

	TEST REPOR	Т			
FCC ID:	2A92DVMC-100				
Test Report No::	TCT221212E006				
Date of issue::	Feb. 02, 2023				
Testing laboratory:	SHENZHEN TONGCE TESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sher People's Republic of China	y Renshan Industrial Zone, Fuhai nzhen, Guangdong, 518103,			
Applicant's name::	VISUSCIENCE MEDITECH CO.	, LTD.			
Address::	Room 718-720, No. 208 Guangy 214016, China	ri Road, Wuxi, Jiangsu Province			
Manufacturer's name:	VISUSCIENCE MEDITECH CO.	, LTD.			
Address::	Room 718-720, No. 208 Guangy 214016, China	ri Road, Wuxi, Jiangsu Province			
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Product Name::	Meibomian Gland Imaging Came	era			
Trade Mark::	VisuScience				
Model/Type reference:	VMC-100, VMC-200, VMC-300,	VMC-500			
Rating(s)::	Adapter Information: Model: UES06WNCPU-050100SPA Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A, 5.0W Rechargeable Li-ion Battery DC 3.7V				
Date of receipt of test item :	Dec. 12, 2022				
Date (s) of performance of test:	Dec. 12, 2022 - Feb. 02, 2023				
Tested by (+signature):	RIEO LIU PRO CHI ZONGCE				
Check by (+signature):	Beryl ZHAO Boy(10 TCT)				
Approved by (+signature):	Tomsin Jomsin 18				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General Product Information	
	1.1. EUT description	3
	1.2. Model(s) list	3
	1.3. Test Frequency	4
2.	Test Result Summary	5
3.	General Information	6
	3.1. Test environment and mode	
	3.2. Description of Support Units	7
4.	Facilities and Accreditations	8
	4.1. Facilities	8
	4.2. Location	8
	4.3. Measurement Uncertainty	
5 .	Test Results and Measurement Data	9
	5.1. Antenna requirement	9
	5.2. Conducted Emission	
	5.3. Maximum Conducted Output Power	11
	5.4. 6dB Emission Bandwidth	16
	5.5. 26dB Bandwidth and 99% Occupied Bandwidth	17
	5.6. Power Spectral Density	18
	5.7. Band edge	
	5.8. Unwanted Emissions	34
	5.9. Frequency Stability Measurement	55
	Appendix A: Test Result of Conducted Test	
	Appendix B: Photographs of Test Setup	
	Appendix C: Photographs of EUT	
	- ·	

1. General Product Information

1.1. EUT description

Product Name:	Meibomian Gland Imaging Camera	(5)
Model/Type reference:	VMC-100	
Sample Number:	TCT221212E006-0101	
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 2A: 5260 MHz ~ 5320 MHz Band 2C: 5500 MHz ~ 5700 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	Internal Antenna	(0)
Antenna Gain:	2.49dBi	
Rating(s):	Adapter Information: Model: UES06WNCPU-050100SPA Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A, 5.0W Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	VMC-100	
Other models	VMC-200, VMC-300, VMC-500	

Note: VMC-100 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, different on the model names and color of appearance. So the test data of VMC-100 can represent the remaining models.

Page 3 of 232

1.3. Test Frequency

Band 1

20MHz		40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 2A

20MHz		40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260	54	5270	58	5290
60	5300	62	5310		
64	5320				

Band 2C

20MHz		40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
100	5500	102	5510	106	5530
120	5600	118	5590	122	5610
140	5700	134	5670		

Band 3

20MHz		40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

TESTING CENTRE TECHNOLOGY Report No.: TCT221212E006

3. General Information

3.1. Test environment and mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	56 % RH			
Atmospheric Pressure:	1010 mbar			
Test Software:				
Software Information:	SecureCRTPortable			
Power Level:	14			
Test Mode:				
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle.			

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11a	6 Mbps		
802.11n(HT20)	6.5 Mbps		
802.11n(HT40)	13.5 Mbps		
802.11ac(VHT20)	6.5 Mbps		
802.11ac(VHT40) 13.5 Mbps			
802.11ac(VHT80)	29.3 Mbps		

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Router	WL-WN575A3	EB03WK0500482	/	wavlink
Mobile Phone	iphone12mini	/	/	Apple
Notebook Computer	XiaoXin CHAO5000	PF0WZYD9	Ó	Lenovo
Adapter	ADLX65CCGC2A	8SSA10M42805C1 SG88E0R8E	/	Lenovo

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

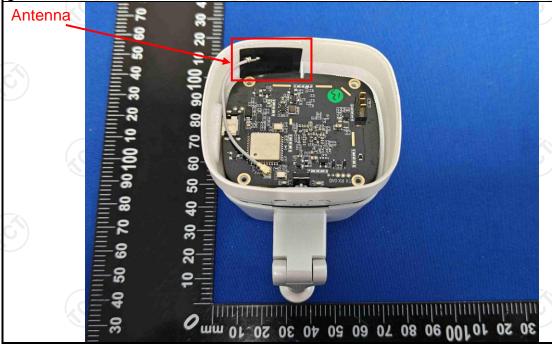
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT221212E006

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is internal antenna which permanently attached, and the best case gain of the antenna is 2.49dBi.

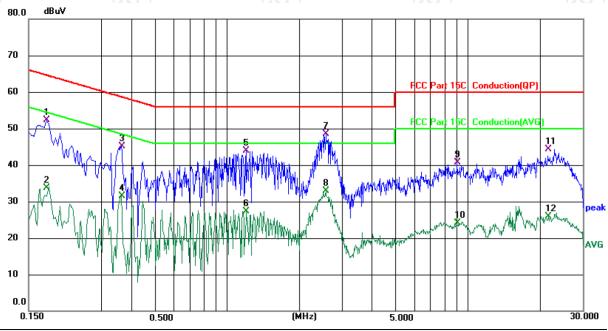
5.2. Conducted Emission

5.2.1. Test Specification

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto				
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50				
	Reference	Diam.	1201				
Test Setup:	AC power E.U.T AC power Filter AC power Test table/Insulation plane						
Test Mode:	Charging + Transmitting Mode						
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Result:	PASS						

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023	
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023	
Line-5	TCT	CE-05	/	Jul. 03, 2024	
EMI Test Software	Shurple Technology	EZ-EMC	1 (6)	1 6	



5.2.3. Test data

Report No.: TCT221212E006

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 25.3 (°C)

Humidity: 56 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1	0.1779	41.72	10.51	52.23	64.58	-12.35	QP	
2	0.1779	23.24	10.51	33.75	54.58	-20.83	AVG	
3	0.3619	34.97	10.21	45.18	58.68	-13.50	QP	
4	0.3619	21.37	10.21	31.58	48.68	-17.10	AVG	
5	1.2019	33.74	10.09	43.83	56.00	-12.17	QP	
6	1.2019	17.13	10.09	27.22	46.00	-18.78	AVG	
7 *	2.5739	38.43	10.02	48.45	56.00	-7.55	QP	
8	2.5739	22.84	10.02	32.86	46.00	-13.14	AVG	
9	9.0459	30.46	10.18	40.64	60.00	-19.36	QP	
10	9.0459	13.85	10.18	24.03	50.00	-25.97	AVG	
11	21.6060	33.76	10.47	44.23	60.00	-15.77	QP	
12	21.6060	15.43	10.47	25.90	50.00	-24.10	AVG	

Note:

Freq. = Emission frequency in MHz

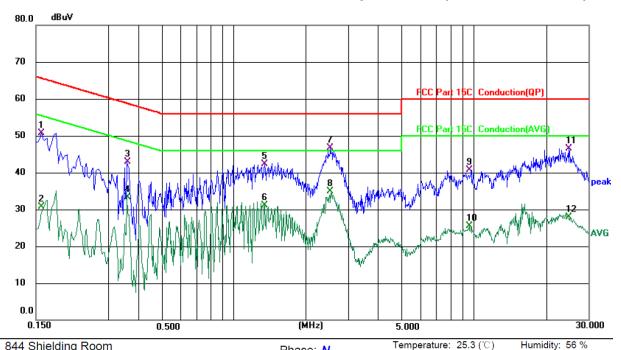
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Limit: FCC Part 15C Conduction(QP)

Phase: N

Power: AC 120 V/60 Hz

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1	0.1580	40.29	10.45	50.74	65.57	-14.83	QP	
2	0.1580	20.30	10.45	30.75	55.57	-24.82	AVG	
3	0.3580	32.70	10.21	42.91	58.77	-15.86	QP	
4	0.3580	23.13	10.21	33.34	48.77	-15.43	AVG	
5	1.3500	32.13	10.12	42.25	56.00	-13.75	QP	
6	1.3500	20.95	10.12	31.07	46.00	-14.93	AVG	
7 *	2.5300	36.60	10.12	46.72	56.00	-9.28	QP	
8	2.5300	24.79	10.12	34.91	46.00	-11.09	AVG	
9	9.5900	30.48	10.30	40.78	60.00	-19.22	QP	
10	9.5900	15.18	10.30	25.48	50.00	-24.52	AVG	
11	24.8300	36.07	10.46	46.53	60.00	-13.47	QP	
12	24.8300	17.38	10.46	27.84	50.00	-22.16	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

