.: BCTC/RF-ICT-005 Page 24 of 96 Edition / C.0


12. EUT Testing Position

Body Position

A typical example of a body supported device is a wireless enabled laptop device that among other orientations may be supported on the thighs of a sitting user. To represent this orientation, the device shall be positioned with its base against the flat phantom. Other orientations may be specified by the manufacturer in the user instructions. If the intended use is not specified, the device shall be tested directly against the flat phantom in all usable orientations.

Test positions for Body-supported Device

No.: BCTC/RF-ICT-005

13. SAR Measurement Procedures

13.1 Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Annex D demonstrates.
- (e) Set scan area, grid size and other setting on the SATIMO software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

13.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

No.: BCTC/RF-ICT-005

Page 26 of 96

13.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

			≤ 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of p		measurement point rs) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
	Maximum probe angle from probe axis to phantom surface normal at the measurement location			20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Z\infty}$	_{om} (n-1) mm		
Minimum zoom scan volume x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

,TC

ODI

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

13.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

13.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

13.6 Power Drift Monitoring

No.: BCTC/RF-ICT-005

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Page 28 of 96 Edition:

14. SAR Test Result

14.1 Conducted RF Output Power

	E	BDR, EDR	
Modulation	Frequency (MHz)	Conducted Power (dBm)	Tune-up power (dBm)
1-DH1	2402	0.89	
1-DH1	2441	1.14	1.5
1-DH1	2480	1.43	
2-DH1	2402	-0.11	
2-DH1	2441	0.12	0.5
2-DH1	2480	0.44	
3-DH1	2402	0.12	
3-DH1	2441	0.35	1.0
3-DH1	2480	0.65	

		BLE	
Modulation	Frequency (MHz)	Conducted Power (dBm)	Tune-up power (dBm)
GFSK(1Mbps)	2402	2.21	
GFSK(1Mbps)	2440	2.23	3.0
GFSK(1Mbps)	2480	2.72	
GFSK(2Mbps)	2402	2.18	\
GFSK(2Mbps)	2440	2.26	3.0
GFSK(2Mbps)	2480	2.74	

Note:

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] [√f(GHz)] ≤ 3.0 for1-g SAR and ≤ 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

Turn-up Power (dBm)	Turn-up Power (mW)	Separation Distance (mm)	Frequency (MHz)	Result	Exclusion Thresholds
3.0	2.00	5	2450	0.63	3

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

According to the calculation results in the table above, Bluetooth SAR does not need to be tested.

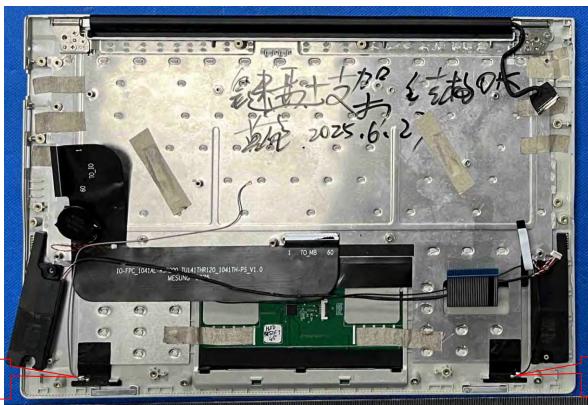
No.: BCTC/RF-ICT-005 Page 29 of 96

			WIFI 2.4	G				
Madalada	Frequency	Condu	cted Power	(dBm)	Tune	e-up power (dBm)	
Modulation	(MHz)	ANT A	ANT B	Total	ANT A	ANT B	Total	
b	2412	11.78	9.08	/				
b	2437	11.86	9.05	/	12.0	9.5	/	
b	2462	11.92	9.09	/				
g	2412	10.71	8.15	/				
g	2437	10.72	8.04	/	11.0	11.0	11.0 8.5	/
g	2462	10.88	8.09	/				
n20	2412	9.74	7.00	11.59				
n20	2437	9.78	6.76	11.54	10.0	7.5	12.0	
n20	2462	9.85	6.93	11.64				
n40	2422	8.50	5.79	10.36				
n40	2437	8.53	5.71	10.36	9.0	6.0	10.5	
n40	2452	8.61	5.78	10.43				
ax20	2412	9.48	6.84	11.37			:	
ax20	2437	9.56	6.81	11.41	10.0	7.0	11.5	
ax20	2462	9.62	6.85	11.46	**************************************			
ax40	2422	8.17	5.52	10.05	***************************************			
ax40	2437	8.20	5.37	10.02	8.5	6.0	10.5	
ax40	2452	8.26	5.45	10.09				

No.: BCTC/RF-ICT-005 Page 30 of 96 Edition C.0

	WIFI 5.2G									
	Frequency	Condu	cted Power ((dBm)	Tune	e-up power (dBm)			
Modulation	(MHz)	ANT A	ANT B	Total	ANT A	ANT B	Total			
а	5180	11.61	10.24	/						
а	5200	11.52	10.15	/	12.0	10.5	/			
а	5240	11.65	9.06	/						
n20	5180	10.67	9.31	13.05						
n20	5200	10.82	9.00	13.01	11.5	9.5	13.5			
n20	5240	11.35	8.03	13.01	-					
n40	5190	9.85	7.67	11.91	40.5	0.0	40.0			
n40	5230	10.09	7.07	11.85	10.5	8.0	12.0			
ac20	5180	10.65	9.30	13.04						
ac20	5200	10.50	9.03	12.84	11.5	9.5	13.5			
ac20	5240	11.20	8.03	12.91						
ac40	5190	9.90	7.38	11.83			10.0			
ac40	5230	10.01	7.33	11.88	10.5	7.5	12.0			
ac80	5210	9.05	6.55	10.99	9.5	7.0	11 0			
ax20	5180	11.49	9.00	13.43	\ \	\ \\ \\				
ax20	5200	10.82	8.81	12.94	11.5	9.5	13.5			
ax20	5240	10.66	7.91	12.51						
ax40	5190	9.66	6.93	11.52						
ax40	5230	9.59	7.13	11.54	10.0	7.5	12.0			
ax80	5210	8.51	6.06	10:47	9.0	6.5	10.5			

