

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202506-0052-4

Page: 1 of 8

Maximum Permissible Exposure Evaluation

FCC ID: 2A8ZB-G40PLUS

Original Grant

Report No.	11/17	TBR-C-202506-0052-4				
Applicant	:	Shenzhen Weiwo Intelligent Electronics Co., Ltd				
Equipment Under Te	est (El	JT)				
EUT Name	:	SMART WATCH				
Model No.	1 :	G40PLUS				
Series Model No.	:	G53, G54, G55				
Brand Name						
Sample ID		HC-C-202506-0052-02-2# & HC-C-202506-0052-02-3#				
Receipt Date	613	2025-06-19				
Test Date		2025-06-19 to 2025-07-03				
Issue Date	45	2025-07-03				
Standards		FCC Part 2.1093				
Test Method		KDB 447498 D01 General RF Exposure Guidance v06				
Conclusions		PASS				
		In the configuration tested, the EUT complied with the standards specified above.				
Test By		: Lily Thang Emuly				
Reviewed By	BR	Emily Tang				
Approved By	40	: Ivan Su				

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202506-0052-4 Page: 2 of 8

CONTENTS

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	
2.	MEASUREMENT UNCERTAINTY	5
3.	TEST FACILITY	6
4.	SAR TEST EXCLUSION CALCULATIONS	7

Report No.: TBR-C-202506-0052-4 Page: 3 of 8

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202506-0052-4	Rev.01	Initial issue of report	2025-07-03
LOND TO THE			
6000	The same		400
			000
4000	W CO		(000)
The state of the	THE WAY	100	7
4000	ULL COL		4000
MOOR	a w		
ALOND THE			0000
TO TO THE REAL PROPERTY.	Min	THE PARTY OF THE P	400
ORD LINE		THE STATE OF	
4000	Mary Control	A COLOR	2 4000

Page: 4 of 8

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen Weiwo Intelligent Electronics Co., Ltd				
Address : Floor 2, building A7, No. 416, Xuegang North Road, Qinghu community, Longhua street, Longhua District, Shenzhen, China		Floor 2, building A7, No. 416, Xuegang North Road, Qinghu community, Longhua street, Longhua District, Shenzhen, China		
Manufacturer : Shenzhen Weiwo Intelligent Electronics Co., Ltd		Shenzhen Weiwo Intelligent Electronics Co., Ltd		
Address : Floor 2, building A7, No. 416, Xuegang North Road, Qi community, Longhua street, Longhua District, Shenzhe		Floor 2, building A7, No. 416, Xuegang North Road, Qinghu community, Longhua street, Longhua District, Shenzhen, China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		SMART WATCH	SMART WATCH				
Models No.		G40PLUS, G53, G	G40PLUS, G53, G54, G55				
Model Different	:	All these models a circuit, The only di	I these models are identical in the same PCB, layout and electrical reuit, The only difference is appearance color and model name.				
ans)	1	Operation Frequency:	Bluetooth V5.4: 2402MHz~2480MHz				
Product Description		Modulation Type:	pe: Bluetooth&BLE: GFSK, Pi/4-DQPSK, 8-DPSK				
		Antenna Gain:	0.17dBi Wire Antenna				
Power Rating		Input: DC 5V, 165	nput: DC 5V, 165mA				
Li-ion Polymer Battery		3.8V by 350mAh F	3.8V by 350mAh Rechargeable Li-ion battery				
Software Version		MOY-8AM2-2.0.0-35380750					
Hardware Version		MOY.MA1005.01					
D							

Remark: The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Page: 5 of 8

2. Measurement Uncertainty

The reported uncertainty of measurement $y\pm U_1$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density- Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission- Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature	1	±0.6℃
Humidity	1	±4%
Supply voltages		±2%
Time	1000	±4%

Page: 6 of 8

3. Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 7 of 8

4. SAR Test Exclusion Calculations

4.1 FCC: According to KDB 447498 D01 v06 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.

- (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

4.2 Summary simultaneous transmission for SAR Exclusion

The SAR exemption limits outlined in clause 4.3.2(b) of KDB 447498 have been derived based on an approximate SAR value of 0.4 W/kg using half-wave dipole antennas Footnote 1. As such, when simultaneous transmitter SAR evaluations include transmitters that have been exempt from routine SAR evaluation, the SAR must be estimating based on the ratio between the maximum tune-up tolerance limit of the transmitter that has been exempt and the exemption limit at the specific distance and frequency for that transmitter. This ratio must be multiplied by 0.4 W/kg (2.0 W/kg for controlled use and 1.0 W/kg for limb worn devices) in order to calculate the estimated SAR level.

The estimate SAR value is calculated based the following equation:

(maximum power level including tune-up tolerance for transmitter A / maximum power level of exemption at the same frequency and distance) * 0.4W/kg

- 1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}}/x$] W/kg, for test separation distances ≤ 50 mm;
 - where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.
- 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the *test separation distance* is > 50 mm.³⁷

The [\sum of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [\sum of MPE ratios] is \leq 1.0.

The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all ≤ 0.04 , and the [\sum of MPE ratios] is ≤ 1.0 .

Page: 8 of 8

4.3 Calculation:

Test sepa	ration: 5mm					
		В	luetooth Mode (GFSK)	THE STATE OF THE S	CHILD'S	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	3.539	4±1	5	3.162	0.980	3.0
2.441	3.55	4±1	5	3.162	0.988	3.0
2.480	3.663	4±1	5	3.162	0.996	3.0
		Blue	tooth Mode (Pi/4-DQPS	K)		
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	4.214	4±1	5	3.162	0.980	3.0
2.441	4.124	4±1	5	3.162	0.988	3.0
2.480	4.082	4±1	5	3.162	0.996	3.0
	COUNTY OF	Blu	uetooth Mode (8-DPSK)			CHAM!
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	4.637	5±1	6	3.981	1.234	3.0
2.441	4.395	4±1	5	3.162	0.988	3.0
2.480	4.35	4±1	5	3.162	0.996	3.0

Test separation: 5mm								
			Bluetooth LE 1M					
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value		
2.402	5.082	5±1	6	3.981	1.234	3.0		
2.440	4.711	5±1	6	3.981	1.244	3.0		
2.480	4.575	5±1	6	3.981	1.254	3.0		

Test separation: 5mm									
Name		A COLOR	Bluetooth LE 2M						
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value			
2.402	5.245	5±1	6	3.981	1.234	3.0			
2.440	4.843	5±1	6	3.981	1.244	3.0			
2.480	4.693	5±1	6	3.981	1.254	3.0			

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB 447498 D01 v06.

----END OF THE REPORT----