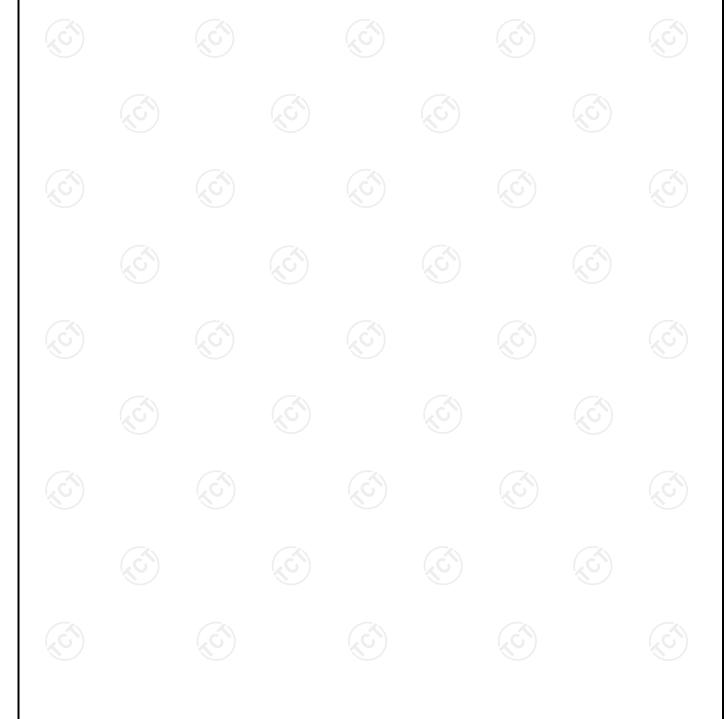
Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Highest channel and 802.11a) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E				
	Frequency Band (MHz)	Limit			
	5180 - 5240	24dBm(250mW) for client device			
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5745 - 5825	30dBm(1W)			
Test Setup:	Power meter EUT				
Test Mode:	Transmitting mode w	vith modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS				
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Power Meter	Agilent	E4418B	MY45100357	Jul. 04, 2023
Power Sensor	Agilent	8481A	MY41091497	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C				
Limit:	>500kHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 				
Test Result:	PASS				

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1 (6)	/ (3

Page 16 of 232

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049				
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D				
No restriction limits				
Spectrum Analyzer EUT				
Transmitting mode with modulation				
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 				
PASS				

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1

Page 17 of 232

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)		
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F		
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470- 5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. 		
Test Result:	PASS		

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

Page 18 of 232

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	ÇĆ					
Test Method:	ANSI C63.10 20	013							
	In un-restricted ba For Band 1&2A&2 For Band 3:		z	(C ¹)					
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)					
	< 5650	-27	5850~5855	27~15.6					
Limit:	650~5700								
	5700~5720	10~15.6	5875~5925	10~-27					
	5720~5725	15.6~27	> 5925	-27					
	E[dBµV/m] = EIR In restricted band:		/						
	Detec		Limit@						
	Peal		74dBµ						
	AVG	j	54dBµ	ıv/m					
Test Setup:	T.S. (T.J.MARKE)	Ground Reference Plane Test Federiver Total Controller							
Test Mode:	Transmitting mo	de with modu	ulation						
Test Procedure:	meters above the was rotated 360 highest radiation 2. The EUT was interference-red the top of a vari 3. The antenna meters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readi	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect							

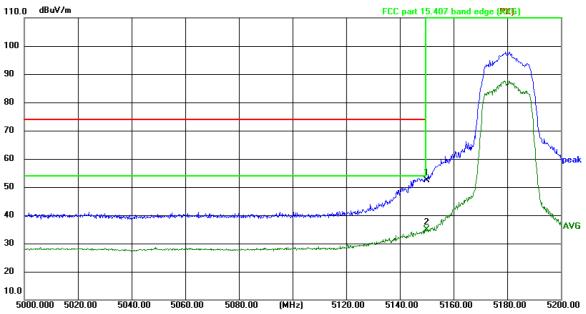
Report No.: TCT221212E006

Mode.

Report No.: TCT221212E006

6. If the emission level of the EUT in peak mode was

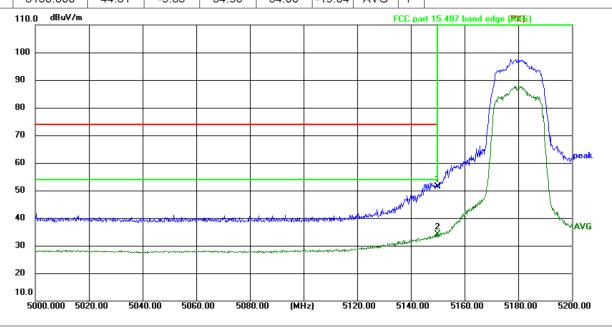
		10dB lo stopped reported 10dB m quasipe	wer than the pd. Otherwise danger that the pd. Otherwise danger th	ne limit spe eak values se the emis d be re-tes age metho	ecified, there of the EU ssions that sted one by	ak mode wantesting con testing con would be did not have using ied and the	uld be e peak,
Test	Result:	PASS					



5.7.2. Test Instruments

	Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023							
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023							
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023							
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 24, 2023							
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 24, 2023							
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023							
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024							
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024							
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023							
Coaxial cable	SKET	RC-18G-N-M) 1	Feb. 24, 2024							
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024							
Antenna Mast	Keleto	CC-A-4M		1 60							
EMI Test Software	Shurple Technology	EZ-EMC	/	(6)							

5.7.3. Test Data AC20-5180



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

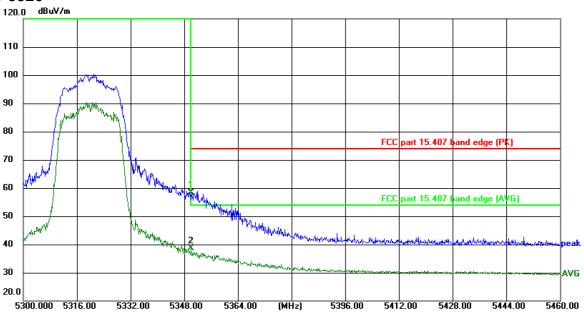
Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	62.15	-9.85	52.30	74.00	-21.70	peak	Р	
2 *	5150 000	44 81	-9.85	34 96	54.00	-19 04	AV/G	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

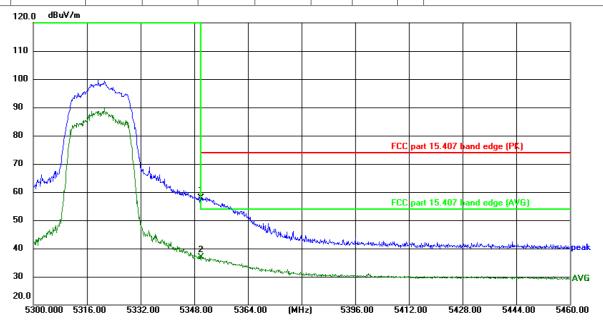
Limit: FCC part 15.407 band edge (PK)


Power: AC 120 V/60 Hz

N	lo.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
•	1	5150.000	61.34	-9.85	51.49	74.00	-22.51	peak	Р	
2	2 *	5150.000	43.98	-9.85	34.13	54.00	-19.87	AVG	Р	

Report No.: TCT221212E006

AC20-5320



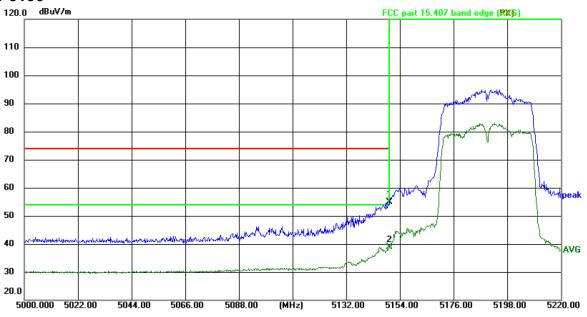
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

İ	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
ŀ	1	5350.000	67.76	-9.43	58.33	74.00	-15.67	peak	Р	
	2 *	5350.000	48.15	-9.43	38.72	54.00	-15.28	AVG	Р	

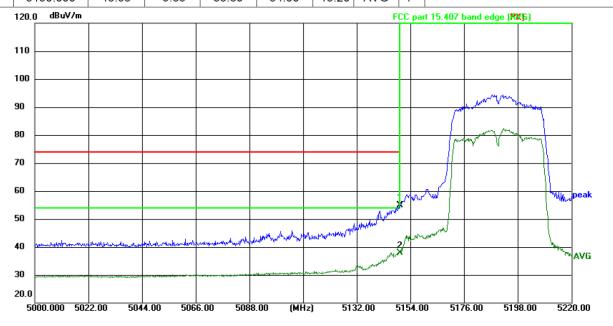
Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(℃) Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	67.35	-9.43	57.92	74.00	-16.08	peak	Р	
2	5350.000	46.22	-9.43	36.79	54.00	-17.21	AVG	Р	

AC40-5190



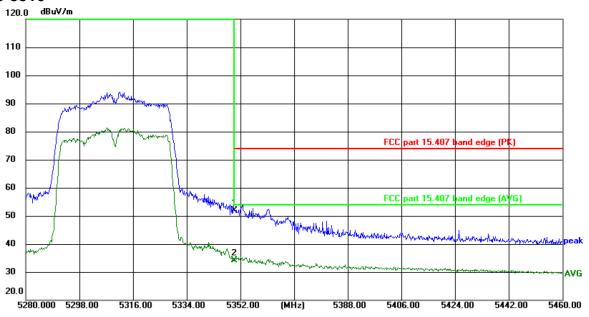
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	64.84	-9.85	54.99	74.00	-19.01	peak	Р	
2 *	5150 000	48 65	-9.85	38.80	54 00	-15 20	AVG	Р	

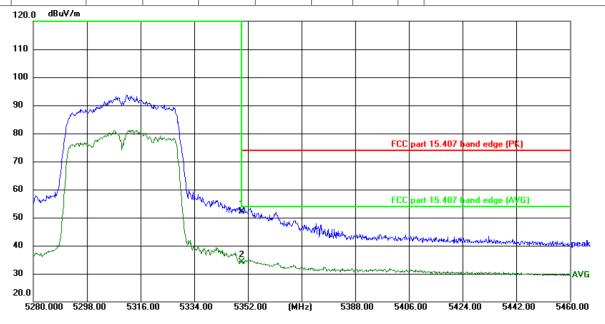
Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	64.76	-9.85	54.91	74.00	-19.09	peak	Р	
2 *	5150.000	47.79	-9.85	37.94	54.00	-16.06	AVG	Р	