No.: BCTC/RF-ICT-005 Page 31 of 96 Edition C.0


			WIFI 5.8	G			
	Frequency	Condu	cted Power ((dBm)	Tune	e-up power (dBm)
Modulation	(MHz)	ANT A	ANT B	Total	ANT A	ANT B	Total
а	5745	11.85	7.74	/			
а	5785	11.44	7.00	/	12.0	8.0	/
а	5825	10.99	6.14	/			
n20	5745	10.92	6.86	12.36			
n20	5785	10.48	5.98	11.80	11.5	7.0	12.5
n20	5825	10.11	5.15	11.31			
n40	5755	10.01	5.95	11.45			
n40	5795	9.58	4.93	10.86	10.5	6.0	11.5
ac20	5745	10.88	6.89	12.34			
ac20	5785	10.43	6.02	11.77	11.0	7.0	12.5
ac20	5825	10.02	5.18	11.25			
ac40	5755	9.96	-0.44	10.34	40.0		44.0
ac40	5795	9.57	4.87	10.84	10.0	5.0	11.0
ac80	5775	8.89	4.56	10.25	9.0	5.0	10.5
ax20	5745	10.74	6.64	12.17	\ \	, \ \ \ \ \	
ax20	5785	10.38	5.80	11.68	11.0	7.0	12.5
ax20	5825	9.89	5.03	11.12			
ax40	5755	9.64	5.58	11.08			
ax40	5795	9.22	4.61	10.51	10.0	6.0	11.5
ax80	5775	8.62	4.37	10:01	9.0	4.5	10.5

No.: BCTC/RF-ICT-005 Page 32 of 96 Edition/ C.0

14.2 Transmit Antennas and SAR Measurement Position

EUT Back view Antenna Location:

ANT-A Antenna ANT-B Antenna

Antenna information							
Antenna	Function						
ANT-A	WIFI .						
ANT-B	WIFI + Bluetooth						

	Distance of The Antenna to the EUT surface and edge (mm)										
Mode Front Back Top Side Bottom Side Left Side Right Side											
ANT-A	/	<25	208	<25	36	281					
ANT-B / <25 208 <25 281 36											

	Body mode: Positions for SAR tests										
Mode Front Back Top Side Bottom Side Left Side Right Side											
ANT-A	/	Yes	No	Yes	No	No					
ANT-B	NT-B / Yes No Yes No No										

No.: BCTC/RF-ICT-005 Page 33 of 96 Editjon/ C.0

TC

еро

14.3 Measured and Reported (Scaled) SAR Results

WIFI 2.4G (ANT-A)									
RF	Mode	Test	Freq.	Power	r (dBm)	Scaling	SAR _{1g}	(W/kg)	Plot
Exposure Conditions	Wode	Position	(MHz)	Meas.	Tuen-up	Factor	Meas.	Scaled	No.
Body	802.11b	Back Face	2462	11.92	12.0	1.019	0.290	0.295	1
(0mm)	802.11b	Bottom Side	2462	11.92	12.0	1.019	0.206	0.210	

WIFI 2.4G (ANT-B)									
RF	Mode	Test		Power (dBm)		Scaling	SAR _{1g}	(W/kg)	Plot
Exposure Conditions	Wode	Position	(MHz)	Meas.	Tuen-up	Factor	Meas.	Scaled	No.
Body	802.11b	Back Face	2462	9.09	9.5	1.099	0.223	0.245	2
(0mm)	802.11b	Bottom Side	2462	9.09	9.5	1.099	0.097	0.107	

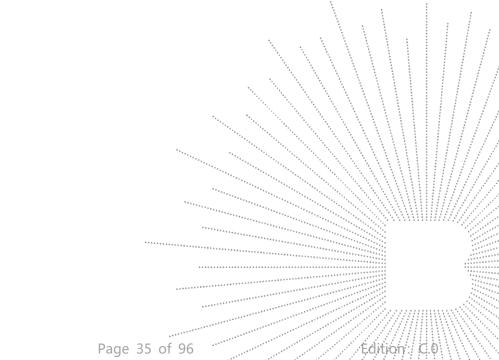
	WIFI 5.1G (ANT-A)									
RF	Mada	Test	Freq.	Power	r (dBm)	Scaling	SAR _{1g}	(W/kg)	Plot	
Exposure Conditions	Mode	Position	(MHz)	Meas.	Tuen-up	Factor	Meas.	Scaled	No.	
Body	802.11a	Back Face	5240	11.65	12.0	1.084	0.467	0.506	3	
(0mm)	802.11a	Bottom Side	5240	11.65	12.0	1.084	0.388	0.421		

WIFI 5.1G (ANT-B)									
RF Made		Test	Freq.	Power	r (dBm)	Scaling	SAR _{1g}	(W/kg)	Plot
Exposure Conditions	Mode	Position	(MHz)	Meas.	Tuen-up	Factor	Meas.	Scaled	No.
Body	802.11a	Back Face	5180	10.24	10.5	1.062	0.365	0.388	4
(0mm)	802.11a	Bottom Side	5180	10.24	10.5	1.062	0.320	0.340	

	WIFI 5.8G (ANT-A)										
RF Test Freq. Power (dBm) Scaling SAR _{1g} (W/kg)					(W/kg)	Plot					
Exposure Conditions	Mode	Position	(MHz)	Hz) Meas. Tuen-up		Factor	Meas.	Scaled	No.		
Body	802.11a	Back Face	5745	11.85	12.0	1.035	0.430	0.445	5		
(0mm)	802.11a	Bottom Side	5745	11.85	12.0	1.035	0.313	0.324			

	WIFI 5.8G (ANT-B)											
RF	Mode	Test	Freq.	Power (dBm)		Scaling	SAR _{1g}	(W/kg)	Plot			
Exposure Mode Conditions		Position	(MHz)	Meas.	Tuen-up	Factor	Meas.	Scaled	No.			
Body	802.11a	Back Face	5745	7.74	8.0	1.062	0.534	0.567				
(0mm)	802.11a	Bottom Side	5745	7.74	8:0	1.062	0.654	0.694	6			

No.: BCTC/RF-ICT-005 Page 34 of 96 Edition/ C.0



14.4 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with ≤ 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783. Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

		RF		Repeated	Highest	First Re	epeated
Test Mode	Frequency (MHz)	Exposure Conditions	Test Position	SAR (yes/no)	Measured SAR1-g (W/Kg)	Measured SAR1-g (W/Kg)	Largest to Smallest SAR Ratio
/	/	/	/	/	/	/	/

No.: BCTC/RF-ICT-005

14.5 Simultaneous Transmission Evaluation

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna.