AC40-5310



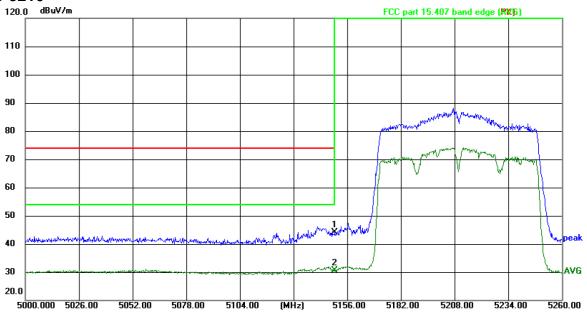
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	61.25	-9.43	51.82	74.00	-22.18	peak	Р	
2 *	5350.000	43.60	-9.43	34.17	54.00	-19.83	AVG	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

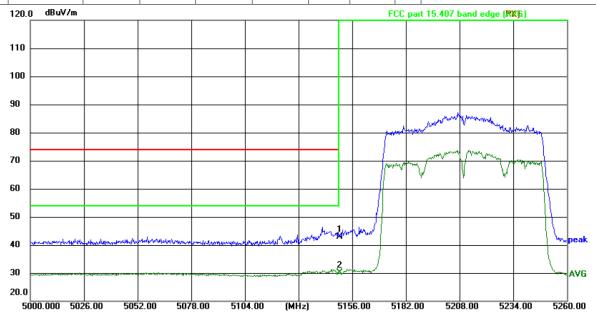
Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	61.50	-9.43	52.07	74.00	-21.93	peak	Р	
ľ	2 *	5350.000	43.62	-9.43	34.19	54.00	-19.81	AVG	Р	

AC80-5210

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 21.3(℃)

Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

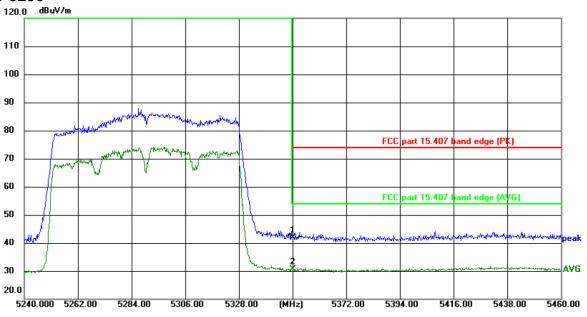
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	53.99	-9.85	44.14	74.00	-29.86	peak	Р	
Г	2 *	5150.000	40.37	-9.85	30.52	54.00	-23.48	AVG	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 21.3(℃)

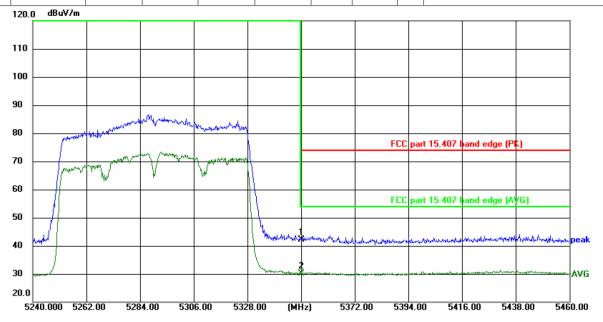
Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	52.78	-9.85	42.93	74.00	-31.07	peak	Р	
2 *	5150.000	40.10	-9.85	30.25	54.00	-23.75	AVG	Р	

AC80-5290



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

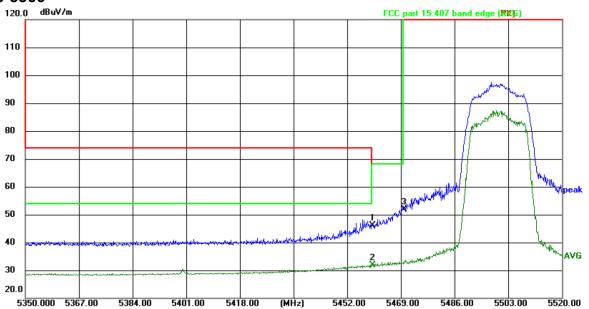
Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	51.28	-9.43	41.85	74.00	-32.15	peak	Р	
2 *	5350.000	40.13	-9.43	30.70	54.00	-23.30	AVG	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

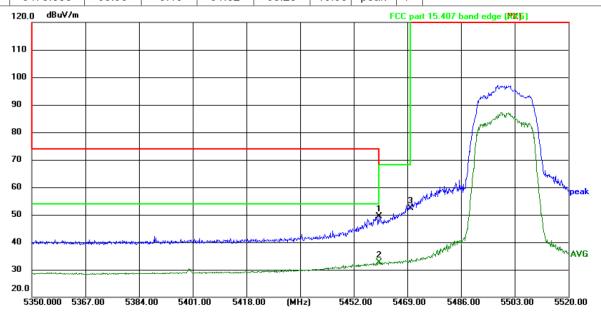
Limit: FCC part 15.407 band edge (PK)


Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1	5350.000	51.54	-9.43	42.11	74.00	-31.89	peak	Р	
2 *	5350.000	39.68	-9.43	30.25	54.00	-23.75	AVG	Р	

AC20-5500

Report No.: TCT221212E006



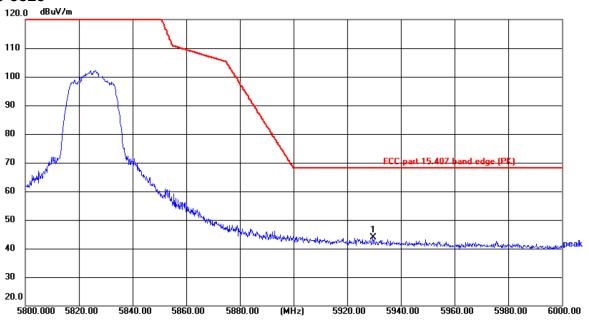
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	55.23	-9.16	46.07	68.20	-22.13	peak	Р	
2	5460.000	41.15	-9.16	31.99	54.00	-22.01	AVG	Р	
3 *	5470.000	60.98	-9.16	51.82	68.20	-16.38	peak	Р	

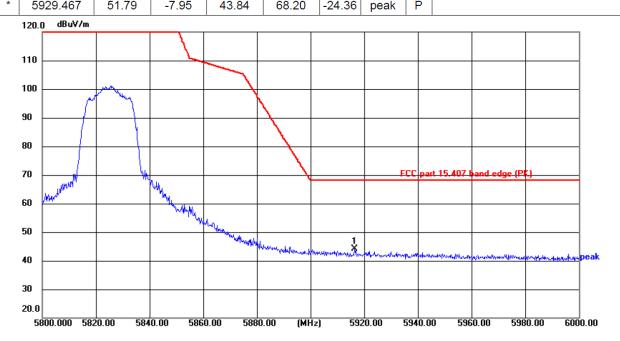
Site: #3 3m Anechoic Chamber Polarization: *Vertical* Temperature: 21.3(°C) Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	58.47	-9.16	49.31	68.20	-18.89	peak	Р	
2	5460.000	41.90	-9.16	32.74	54.00	-21.26	AVG	Р	
3 *	5470.000	61.56	-9.16	52.40	68.20	-15.80	peak	Р	

AC20-5825


Site: #3 3m Anechoic Chamber Polariza

Limit: FCC part 15.407 band edge (PK)

Polarization: *Horizontal* Temperature: 21.3(℃) Humidity: 50 %

Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
4 *	E000 407	54.70	7.05	42.04	60.00	04.00		_	

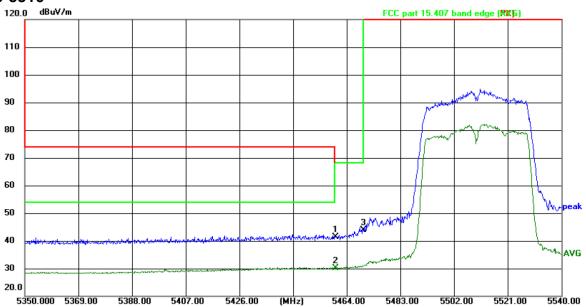
Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 21.3(°C)

Humidity: 50 %

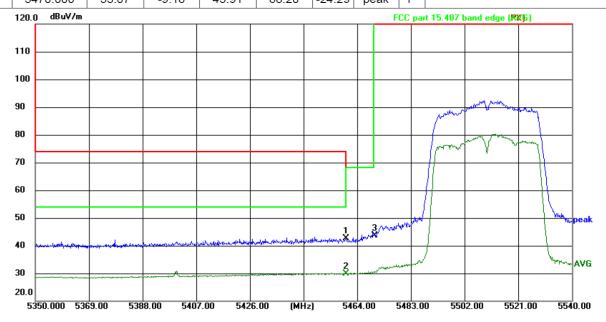
Limit: FCC part 15.407 band edge (PK)


Power: AC 120 V/60 Hz

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5916.533	52.15	-7.93	44.22	68.20	-23.98	peak	Р	