Application Simultaneous Transmission information:

No.	Configurations	Body SAR
1	ANT-A + ANT-B	Yes

Remark:

- 1. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
 - 1) $[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [\sqrt{f_{(GHz)}/x}]$ W/kg, for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.
 - 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the *test separation distance* is > 50 mm.

	Estimated stand alone SAR									
Mode	Frequency (MHz)	Maximum Power (dBm)	Maximum Power (mW)	Separation Distance (mm)	x	Estimated SAR1-g (W/kg)				
Bluetooth	2450	3.0	2.00	5	7.5	0.084				

Note:

- 1) Maximum average power including tune-up tolerance;
- 2) When the minimum test separation distance is < 5mm, a distance of 5mm is applied to determine SAR test exclusion.
- 2. Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

3. Simultaneous transmission of maximum SAR sum calculation.

RF Exposure Conditions	Test Position	Standalone SAR _{1g} (W/kg)		Summed
		ANT-A	ANT-B	SAR _{1g} (W/kg)
Body	Front Face	/	1	
	Back Face	0.506	0.567	1.073
	Left Side	/		/
	Right Side	/		/
	Top Side	/	************	J
	Bottom Side	0.421	0.694	1.115

Note: The WIFI and Bluetooth of ANT-B share one antenna and cannot transmit data simultaneously. Therefore, the maximum SAR value of the two functions of ANT-B is selected for calculation.

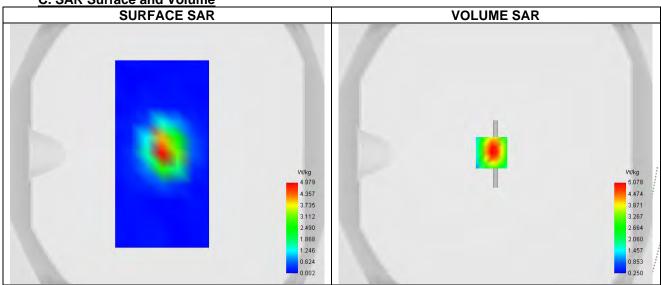
No.: BCTC/RF-ICT-005 Page 36 of 96

15. Test Plots

15.1 System Performance Check

System check at 2450 MHz

Date of measurement: 10/7/2025


A. Experimental conditions.

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.11
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=8mm dy=8mm dz=5.0mm
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Signal	CW

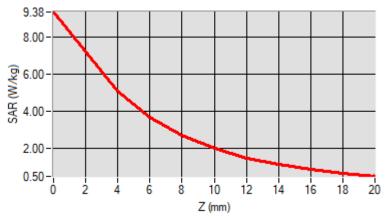
B. Permitivity

Frequency (MHz)	2450.000
Relative permitivity (real part)	40.600
Relative permitivity (imaginary part)	14.330
Conductivity (S/m)	1.766

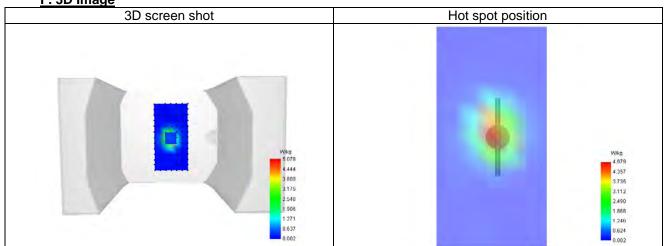
C. SAR Surface and Volume

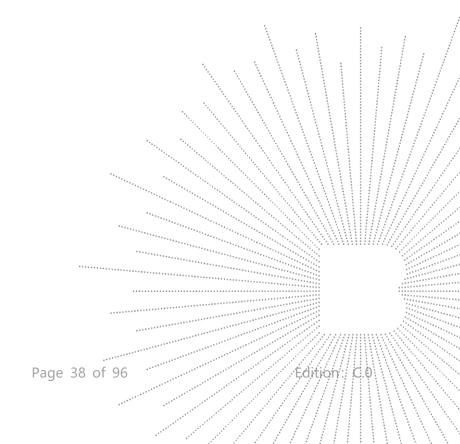
Maximum location: X=-3.00, Y=1.00; SAR Peak: 9.50 W/kg

D. SAR 1a & 10a


<u> </u>	
SAR 10g (W/Kg)	6.321
SAR 1g (W/Kg)	13.068
Variation (%)	2.357

E. Z Axis Scan

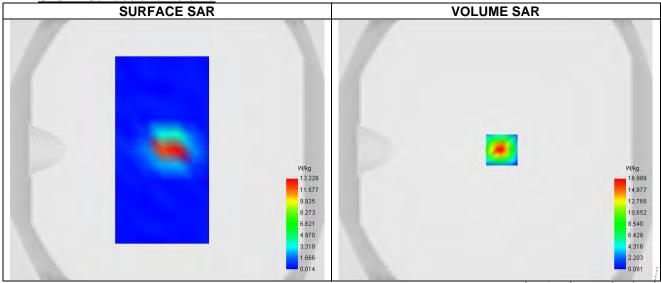

Z (mm)	0.00	4.00	6.00	8.00	10.00 12.00 14.00 16.00	18.00
SAR (W/Kg)	9.380	5.078	3.712	2.709	2.001 1.499 1.138 0.871	0.667


No.: BCTC/RF-ICT-005 Page 37 of 96 Edition C0

F. 3D Image

System check at 5200 MHz
Date of measurement: 10/7/2025

Report No: BCTC2507440513E


A. Experimental conditions.

Probe	SN 26/23 EPGO420		
ConvF	0.97		
Area Scan	surf_sam_plan.txt		
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2.0mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW5200		
Signal	CW		