AC40-5510

Report No.: TCT221212E006



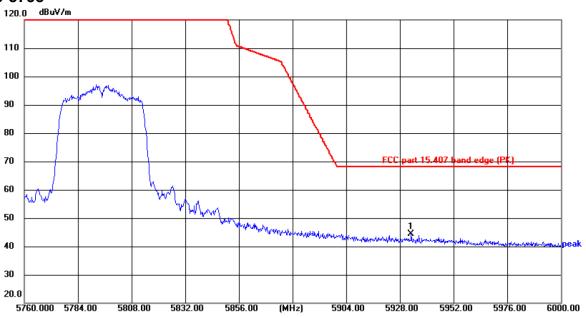
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(℃) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	50.46	-9.16	41.30	68.20	-26.90	peak	Р	
2 *	5460.000	39.25	-9.16	30.09	54.00	-23.91	AVG	Р	
3	5470 000	53.07	-9 16	43 91	68.20	-24 29	neak	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

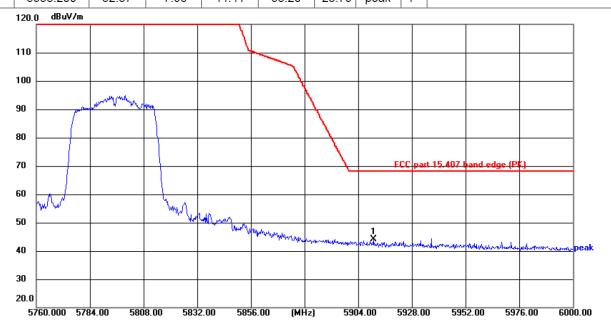

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	51.70	-9.16	42.54	68.20	-25.66	peak	Р	
2 *	5460.000	38.99	-9.16	29.83	54.00	-24.17	AVG	Р	
3	5470.000	52.75	-9.16	43.59	68.20	-24.61	peak	Р	

AC40-5795

Site: #3 3m Anechoic Chamber Polarization: Horizontal


Temperature: 21.3(℃)

Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5933 200	52 37	-7 96	44 41	68 20	-23 79	peak	Р	

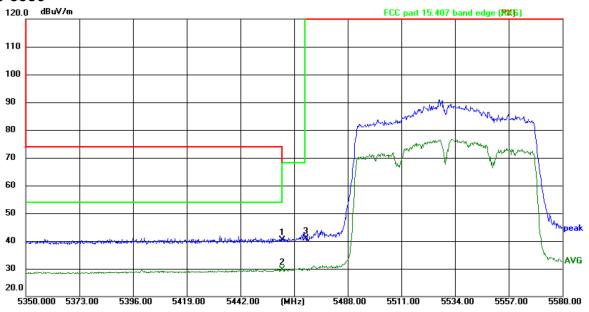
Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 21.3(℃)

Humidity: 50 %

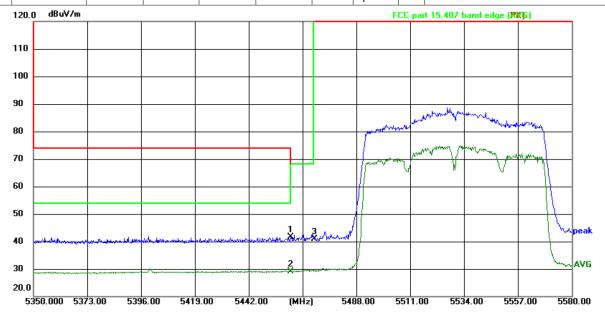
Limit: FCC part 15.407 band edge (PK)


Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5910.800	51.93	-7.92	44.01	68.20	-24.19	peak	Р	

AC80-5530

Report No.: TCT221212E006



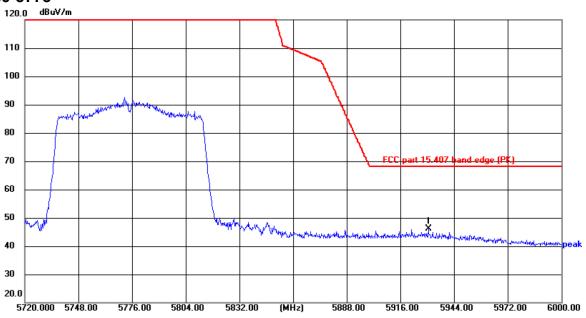
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	49.65	-9.16	40.49	68.20	-27.71	peak	Р	
2 *	5460.000	38.79	-9.16	29.63	54.00	-24.37	AVG	Р	
3	5470.000	49.98	-9.16	40.82	68.20	-27.38	peak	Р	

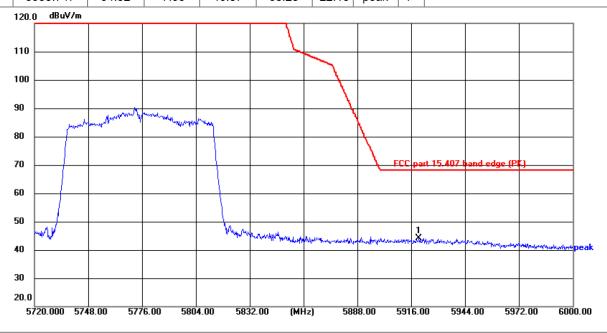
Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5460.000	50.70	-9.16	41.54	68.20	-26.66	peak	Р	
2 *	5460.000	38.26	-9.16	29.10	54.00	-24.90	AVG	Р	
3	5470.000	50.09	-9.16	40.93	68.20	-27.27	peak	Р	

AC80-5775



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5930.747	54.02	-7.95	46.07	68.20	-22.13	peak	Р	

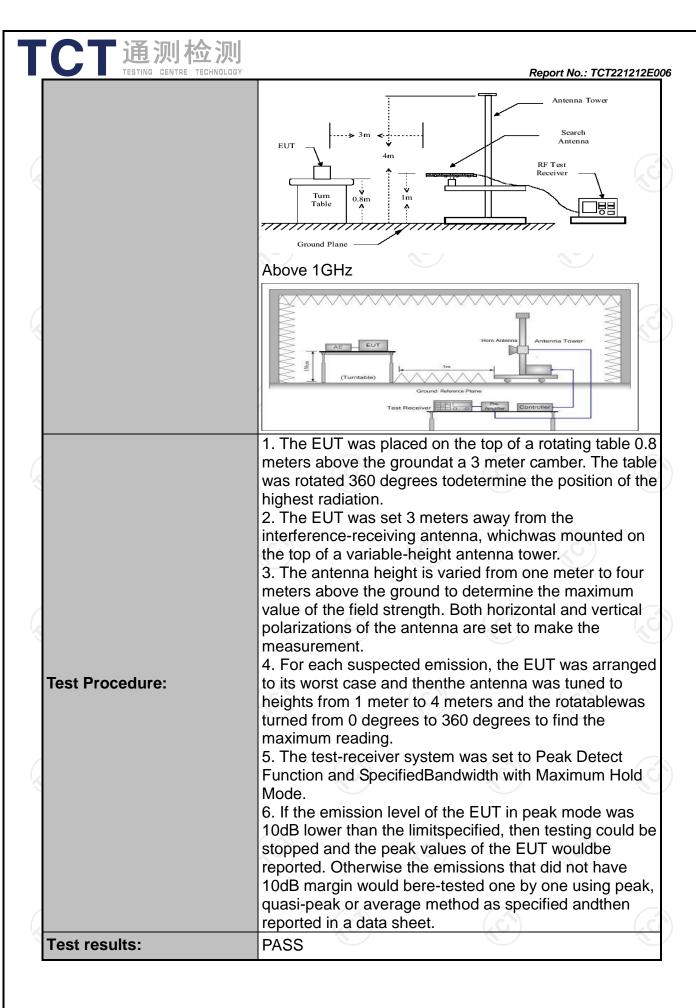
Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5919.920	52.15	-7.94	44.21	68.20	-23.99	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

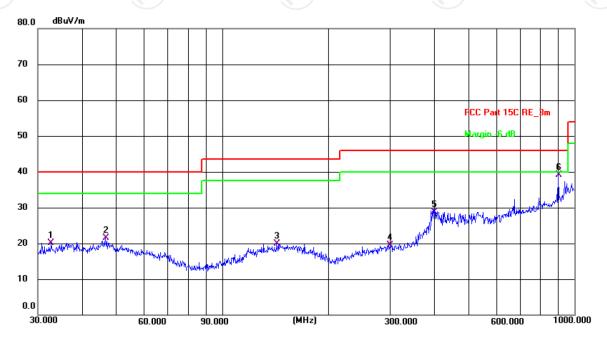


TESTING CENTRE TECHNOLOGY Report No.: TCT221212E006

5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	ection 15	.407 & 1	5.209 & 15.205				
Test Method:	KDB 789033 D02 v02r01								
Frequency Range:	9kHz to 40GHz								
Measurement Distance:	3 m								
Antenna Polarization:	Horizontal & Vertical								
Operation mode:	Transmitting	mode with	n modulat	ion					
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak	9kHz	VBW 1kHz 30kHz 300KHz 3MHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value				
	Above 1GHz	Peak	1MHz	10Hz	Average Value				
Limit:	per FCC Par	t15.205 sld strength bands:	Detection of the composition of	et forth interest of the store	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3				
Test setup:	For radiated emissions below 30MHz Distance = 3m Computer Pre - Amplifier Receiver 30MHz to 1GHz								



5.8.2. Test Data

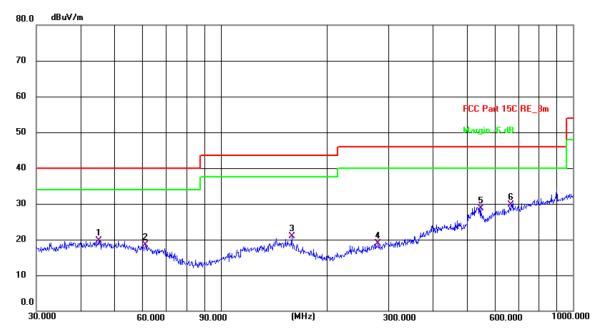
Please refer to following diagram for individual

Below 1GHz

Horizontal:

Temperature: 25.5(C) Humidity: 53 % Site: #1 3m Anechoic Chamber Polarization: Horizontal

Limit: FCC Part 15C RE_3m


Power: DC 3.7 V Reading Frequency Factor Level Limit Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 32.7486 7.33 12.85 Р 20.18 40.00 -19.82 QP 1 7.89 13.55 QP Ρ 2 46.6663 21.44 40.00 -18.56 Ρ 3 142.8243 7.08 12.75 19.83 43.50 -23.67 QP 300.3672 5.99 13.52 19.51 46.00 Ρ 4 -26.49 QP 400.4318 12.63 16.06 28.69 46.00 -17.31 QP Ρ 5 -6.85 Р 6 900.1474 14.23 24.92 39.15 46.00 QP

Report No.: TCT221212E006

Vertical:

Temperature: 25.5(C) Humidity: 53 % Site: #1 3m Anechoic Chamber Polarization: Vertical

Limit: F	CC Part 15C R	RE_3m			Р	ower: D	C 3.7 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	45.0583	6.16	13.59	19.75	40.00	-20.25	QP	Р	
2	61.1315	6.45	12.04	18.49	40.00	-21.51	QP	Р	
3	159.2249	7.46	13.35	20.81	43.50	-22.69	QP	Р	
4	280.0237	5.81	13.08	18.89	46.00	-27.11	QP	Р	
5	547.0976	9.08	19.59	28.67	46.00	-17.33	QP	Р	
6 *	668.1422	8.16	21.49	29.65	46.00	-16.35	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Highest channel and 802.11a) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

			N	/lodulation T	Type: Band	1			
			<u> </u>		5180MHz	<u> </u>			
Frequency		Peak reading	AV reading	Correctio n Factor		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.49		8.02	46.51		68.2		-21.69
15540	¥	38.06		9.87	47.93		74	54	-6.07
	H		-4-, ()		(<u>(,)</u>		(-G)	
							1		
10360	V	38.25		8.02	46.27		68.2		-21.93
15540	V	38.91		9.87	48.78		74	54	-5.22
(2C 2)	V	()		(,()		^C _1 }		(
					5200MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	n Factor	Emissio Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
, , ,		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	` ' '	, ,	,
10400	Н	39.6		7.97	47.57		68.2		-20.63
15600	Н	38.15		9.83	47.98		74	54	-6.02
	Н	(
			ı			ı			
10400	V	40.32		7.97	48.29		68.2		-19.91
15600	V	38.74		9.83	48.57		74	54	-5.43
	V		- -/-						
					5240MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor		on Level	Peak limit	AV limit (dBµV/m)	Margin (dB)
(IVIII 12)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΣμ ν/ιιι)	(αΒμ ν/ιιι)	(42)
10480	Н	38.65		7.97	46.62		68.2		-21.58
15720	Н	37.81		9.83	47.64		74	54	-6.36
	Н								
	(.c)		(G)		(,	(C)		(c)	
10480	V	38.17		7.97	46.14		68.2		-22.06
15720	V	36.25		9.83	46.08		74	54	-7.92
	V								
				n(HT20) CH	136: 5180M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor		n Level	Peak limit	AV limit (dBµV/m)	Margin (dB)
(1011 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμν/ιιι)	(αΒμ ۷/111)	(GD)
10360	H	41.59	-1/0	8.02	49.61	O)	68.2	Ka)	-18.59
15540	Н	37.26		9.87	47.13		74	54	-6.87
	Н								
					-,				
10360	V	42.07		8.02	50.09		68.2		-18.11
10360 15540	V V V	42.07 37.68		8.02 9.87	50.09 47.55		68.2 74	 54	-18.11 -6.45

	TESTING	CENTRE TECHNO					Rep	ort No.: TCT2	21212E00
				_ ` /	140: 5200M	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
10400	Н	40.16		7.97	48.13		68.2		-20.07
15600	Н	38.95		9.83	48.78		74	54	-5.22
	Н								
•							•		
10400	V	40.37	4.0	7.97	48.34	G`)	68.2	(.G-)	-19.86
15600	V	37.52		9.83	47.35	<u></u>	74	54	-6.65
	V								
			11	n(HT20) CH	148: 5240M	Hz	<u>'</u>		
	Arat Dal	Peak	AV	Correctio		n Level	Daali linait	A \	Manain
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμ ν/ιτι)	(ub)
10480	H	41.97		7.97	49.94		68.2		-18.26
15720	H	39.04	-40	9.83	48.87	9)	74	54	-5.13
	Н								
10480	V	40.72		7.97	48.69		68.2		-19.51
15720	V	39.16		9.83	48.99		74	54	-5.01
	V) [)		
			11	n(HT40) CH	138: 5190M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	39.48		7.75	47.23		68.2		-20.97
15570	Н	37.26		9.87	47.13		74	54	-6.87
<u></u>	Н				J		<u></u>		77
					!		•	•	
10380	V	40.52		7.75	48.27		68.2		-19.93
15570	V	37.84	+.6	9.87	47.71	<u> </u>	74	54	-6.29
	V			/	(<u></u>		` <u>`</u>	
			111	n(HT40) Ch	H46: 5230M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	41.63		7.97	49.6		68.2		-18.6
15690	H	38.08		9.83	47.91		74	54	-6.09
	H		-4,0			()			
·				7			 		
10460	V	41.82		7.97	49.79		68.2		-18.41
15690	V	38.47		9.83	48.3		74	54	-5.7
(,C -1)	V	(- -€)		(, 0			(C-2)		(-6)

Report No.: TCT221212E006 11ac(VHT20) CH36: 5180MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.48 10360 Η 8.02 -19.748.5 68.2 15540 Н 37.11 9.87 -7.02 46.98 74 54 Н ------V 10360 38.24 ---8.02 46.26 68.2 ----21.94 ٧ 15540 39.62 9.87 49.49 74 54 -4.51 11ac(VHT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10400 7.97 Н 39.04 47.01 68.2 -21.19 15600 Н 38.96 9.83 74 -5.21 48.79 54 Н ---٧ 10400 39.74 7.97 47.71 68.2 -20.4915600 38.58 9.83 ٧ ---48.41 ---74 54 -5.59٧ -------11ac(VHT20) CH48:5240 Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10480 Η 37.69 7.97 45.66 68.2 -22.5415720 Η 37.05 ---9.83 46.88 ---74 54 -7.12 Η 10480 ٧ 38.57 7.97 68.2 46.54 ----21.66 15720 V 38.7 9.83 48.53 74 54 -5.47------/---11ac(VHT40) CH38:5190 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 40.67 7.75 48.42 68.2 -19.78 Н 39.17 15570 9.87 49.04 74 54 -4.96 Н -4-2 1--------------------10380 ٧ 38.49 7.75 46.24 68.2 -21.96 15570 ٧ 38.08 ---9.87 47.95 74 54 -6.05 ٧

Report No.: TCT221212E006 11ac(VHT40) CH46:5230 Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit AV limit Frequency Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Н 38.13 7.97 -22.1 46.1 68.2 15690 Н 38.27 9.83 48.1 74 -5.9 54 Н ---10460 V 39.46 7.97 ---47.43 68.2 ----20.77 15690 ٧ 37.28 9.83 47.11 74 54 -6.89 11ac(VHT80) CH42:5210 ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading n Factor (dBµV/m) (MHz) H/V (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10420 Н 41.29 7.96 49.25 68.2 ----18.9515630 Н 39.87 9.84 49.71 74 -4.29 54 Н 10420 ٧ 68.2 41.65 7.96 49.61 -18.5915630 ٧ 39.13 9.84 48.97 ------74 54 -5.03

Note:

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			M	odulation T	ype: Band 2	2A			
				11a CH52:	5260MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Н	38.17		7.97	46.14		68.2		-22.06
15780	Н	36.52		9.83	46.35		74	54	-7.65
	H		4 0		(G`\		(.C)	
10520	V	41.37		7.97	49.34		68.2		-18.86
15780	V	38.91		9.83	48.74		74	54	-5.26
(C)	V	((, C			.C. 24		(6)
				11a CH60:	5300MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1411 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμ ν/ιιι)	(αΒμ ν/ιιι)	(42)
10600	Н	38.66		7.98	46.64		74	54	-7.36
15900	Н	38.48		9.85	48.33		74	54	-5.67
(A)-	Н	(()			\(\)		(-) -		
30)		(30)					(20)		KO.
10600	V	39.08		7.98	47.06		74	54	-6.94
15900	V	37.22		9.85	47.07		74	54	-6.93
	V		K		/				
				11a CH64:	5320MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(dB)
10640	Н	40.57		7.98	48.55		74	54	-5.45
15960	Н	37.8		9.85	47.65		74	54	-6.35
	Н								
							ļ		
10640	V	39.62		7.98	47.6	<u> </u>	74	54	-6.4
15960	V	35.1		9.85	44.95		74	54	-9.05
	V								
			11	In(HT20) C	52: 5260MI	- Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	(A)	41.82	-1,0	7.97	49.79	() <u>)</u>	68.2	(ZC1)	-18.41
15780	Н	38.37		9.83	48.2	<u> </u>	74	54	-5.8
	Н								
			•		7.	•			
10520	V	38.9		7.97	46.87		68.2		-21.33
15780	V	35.26		9.83	45.09		74	54	-8.91
	V								