B. Permitivity

Frequency (MHz)	5200.000	
Relative permitivity (real part)	37.197	
Relative permitivity (imaginary part)	18.140	
Conductivity (S/m)	4.624	

C. SAR Surface and Volume

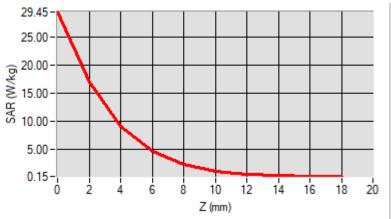
Maximum location: X=5.00, Y=0.00; SAR Peak: 30.79 W/kg

D. SAR 1g & 10g

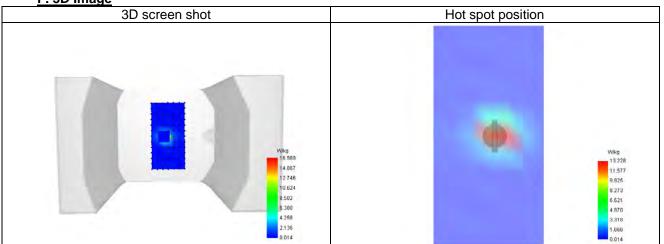
<u>D. 3AK 19 & 109</u>	
SAR 10g (W/Kg)	5,359
SAR 1g (W/Kg)	19.938
Variation (%)	3,691

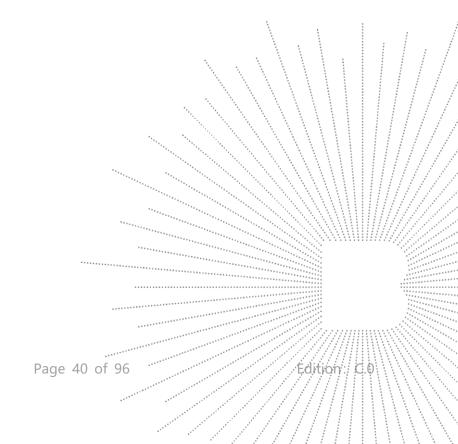
E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00	12.00 14.00 16.00	/
SAR (W/Kg)	29.452	16.989	9.130	4.585	2.232 1.083	0.552 0.315 0.209	7


No.: BCTC/RF-ICT-005 Page 39 of 96 Edition/ C.0

,TC

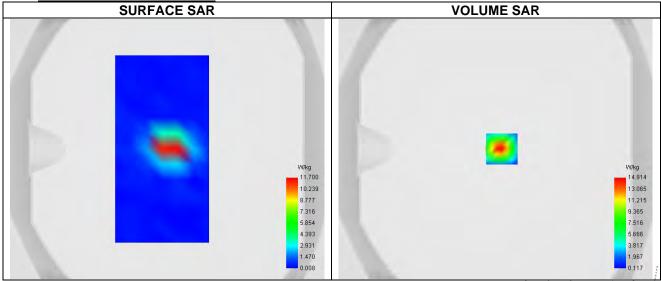

3C



F. 3D Image

System check at 5800 MHz
Date of measurement: 10/7/2025

Report No: BCTC2507440513E


A. Experimental conditions.

A Experimental conditioner	
Probe	SN 26/23 EPGO420
ConvF	1.05
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2.0mm
Phantom	Validation plane
Device Position	Dipole
Band	CW5800
Signal	CW

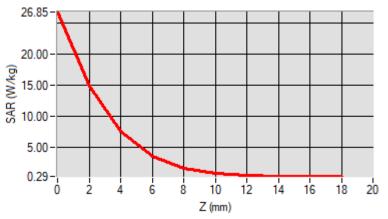
B. Permitivity

Frequency (MHz)	5800.000	
Relative permitivity (real part)	35.956	
Relative permitivity (imaginary part)	18.620	
Conductivity (S/m)	5.471	

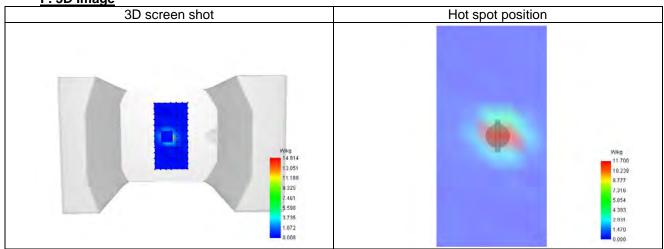
C. SAR Surface and Volume

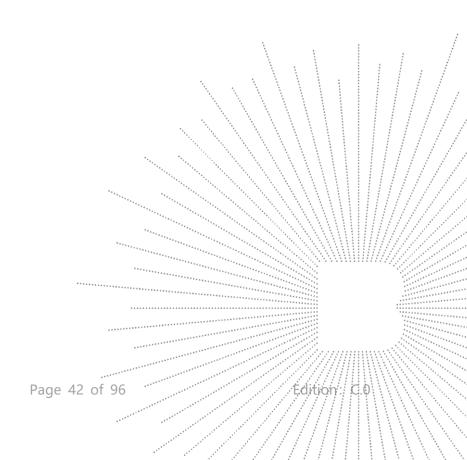
Maximum location: X=5.00, Y=0.00; SAR Peak: 28.22 W/kg

D. SAR 1g & 10g


	D. SAR 19 & 109	
	SAR 10g (W/Kg)	5,556
	SAR 1g (W/Kg)	18.976
ſ	Variation (%)	-1.366

E. Z Axis Scan

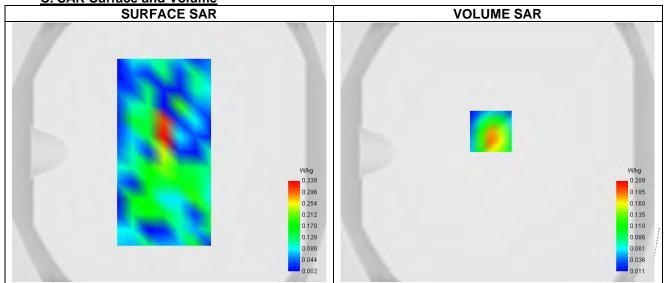

	Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00	12.00	14.00 16.00
I	SAR (W/Kg)	26.852	14.914	7.581	3.559	1.627 0.770	0.423	0.303 0.288


No.: BCTC/RF-ICT-005 Page 41 of 96 Editjon/ C.C.