	TESTING	CENTRE TECHNOI	.OGY				Rep	ort No.: TCT2	221212E006
			11r	n(HT20) CH	160: 5300M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10600	Н	38.05		7.98	46.03		74	54	-7.97
15900	Н	37.19		9.85	47.04		74	54	-6.96
	Н								
10600	V	40.47	4.0	7.98	48.45	C \)	74	54	-5.55
15900	V	39.85		9.85	49.7	<i></i>	74	54	-4.3
	V								
			11r	n(HT20) CH	l64: 5320M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)		AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10640	H	37.61		7.98	45.59	(dDp 1/111)	74	54	-8.41
15960	H	35.04	<u> </u>	9.85	44.89	6)	74	54	-0.41 -9.11
	Н			9.00	44.09				-9.11
	11								
10640	V	39.27		7.98	47.25		74	54	-6.75
15960	V	39.88		9.85	49.73		74	54	-4.27
	V								112
	•		111	n(HT40) CH	154: 5270M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit (dBµV/m)	Margin (dB)
(IVIIIZ)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμν/πη)	(ub)
10540	Τ	41.73		7.97	49.7		68.2		-18.5
15810	Н	37.08		9.83	46.91		74	54	-7.09
	Н				J				
10540	V	37.56		7.97	45.53		68.2		-22.67
15810	V	36.92	-+-	9.83	46.75	<u></u>	74	54	-7.25
	V			/	(<u></u>		` <u> </u>	

			11r	n(HT40) CH	l62: 5310M	lHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	_		Peak limit AV limit (dBµV/m)	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	` '	(aBµv/m)	(dB)
10620	Н	40.72		7.98	48.7		74	54	-5.3
15930	(H)	38.13	-420	9.85	47.98	C	74	54	-6.02
						<u> </u>			
10620	V	38.64		7.98	46.62		74	54	-7.38
15930	V	36.97		9.85	46.82		74	54	-7.18
	V				/				

Report No.: TCT221212E006 11ac(VHT20) C52: 5260MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10520 Η 40.89 7.97 48.86 68.2 -19.34 15780 Н 39.25 9.83 49.08 -4.92 74 54 Н ------V 10520 40.96 ---7.97 48.93 68.2 ----19.27٧ 15780 37.14 9.83 46.97 74 54 -7.03 11ac(VHT20) CH60: 5300MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 7.98 10600 Н 38.25 46.23 54 74 -7.77 15900 Н 37.9 9.85 74 -6.25 47.75 54 Н ---٧ 10600 37.68 7.98 45.66 74 54 -8.3415900 ٧ 9.85 36.11 ---45.96 ---74 54 -8.04٧ ---11ac(VHT20) CH64: 5320MHz Peak ΑV Correctio **AV** limit Frequency Ant. Pol. **Emission Level** Peak limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 10640 Η 40.28 7.98 74 48.26 54 -5.7415960 Η 39.76 ---9.85 49.61 ---74 54 -4.39Η 10640 ٧ 40.65 7.98 74 54 48.63 ----5.37V 15960 35.32 9.85 45.17 74 54 -8.83 ------/---------11ac(VHT40) CH54: 5270MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10540 Н 40.25 7.97 48.22 68.2 -19.98 Н 37.94 15810 9.83 47.77 74 54 -6.23Н -4-2 1-----------------10540 ٧ 39.61 7.97 47.58 68.2 -20.62 15810 ٧ 37.87 ---9.83 47.7 74 54 -6.3٧

Report No.: TCT221212E006 11ac(VHT40) CH62: 5310MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit AV limit Frequency Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10620 Η 38.53 7.98 46.51 74 54 -7.4915930 Н 36.27 9.85 46.12 74 54 -7.88 Н ---10620 V 74 54 39.8 ---7.98 47.78 -6.22٧ 37.27 15930 9.85 47.12 74 54 -6.88 11ac(VHT80) C58:5290MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading n Factor (dBµV/m) (MHz) H/V (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10580 Н 41.05 7.98 49.03 74 54 -4.97---15870 Н 39.81 9.85 49.66 74 54 -4.34 Η ٧ 10580 40.34 7.98 48.32 74 54 -5.6815870 ٧ 37.75 9.85 ---47.6 ---74 54 -6.4

Note:

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			М	odulation T	ype: Band 2	2C			
				11a CH100	: 5500MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	Н	39.68		8.03	47.71		74	54	-6.29
16500	Н	39.32		9.76	49.08		68.2		-19.12
	H		+:0		(())		(-6-)	
11000	V	40.15		8.03	48.18		74	54	-5.82
16500	V	40.69		9.76	50.45		68.2		-17.75
	V	((,c	\				(-c)
				11a CH120	: 5600MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11200	Н	40.13		8.04	` '		7.4	5 4	F 00
16800	Н	40.13		9.74	48.17		74	54	-5.83
	Н				50.58		68.2	-	-17.62
	П								X
11200	V	20.62		T 0.04	40.07		74	<i>E</i> 4	7.00
16800	V	38.63		8.04 9.74	46.67		74	54	-7.33
	V	39.27		9.74	49.01		68.2		-19.19
	V			11a CH140					
		Peak	AV	Correctio	7. 37 001VII 12		ı		
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	38.06		8.05	46.11		74	54	-7.89
17100	Н	40.13		9.72	49.85		68.2		-18.35
	Н								
		•							
11400	V	38.48		8.05	46.53)	74	54	-7.47
17100	V	40.25		9.72	49.97		68.2		-18.23
	V								
			11r	(HT20) CH	100: 5500N	ИHz			
Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΒμν/ιτι)	(dBµV/m)	(dB)
11000	(H)	40.17	- (20)	8.03	48.2	C	74	54	-5.8
16500	H	39.61		9.76	49.37	<u></u>	68.2		-18.83
	Н								
					-,.				
11000	V	38.72		8.03	46.75		74	54	-7.25
16500	V	41.39		9.76	51.15		68.2		-17.05
	V								

Report No.: TCT221212E006 11n(HT20) CH120: 5600MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11200 Η 39.01 8.04 47.05 -6.9574 54 16800 Н 40.38 9.74 -18.08 50.12 68.2 Н ---11200 V 38.67 ---8.04 46.71 -7.2974 54 ٧ 16800 39.42 9.74 49.16 68.2 -19.04 11n(HT20) CH140: 5700MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV $(dB\mu V/m) \mid (dB\mu V/m)$ 11400 Н 39.18 8.05 47.23 74 54 -6.7717100 Н 40.59 9.72 68.2 50.31 -17.89Η ---٧ 11400 38.64 8.05 46.69 74 54 -7.3117100 ٧ 39.28 9.72 ---49 ---68.2 ----19.2٧ -------11n(HT40) CH102: 5510MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11020 Η 39.73 8.03 47.76 -6.2474 54 16530 Η 39.06 ---9.76 48.82 ---68.2 ----19.38 Η 11020 ٧ 39.48 8.03 47.51 ---74 54 -6.4916530 V 37.12 9.76 46.88 68.2 -21.32 ------/------11n(HT40) CH118: 5590MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11180 Н 39.76 8.04 47.8 74 54 -6.216770 Н 39.24 9.74 48.98 68.2 -19.22Н -4----1--------------11180 ٧ 37.15 8.04 45.19 74 54 -8.81 16770 ٧ 41.72 ---9.74 51.46 68.2 ----16.74٧

	TESTING	CENTRE TECHNOL					Rep	ort No.: TCT2	21212E00
				·	134: 5670N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11340	Н	40.79		8.05	48.84		74	54	-5.16
17010	Н	41.02		9.72	50.74		68.2		-17.46
	Н								
•									
11340	V	39.35	40	8.05	47.4	G``)	74	54	-6.6
17010	V	38.04		9.72	47.76	<u> </u>	68.2		-20.44
	V								
			11ac	(VHT20) C	H100: 5500	MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	H	37.98		8.03	46.01	\	74	54	-7.99
16500	H	39.11	-160	9.76	48.87	9)	68.2	(2)	-19.33
	Н								
11000	V	39.47		8.03	47.5		74	54	-6.5
16500	V	39.8		9.76	49.56		68.2		-18.64
	V	-							
			11ac	(VHT20) C	H120: 5600)MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	Н	40.35		8.04	48.39		_74	54	-5.61
16800	Н	39.87		9.74	49.61		68.2		-18.59
	Н				J		<u></u>		7
11200	V	39.29		8.04	47.33		74	54	-6.67
16800	V	39.73	-+-	9.74	49.47	<u> </u>	68.2		-18.73
	V		-1	/	``				
			11ac	(VHT20) C	H140: 5700)MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	39.62		8.05	47.67		74	54	-6.33
17100	TH.	38.01		9.72	47.73		68.2		-20.47
	H		-4,0			(°)			
ļ				/					
11400	V	40.57		8.05	48.62		74	54	-5.38
17100	V	39.83		9.72	49.55		68.2		-18.65
	V	(-6)		(,0			.02.1		(