F. 3D Image

15.2 SAR Test Graph Results

Plot 1 Date of measurement: 10/7/2025


A. Experimental conditions

A. Experimental conditions.		
Probe	SN 26/23 EPGO420	
ConvF 1.11		
Area Scan surf_sam_plan.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5.0mm	
Phantom	Validation plane	
Device Position	Body	
Band	ISMWIFI 2.4G (ANT-A)	
Signal	802.11b	

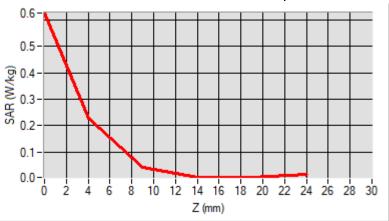
B. Permitivity

<u> </u>		
Frequency (MHz)	2462.000	
Relative permitivity (real part)	40.600	
Relative permitivity (imaginary part)	13.207	
Conductivity (S/m)	1.766	

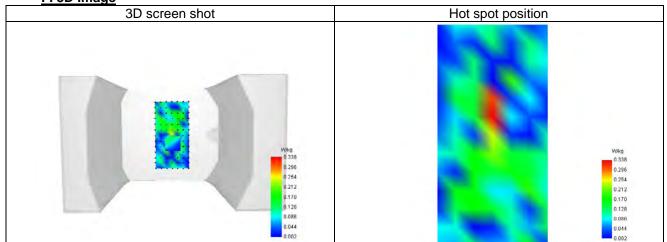
C. SAR Surface and Volume

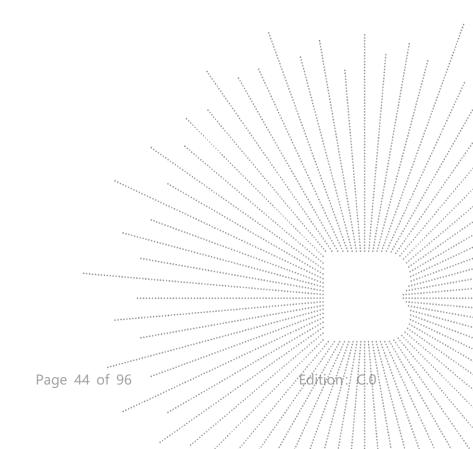
Maximum location: X=-5.00, Y=16.00; SAR Peak: 0.35 W/kg

D. SAR 1a & 10a


210111119 01109	
SAR 10g (W/Kg)	0.149
SAR 1g (W/Kg)	0.290 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Variation (%)	2,81,0 \ \ \ \ \ / /

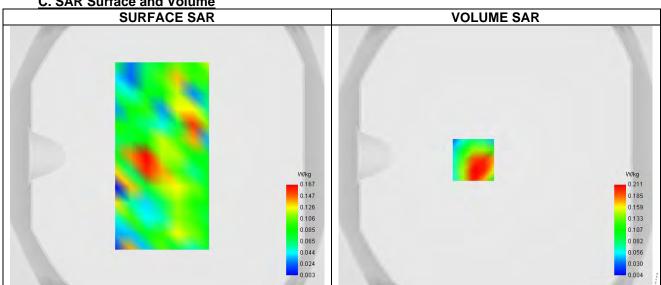
E. Z Axis Scan


Z (mm)	0.00	4.00	9.00 14.00 19.00
SAR (W/Kg)	-0.309	0.183	0.209 0.113 0.122


No.: BCTC/RF-ICT-005 Page 43 of 96

Date of measurement: 10/7/2025

Report No: BCTC2507440513E


A. Experimental conditions.

Probe	SN 26/23 EPGO420	
ConvF	1.11	
Area Scan	surf_sam_plan.txt	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5.0mm	
Phantom	Validation plane	
Device Position	Body	
Band	ISMWIFI 2.4G (ANT-B)	
Signal	802.11b	

B. Permitivity

Frequency (MHz)	2462.000	
Relative permitivity (real part)	40.600	
Relative permitivity (imaginary part)	13.207	
Conductivity (S/m)	1.766	

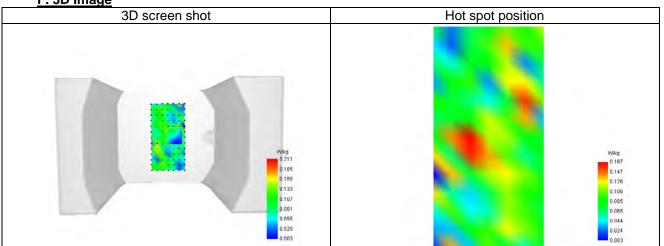
C. SAR Surface and Volume

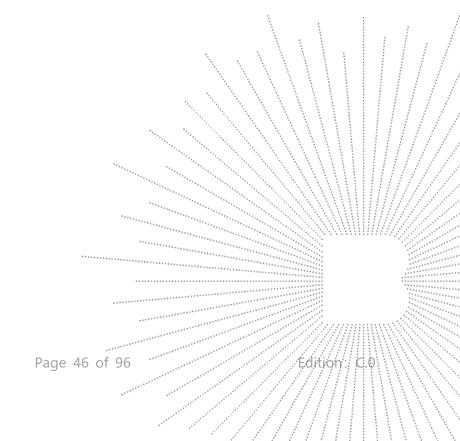
Maximum location: X=-17.00, Y=-3.00; SAR Peak: 0,49 W/kg

D. SAR 1a & 10a

<u>D. SAK 19 & 109</u>	
SAR 10g (W/Kg)	0.102
SAR 1g (W/Kg)	0.223
Variation (%)	1,670