TESTING	CENTRE TECHNOL					Rep	ort No.: TCT2	21212E00
		11ac	(VHT40) C	H102: 5510	MHz			
Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
Н	38.55		8.03	46.58		74	54	-7.42
Н	39.16		9.76	/		68.2		-19.28
Н								
V	41.28	40	8.03	49.31	G``)	74	54	-4.69
V	38.46		9.76	48.22	<i></i>	68.2		-19.98
V								
		11ac	(VHT40) C	H118: 5590	MHz			
Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level			Margin
H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(aBµv/m)	(aBµv/m)	(dB)
H	38.72		8.04	46.76	<u> </u>	74	54	-7.24
H	36.39	-100	9.74	46.13	9)	68.2	(0)	-22.07
Н								
V	38.18		8.04	46.22		74	54	-7.78
V	37.5		9.74	47.24		68.2		-20.96
V								
		11ac	(VHT40) C	H134: 5670)MHz			
Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	on Level			Margin
H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(aBµV/m)	(dBµV/m)	(dB)
Н	37.49		8.05	45.54		_74	54	-8.46
Н	36.61		9.72	**		/ //		-21.87
Н	(T)			J		<u></u>		77
			•	•	•		•	
V	37.4		8.05	45.45		74	54	-8.55
V	39.87	-f.c	9.72	49.59	<u></u>	68.2		-18.61
V			/	🌂	<u></u>		<u> </u>	
		11ac	(VHT80) C	H106: 5530	MHz			
Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
Н	39.34		8.03	, , ,		74	54	-6.63
	40.18						77	-18.27
		-4,0			G`)		$(C_{\mathcal{O}})$	
			7					
V	40.92		8.03	48.95		74	54	-5.05
V								-16.68
	(4)				1	4		
	Ant. Pol. H/V H H H H V V V Ant. Pol. H/V	Ant. Pol. H 38.55 H 39.16 H V 41.28 V 38.46 V Ant. Pol. H 38.72 H 36.39 H V 38.18 V 37.5 V Ant. Pol. H 36.39 H V 38.18 V 37.5 V Ant. Pol. H 36.61 H V 37.4 V 39.87 V Ant. Pol. H 36.61 H V 37.4 V 39.87 V V 37.4 V 39.87 V V 40.92	Ant. Pol. H/V Peak reading (dBμV) AV reading (dBμV) H 38.55 H 39.16 H V 41.28 V 38.46 V Ant. Pol. H/V Peak reading (dBμV) AV reading (dBμV) H 36.39 H V 37.5 V 37.5 V 37.4 AV reading (dBμV) H 36.61 H 36.61 V 37.4 V 39.87 V 39.87 V H 40.18 H 40.18 H 40.18 H 40.92	Ant. Pol. H/V Peak reading (dBμV) Reading (dBμV)	Tack (VHT40) CH102: 5510	Ant. Pol. H 38.55 8.03 49.31 11ac(VHT40) CH102: 5510MHz Feading (dBμV) Feading (dBμV) Feading (dBμV) Feak (dBμV/m) (dBμV/m) Feak (dBμV/	11ac(VHT40) CH102: 5510MHz Ant. Pol. Peak reading (dBμV)	Ant. Pol. Peak AV reading reading (dBμV) (dBμV/m) (dBμV/m)

	TESTING	CENTRE TECHNOI	_OGY				Rep	ort No.: TCT2	221212E006
			11ac	(VHT80) CI	H122: 5610)MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11220	Н	40.62		8.05	48.67		74	54	-5.33
16830	Н	38.37		9.72	48.09		68.2		-20.11
	Н								
11220	V	39.15	42	8.05	47.2	G^)	74	54	-6.8
16830	V	39.73		9.72	49.45	<u> </u>	68.2		-18.75
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	/lodulation ☐	Гуре: Band	3			
				11a CH149): 5745MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	37.15		8.09	45.24		74	54	-8.76
17235	Н	37.62		9.67	47.29		68.2		-20.91
	H		+:0		(,	()		(
11490	V	40.84		8.09	48.93		74	54	-5.07
17235	V	38.27		9.67	47.94		68.2		-20.26
	V			(, c					(
				11a CH157	': 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11570	H	39.16		8.10	47.26		74	54	-6.74
17355	Н	38.93		9.65	48.58		68.2		-19.62
17000	H								-13.02
.6									(.G
11570	V	38.14		8.10	46.24		74	54	-7.76
17355	V	39.88		9.65	49.53		68.2		-18.67
	V								
				11a CH165	: 5825MHz				
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	37.6		8.12	45.72		74	54	-8.28
17475	Н	36.25		9.62	45.87		68.2		-22.33
	Н								
		•							
11650	V	38.59		8.12	46.71		74	54	-7.29
17475	V	38.14		9.62	47.76		68.2		-20.44
	V								
			11r	(HT20) CH	149: 5745N	ИHz			
Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(aBµv/m)	(dBµV/m)	(dB)
11490	(H)	38.13	- (20)	8.09	46.22	C	74	54	-7.78
17235	H	38.58		9.67	48.25	<u></u>	68.2		-19.95
	Н								
					-,.				
11490	V	39.71		8.09	47.8		74	54	-6.2
17235	V	37.36		9.67	47.03		68.2		-21.17
	V								

			11n	(HT20) CH	157: 5785N	ИНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak	n Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					(dBµV/m)	(dBµV/m)			
11570	Н	38.25		8.10	46.35		74	54	-7.65
17355	Н	39.07		9.65	48.72		68.2		-19.48
	Н							-	
	(G)		(.G)			G))		(G)	
11570	V	38.39		8.10	46.49	J	74	54	-7.51
17355	V	39.84		9.65	49.49		68.2		-18.71
	V								
			11n	(HT20) CH	165: 5825N	ИHz			
Frequency		Peak reading	AV reading	Correction n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	H	38.46	-1/0	8.12	46.58	<u> </u>	74	54	-7.42
17475	H	37.97		9.62	47.59	-	68.2		-20.61
	Н								
					Ž)				
11650	V	38.08		8.12	46.2		74	54	-7.8
17475	V	39.73		9.62	49.35		68.2		-18.85
	V								
			11n	(HT40) CH	151: 5755N	ИHz			
Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	40.34		8.09	48.43		74	54	-5.57
17265	Н	37.5		9.67	47.17		68.2		-21.03
	Н								
ļ								<u> </u>	
11510	V	41.17	(^	8.09	49.26		74	54	-4.74
17265	V	38.93		9.67	48.6	\	68.2	(<u>0</u>)	-19.6
	V								
			11n	(HT40) CH	159: 5795N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Д,	38.56		8.10	46.66		74	54	-7.34
17385	(H)	38.72	-4-, 6	9.65	48.37	G`\	68.2	G-4	-19.83
	H					<u> </u>			
	<u> </u>						!	<u> </u>	
11590	V	38.85		8.10	46.95		-74	54	-7.05
17385	V	37.16		9.65	46.81		68.2		-21.39
	V								- 7

Report No.: TCT221212E006 11ac(VHT20) CH149: 5745MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.34 11490 Η 8.09 48.43 74 54 -5.57 17235 Н 37.57 9.67 47.24 68.2 -20.96 Н ---V 11490 40.98 ---8.09 49.07 -4.9374 54 17235 ٧ 38.21 9.67 47.88 68.2 -20.3211ac(VHT20) CH157: 5785MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 11570 Н 38.46 8.10 46.56 74 54 -7.44 17355 Н 36.25 9.65 68.2 -22<u>.3</u> 45.9 Η ---٧ 11570 37.8 8.10 45.9 74 54 -8.1 17355 38.15 9.65 ٧ ---47.8 ---68.2 ----20.4٧ ---11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m) \mid (dB\mu V/m)$ 11650 Η 40.34 8.12 48.46 -5.5474 54 17475 Η 38.52 ---9.62 48.14 ---68.2 ----20.06 Η 11650 ٧ 38.67 8.12 46.79 ---74 54 -7.21 17475 V 40.11 9.62 49.73 68.2 -18.47------/------11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Н 39.71 8.09 47.8 74 54 -6.217265 Н 37.55 9.67 47.22 68.2 -20.98 Н ---------------------11510 ٧ 40.82 8.09 48.91 74 54 -5.09 17265 ٧ 36.09 ---9.67 45.76 68.2 ----22.44٧

٧

Report No.: TCT221212E006 11ac(VHT40) CH159: 5795MHz Peak ΑV Correctio Ant. Pol. **Emission Level AV** limit Frequency Peak limit Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.18 11590 Η 8.10 48.28 74 54 -5.7217385 Н 37.65 9.65 47.3 68.2 -20.9 Н ---11590 V 39.82 ---8.10 47.92 74 54 -6.08 ٧ 17385 38.04 9.65 47.69 68.2 -20.51 11ac(VHT80) CH155: 5775MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11550 Н 40.19 8.09 48.28 74 54 -5.7217325 Н 38.7 9.66 68.2 -19.84 48.36 Η 11550 ٧ 41.56 8.09 49.65 74 54 -4.3517325 ٧ 38.23 9.66 47.89 ---68.2 ----20.31

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.

Report No.: TCT221212E006

Test plots as follows:

Test mode:	802.11ac(HT20)	Freque	ency(MHz):	5180	
Temperature (°C)	Voltage(VDC)	Measure	Measurement			Result
remperature (C)	voltage(vDC)	Frequency	Frequency(MHz)		Hz)	Nesuit
45		5180)	0		PASS
35		5179.9	98	-20000		PASS
25	3.7V	5180)	0		PASS
15	3.7 V	5180		0		PASS
5		5180)	0		PASS
0		5180)	0		PASS
	3.3V	5180)	0		PASS
25	3.7V	5180)	0.0)	PASS
	4.2V	5179.9	98	-20000		PASS

Test mode:	802.11ac(HT20) Frequ	ency(MHz):	5200
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
remperature (C)	voltage(vDC)	Frequency(MHz)	Frequency(Hz)	Nesuit
45		5199.96	-40000	PASS
35		5200	0	PASS
25	3.7V	5199.96	-40000	PASS
15	3.7 V	5200	0	PASS
5		5199.98	-20000	PASS
0		5199.98	-20000	PASS
	3.3V	5199.96	-40000	PASS
25	3.7V	5199.96	-40000	PASS
	4.2V	5200	0	PASS

Test mode:	802.11ac(HT20) Fi	reque	ency(MHz):		5240	
Temperature (°C)	Voltage(VDC)	Measurem	Measurement			Result	
remperature (C)	voltage(vDC)	Frequency(N	ЛHz)	Frequency(I	Hz)	Nesuit	
45		5240	5240			PASS	
35		5239.96		-40000		PASS	
25	3.7V	5239.98		-20000		PASS	
15	3.7 V	5240		0		PASS	
5		5240		0		PASS	
0		5239.98		-20000		PASS	
	3.3V			-20000		PASS	
25	3.7V	5240		0		PASS	
	4.2V	5239.98	X	-20000		PASS	

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5745		
Temperature (°C)	Voltage(VDC)	Measur	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequenc	cy(MHz)	Frequency(F	Hz)	Nesuit	
45		5744	1.98	-20000		PASS	
35		574	45	0		PASS	
25	3.7V	5745.02		20000		PASS	
15	3.7 V	5744	1.98	-20000		PASS	
5		5744	1.98	-20000		PASS	
0		574	45	0		PASS	
	3.3V		1.96	-40000		PASS	
25	3.7V	5744	1.96	-40000		PASS	7
(C_{\bullet})	4.2V	5744	1.98	-20000)	PASS	(, C

Test mode:	802.11ac	HT20) Freq	uency(MHz):	5785
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
Temperature (C)	voltage(vDC)	Frequency(MHz	:) Frequency(Hz)	Nesuit
45		5785.02	20000	PASS
35		5784.96	-40000	PASS
25	3.7V	5784.98	-20000	PASS
15	3.7 V	5784.98	-20000	PASS
5		5784.96	-40000	PASS
0		5785	0	PASS
(c)	3.3V	5785	0	PASS
25	3.7V	5784.98	-20000	PASS
	4.2V	5784.98	-20000	PASS

Test mode:	802.11ac	302.11ac(HT20) Frequency(MHz): 58		5825
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5825	0	PASS
35		5824.98	5824.98 -20000	
25	3.7V	5825	0	PASS
15	3.7 V	5824.98	-20000	PASS
5		5825	0	PASS
0		5824.94	-60000	PASS
	3.3V	5825	0	PASS
25	3.7V	5824.96	-40000	PASS
	4.2V	5824.96	-40000	PASS

Test mode:	802.11ac(HT40) Freque	ency(MHz):	5190
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
Temperature (0)	voltage(vbo)	Frequency(MHz)	Frequency(Hz)	result
45	(.c.)	5190.04	40000	PASS
35		5190	0	PASS
25	3.7V	5190	0	PASS
15	3. <i>1</i> V	5190	0	PASS
5		5190	0	PASS
0		5190	0	PASS
	3.3V	5190.04	40000	PASS
25	3.7V	5190	0	PASS
(C_{\bullet})	4.2V	5190	0(0)	PASS

Test mode:	802.11ac(HT40) Freque	ency(MHz):	5230	
Temperature (°C)	nperature (°C) Voltage(VDC)		Delta	Result	
remperature (O)	voitage(vDO)	Frequency(MHz)	Frequency(Hz)	resuit	
45		5229.96	-40000	PASS	
35		5230	0	PASS	
25	3.7V	5230	0	PASS	
15	3.7 V	5229.96	-40000	PASS	
5		5229.96	-40000	PASS	
0		5230	0	PASS	
	3.3V	5230	0	PASS	
25	3.7V	5229.96	-40000	PASS	
	4.2V	5230	0	PASS	

Test mode:	802.11ac	(HT40) Frequ	ency(MHz):	5755
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5754.96	-40000	PASS
35		5755	0	PASS
25	3.7V	5755	0	PASS
15	3.7 V	5755	0	PASS
5		5754.96	-40000	PASS
0		5755	0	PASS
	3.3V	5754.96	-40000	PASS
25	3.7V	5754.96	-40000	PASS
	4.2V	5755	0	PASS

Test mode:	802.11ac	(HT40)	Freque	ency(MHz):	5795		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(H	Hz)	Nesuit	
45	(.c.)	5794	4.96	-40000		PASS	
35		5794	4.96	-40000		PASS	
25	3.7V	57	95	0		PASS	
15	3.7 V	5794.96		-40000		PASS	
5		57	95	0		PASS	
0		5794	4.96	-40000		PASS	
	3.3V	5794	4.96	-40000		PASS	
25	3.7V	5794	4.96	-40000		PASS	
(C_{\circ})	4.2V	5794	4.96	-40000		PASS	(

Test mode:		802.11ac(V	/HT80)	Freque	ency(MHz	:):	5210		
Temperature (°C)	Vo	ltage(VDC)		Measurement Frequency(MHz)				Result	
45			52	J \	Frequei		PASS		
					0				
35			5210	0.24	2400	000	PASS	-	
25		3.7V	5210.24		2400	000	PASS		
15		3.7 V	5210	0.24	2400	000	PASS		
5			5209	9.92	-800	000	PASS		
0			5210	0.24	2400	000	PASS		
(¿Ġ`)		3.3V	5210	0.24	2400	000	PASS		
25		3.7V	5209	9.92	-800	000	PASS		
		4.2V	5210	0.24	2400	000	PASS		

Test mode:	802.11ac(\	/HT80) Freq	uency(MHz):	5775
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
remperature (C)	voltage(vDC)	Frequency(MH:	z) Frequency(Hz) Nesuit
45		5774.92	-80000	PASS
35		5774.6	-400000	PASS
25	3.7V	5775.24	240000	PASS
15		5774.76	-240000	PASS
5		5774.68	-320000	PASS
0		5774.76	-240000	PASS
	3.3V	5774.92	-80000	PASS
25	3.7V	5774.92	-80000	PASS
	4.2V	5774.92	-80000	PASS

Report No.: TCT221212E006

Appendix A: Test Result of Conducted Test

Duty Cyclo

Duty Cycle							
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)			
NVNT	а	5180	85.85	0.66			
NVNT	a	5200	85.83	0.66			
NVNT	a	5240	85.80	0.67			
NVNT	n20	5180	85.07	0.70			
NVNT	n20	5200	85.04	0.70			
NVNT	n20	5240	85.08	0.70			
NVNT	n40	5190	79.36	1.00			
NVNT	n40	5230	78.84	1.03			
NVNT	ac20	5180	85.42	0.68			
NVNT	ac20	5200	85.40	0.69			
NVNT	ac20	5240	85.40	0.69			
NVNT	ac40	5190	77.82	1.09			
NVNT	ac40	5230	77.89	1.09			
NVNT	ac80	5210	71.76	1.44			
NVNT	a	5260	85.82	0.66			
NVNT	a	5300	85.84	0.66			
NVNT	a	5320	85.78	0.67			
NVNT	n20	5260	85.06	0.70			
NVNT	n20	5300	85.01	0.71			
NVNT	n20	5320	85.04	0.70			
NVNT	n40	5270	78.87	1.03			
NVNT	n40	5310	78.82	1.03			
NVNT	ac20	5260	85.40	0.69			
NVNT	ac20	5300	85.33	0.69			
NVNT	ac20	5320	85.35	0.69			
NVNT	ac40	5270	77.77	1.09			
NVNT	ac40	5310	77.80	1.09			
NVNT	ac80	5290	71.80	1.44			
NVNT	а	5500	85.84	0.66			
NVNT	a	5600	85.86	0.66			
NVNT	a	5700	85.84	0.66			
NVNT	n20	5500	85.04	0.70			
NVNT	n20	5600	85.04	0.70			
NVNT	n20	5700	85.09	0.70			
NVNT	n40	5510	78.90	1.03			
NVNT	n40	5590	78.86	1.03			
NVNT	n40	5670	78.85	1.03			
NVNT	ac20	5500	85.42	0.68			
NVNT	ac20	5600	85.48	0.68			
NVNT	ac20	5700	85.38	0.69			
NVNT	ac40	5510	77.81	1.09			
NVNT	ac40	5590	77.79	1.09			
NVNT	ac40	5670	77.77	1.09			

٦		通	测	检	测
		TESTING	CENTE	RE TECH	INOLOGY

NVNT

NVNT

NVNT

NVNT

ac20

ac40

ac40

ac80

5825

5755

5795

5775

NVNT	ac80	5530	71.80	1.44	
TNVN	ac80	5610	71.70	1.44	
NVNT	а	5745	85.94	0.66	
NVNT	а	5785	85.87	0.66	
NVNT	а	5825	85.78	0.67	
NVNT	n20	5745	85.03	0.70	
NVNT	n20	5785	85.02	0.70	
NVNT	n20	5825	85.04	0.70	
NVNT	n40	5755	79.00	1.02	
NVNT	n40	5795	79.13	1.02	
NVNT	ac20	5745	85.38	0.69	
TNVN	ac20	5785	85.43	0.68	

85.55

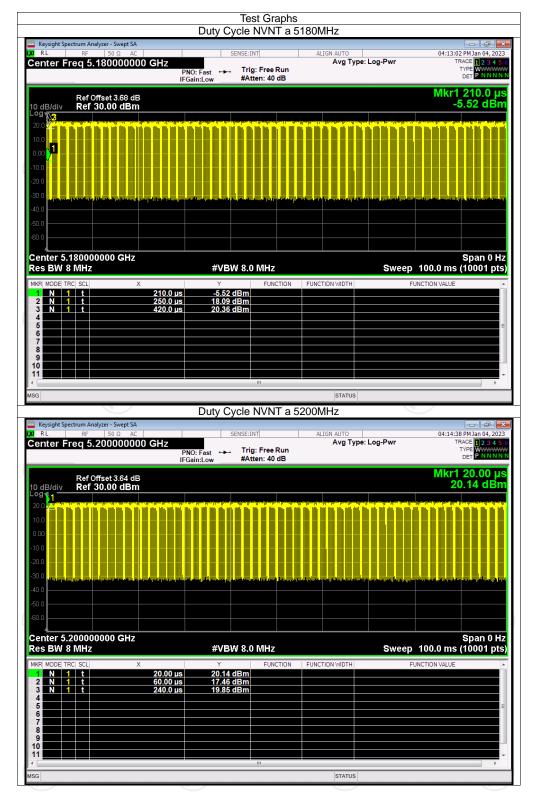
77.94

77.83

71.86

Report No.: TCT221212E006

0.68


1.08

1.09

1.43