E. Z Axis Scan

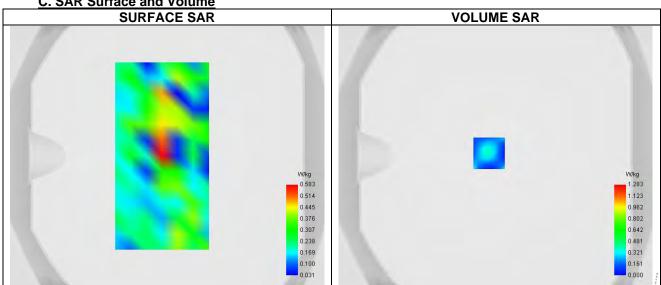

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.533	0.211	0.066	0.031	0.026


No.: BCTC/RF-ICT-005 Page 45 of 96

F. 3D Image

Date of measurement: 10/7/2025

Report No: BCTC2507440513E


A. Experimental conditions.

7.1. = 2. P C : 111 C : 1 C :		
Probe	SN 26/23 EPGO420	
ConvF	1.18	
Area Scan	surf_sam_plan.txt	
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2.0mm	
Phantom	Validation plane	
Device Position	Body	
Band	WIFI 5.1G (ANT-A)	
Signal	802.11a	

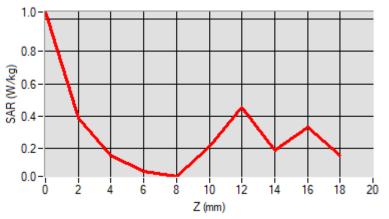
B. Permitivity

Frequency (MHz)	5240.000 37.197	
Relative permitivity (real part)		
Relative permitivity (imaginary part)	16.130	
Conductivity (S/m)	4.624	

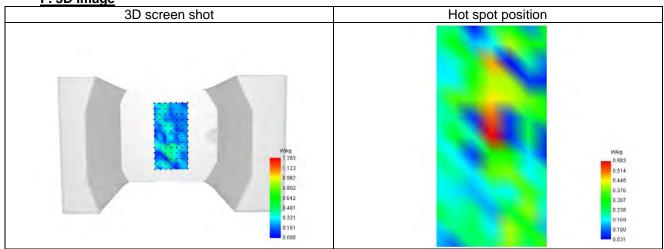
C. SAR Surface and Volume

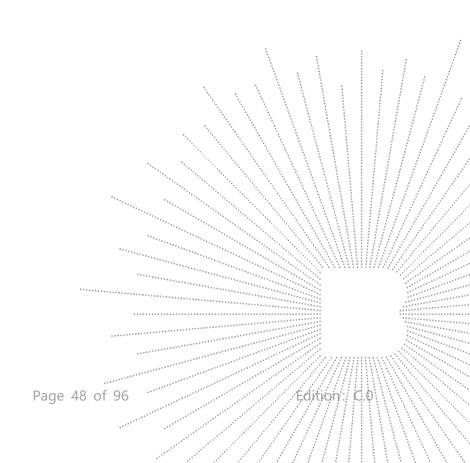
Maximum location: X=-5.00, Y=2.00; SAR Peak: 1.11 W/kg

D. SAR 1a & 10a


D. SAK 19 & 109	
SAR 10g (W/Kg)	0.208
SAR 1g (W/Kg)	0.467
Variation (%)	-3.410

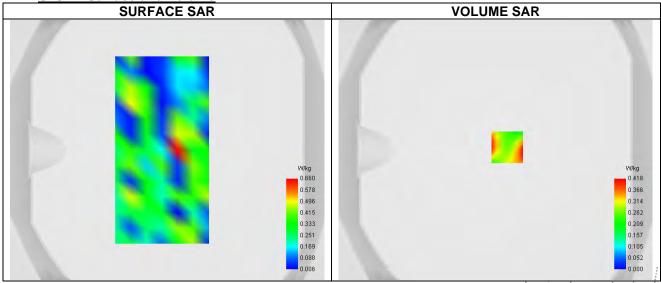
E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00	12.00 14.00 16.00
SAR (W/Kg)	1.043	0.390	0.158	0.060	0.030 0.217	0.457 0.189 0.335


No.: BCTC/RF-ICT-005 Page 47 of 96

Plot 4
Date of measurement: 10/7/2025

Report No: BCTC2507440513E


A. Experimental conditions.

A. Experimental conditions.			
Probe	SN 26/23 EPGO420		
ConvF	1.18		
Area Scan	surf_sam_plan.txt		
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2.0mm		
Phantom	Validation plane		
Device Position	Body		
Band	WIFI 5.1G (ANT-B)		
Signal	802.11a		

B. Permitivity

Frequency (MHz)	5180.000		
Relative permitivity (real part)	37.197		
Relative permitivity (imaginary part)	16.130		
Conductivity (S/m)	4.624		

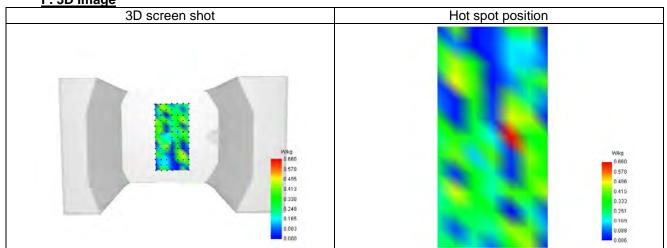
C. SAR Surface and Volume

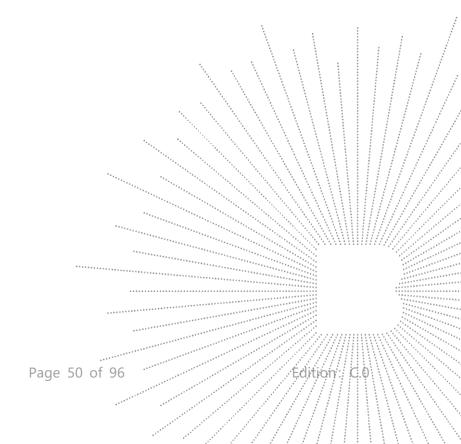
Maximum location: X=9.00, Y=2.00; SAR Peak: 1.06 W/kg

D. SAR 1g & 10g

D. SAK 19 & 109	
SAR 10g (W/Kg)	0,184
SAR 1g (W/Kg)	0.365
Variation (%)	-1.180 \ \ /

E. Z Axis Scan

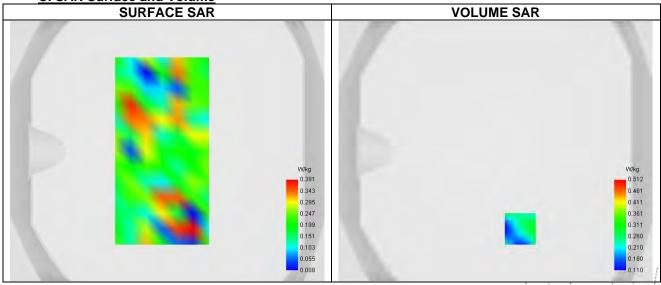

Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00	12.00 14.00 16.00
SAR (W/Kg)	0.859	0.414	0.310	0.028	0.197 0.050	0.279 0.102 / 0.188


No.: BCTC/RF-ICT-005 Page 49 of 96 Edition / C.0

F. 3D Image

Plot 5
Date of measurement: 10/7/2025

Report No: BCTC2507440513E


A. Experimental conditions.

7.1. = 7.10 · 1.11 · 1.			
Probe	SN 26/23 EPGO420		
ConvF	1.15		
Area Scan	surf_sam_plan.txt		
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2.0mm		
Phantom	Validation plane		
Device Position	Body		
Band	WIFI 5.8G (ANT-A)		
Signal	802.11a		

B. Permitivity

Frequency (MHz)	5745.000	
Relative permitivity (real part)	35.956	
Relative permitivity (imaginary part)	16.355	
Conductivity (S/m)	5.471	

C. SAR Surface and Volume

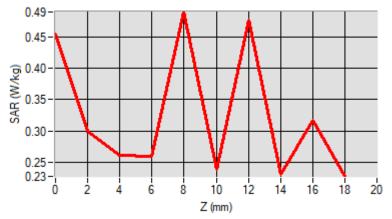
Maximum location: X=19.00, Y=-60.00; SAR Peak: 0.61 W/kg

D. SAR 1g & 10g

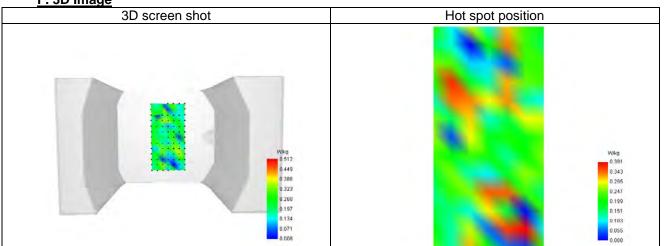
D. SAK 19 & 109	
SAR 10g (W/Kg)	0.279
SAR 1g (W/Kg)	0.430
Variation (%)	2.970

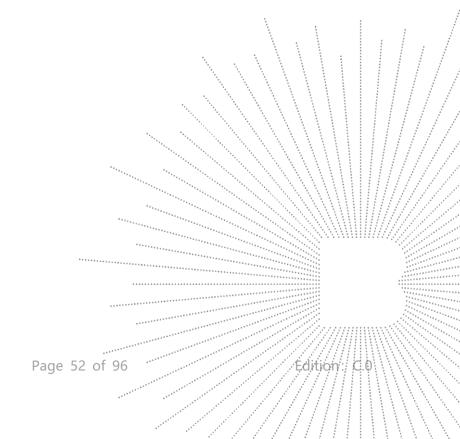
E. Z Axis Scan

Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00	12.00	14.00 16.00
SAR (W/Kg)	0.454	0.299	0.261	0.260	0.490 0.239	0.477	0.230 0.317


No.: BCTC/RF-ICT-005 Page 51 of 96

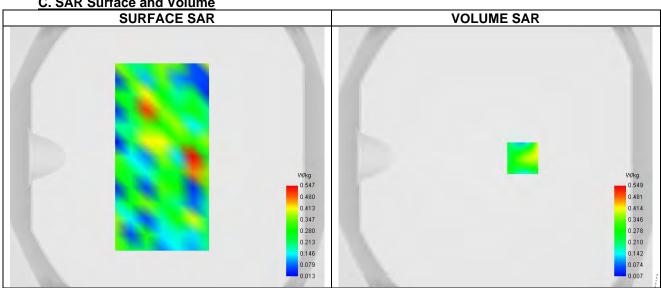
,TC


3C



F. 3D Image

Date of measurement: 10/7/2025


A. Experimental conditions.

A Experimental contactioner			
Probe	SN 26/23 EPGO420		
ConvF	1.15		
Area Scan	surf_sam_plan.txt		
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2.0mm		
Phantom	Validation plane		
Device Position	Body		
Band	WIFI 5.8G (ANT-B)		
Signal	802.11a		

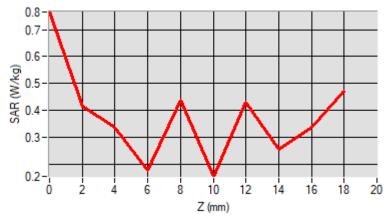
B. Permitivity

Frequency (MHz)	5745.000		
Relative permitivity (real part)	35.956		
Relative permitivity (imaginary part)	16.355		
Conductivity (S/m)	5.471		

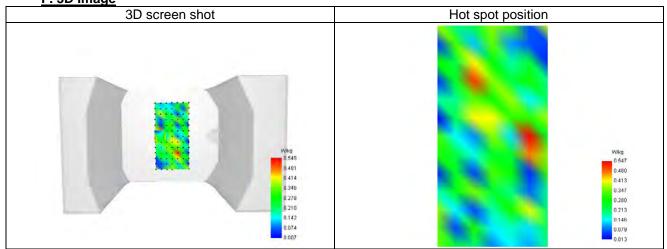
C. SAR Surface and Volume

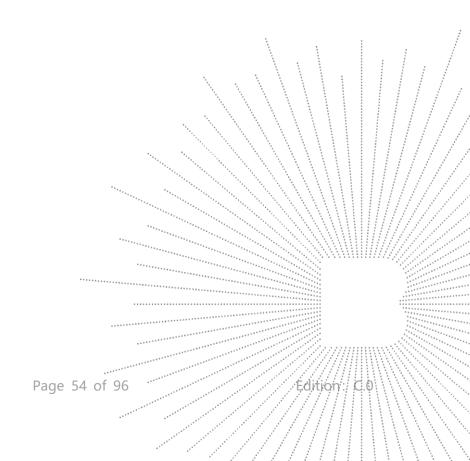
Maximum location: X=21.00, Y=-1.00; SAR Peak: 1.52 W/kg

D. SAR 1a & 10a


D. SAK 19 & 109	
SAR 10g (W/Kg)	0.397 \ \
SAR 1g (W/Kg)	0.654
Variation (%)	2,570

E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00	12.00 14.00 16.00
SAR (W/Kg)	0.766	0.415	0.339	0.176	0.437 0.154	0.429 0.255 0.338


No.: BCTC/RF-ICT-005 Page 53 of 96

16 CALIBRATION CERTIFICATES

Probe-EPGO420 Calibration Certificate SID2450Dipole Calibration Ceriticate SID5000Dipole Calibration Ceriticate

Page 55 of 96 Edition (C.6)

COMOSAR E-Field Probe Calibration Report

Ref: ACR.199.1.24.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD.

1~2/F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 2623-EPGO-420

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 7/18/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

No.: BCTC/RF-ICT-005 Page 56 of 96 Edition C.0

No.: BCTC/RF-ICT-005

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR, 199.1.24.BES.A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	7/18/2024	
Checked & approved by:	Jérôme Luc	Technical Manager	7/18/2024	JES
Authorized by:	Yann Toutain	Laboratory Director	7/18/2024	Jana TOUTAAN

Yann Signature numérique de Yann Toutain ID Date : 2024.07.18

	Customer Name
Distribution :	Shenzhen BCTC Technology Co., Ltd.

Issue	Name	Date	Modifications
A	Cyrille ONNEE	7/18/2024	Initial release
			1
	4		

Page: 2/11

Template ACRIDBONYKAN GRISSUF COMOSAIC Probe VI.

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.24.BES.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2	Pro	duct Description4	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Sensitivity	4
	3.2	Linearity	5
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Me	asurement Uncertainty6	
5	Cal	ibration Results6	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Vei	rification Results9	
7	Lis	t of Equipment10	

Page: 3/11

Template ACR. DDD.N. YYMVGBJSSUE COMOS Aft. Probe vI.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 58 of 96

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR, 199.1.24.BES.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	2623-EPGO-420		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.228 MΩ		
	Dipole 2: R2=0.238 MΩ		
	Dipole 3: R3=0.230 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	24.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.55 mm
Distance between dipoles / probe extremity	12.7 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/11

Template ACRADDDNAYANVGBASSUE COMOSAR Probe vt.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 59 of 96

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR 199 1 24 BES A

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{step} along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{be}}/(\delta \rho)}\right)}{\delta/2} \quad \mathrm{for} \, \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$

where

No.: BCTC/RF-ICT-005

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 $\Delta_{ ext{sten}}$ is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SARbe in percent of SAR is the deviation between the measured SAR value, at the

distance dbe from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Page: 5/11

Template_ACRADDD.N.TYATVGB.PSUE_COMOSAR Probe vE

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

~ 60.,LTh

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR, 199.1.24.BES.A

Normx dipole 1 (μV/(V/m) ²)	Normy dipole $2 \left(\mu V / (V/m)^2 \right)$	
1.21	1.09	1.56

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	109	103

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$$

where

σ=the conductivity of the liquid

p=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4PW}{ab\delta}e^{\frac{-4S}{\delta}}$$

where

a=the larger cross-sectional of the waveguide

b=the smaller cross-sectional of the waveguide

 δ =the skin depth for the liquid in the waveguide

Pw=the power delivered to the liquid

Page: 7/11

Template_ACRADDD.N.XXAVGB.ESUE_COMOSAR Probe vt.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

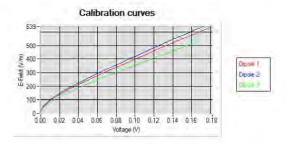
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.24.BES:A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is \pm 11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is \pm 14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition				
Liquid Temperature	20 +/- 1 °C			
Lab Temperature	20 +/- 1 °C			
Lab Humidity	30-70 %			

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

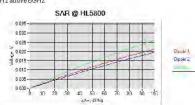
Page: 6/11

Template_ACR,DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vE

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 62 of 96 Edition/ C.0

COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR.199.1.24.BES.A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

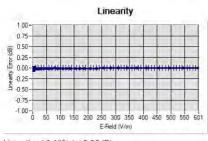
Liquid	Frequenc y (MHz*)	<u>ConvF</u>
HL450	450	0.86
BL450	450	0.78
HL750	750	0.80
BL750	750	0.87
HL850	835	0.81
BL850	835	0.80
HL900	900	0.76
BL900	900	0.87
HL1800	1800	0.96
BL1800	1800	1.01
HL1900	1900	1.04
BL1900	1900	1.11
HL2100	2100	1.00
BL2100	2100	1.16
HL2300	2300	1.11
BL2300	2300	1.23
HL2450	2450	1.11
BL2450	2450	1.32
HL2600	2600	1.03
BL2600	2600	1.19
HL5200	5200	1.18
BL5200	5200	0.97
HL5400	5400	1.17
BL5400	5400	1.00
HL5600	5600	1.20
BL5600	5600	0.95
HL5800	5800	1.15
BL5800	5800	1.05

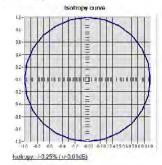
+/-100 MHz from 600MHz to 6GHz and +/-700MHz above 6GHz

Page: 8/11

Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vt.
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 63 of 96




COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.24.BES.A

VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Linearity:+/-1.48% (+/-0.06dB)

Page: 9/11

Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vt.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR, 199.1.24.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Descriptio	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027
Network Analyzer	Agilent 8753ES	MY40003210	10/2023	10/2027
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	NI-USB 5680	170100013	06/2024	06/2027
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.

Page: 10/11

Templus 4CT.DDDN TVM TERSUF COMOSAR Probe vE

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 65 of 96

