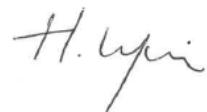


Test Report

21-1-0185701T08a

Number of pages:	19	Date of Report:	2023-Jan-10
------------------	----	-----------------	-------------


Testing company:	CETECOM GmbH Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150	Applicant:	Wapice Oy
------------------	---	------------	-----------

Product:	IOT Device
Model:	WRM247LTE

FCC ID:	FCC ID: 2A8VL-WRM247LTE	IC:	--
---------	-------------------------	-----	----

Testing has been carried out in accordance with:	FCC Regulations Title 47 CFR, Chapter I, Subchapter A, Part 15 Subpart B Unintentional Radiators § 15.107 Conducted limits § 15.109 Radiated emission limits ISED-Regulations Radio Standards Specification RSS-Gen, Issue 5 General Requirements for Compliance of Radio Apparatus ICES-003, Issue 7 Information Technology Equipment (including Digital Apparatus)
--	---

Test Results:	<input checked="" type="checkbox"/> The EUT complies with the requirements in respect of all parameters subject to the test. The test results relate only to devices specified in this document
---------------	---

Signatures:		
-------------	---	---

Dipl.-Ing. Ninovic Perez
Test Lab Manager
Authorization of test report

Hicham Laayouni
Test Manager
Responsible of test report

Table of Contents

Table of Annex.....	3
1 General information	4
1.1 Disclaimer and Notes.....	4
1.2 Attestation.....	4
1.3 Summary of Test Results	5
1.4 Summary of Test Methods	5
2 Administrative Data	6
2.1 Identification of the Testing Laboratory.....	6
2.2 General limits for environmental conditions.....	6
2.3 Test Laboratories sub-contracted.....	6
2.4 Organizational Items	6
2.5 Applicant's details	6
2.6 Manufacturer's details	6
2.7 Equipment under Test (EUT)	7
2.8 Auxiliary Equipment (AE).....	7
2.9 Connected cables (CAB).....	7
2.10 Software (SW).....	7
2.11 EUT set-ups.....	8
2.12 EUT operation modes	8
3 Equipment under test (EUT)	9
3.1 General Data of Main EUT as Declared by Applicant.....	9
3.2 Modifications on Test sample.....	9
4 Measurements.....	10
4.1 AC-Power Lines Conducted Emissions.....	10
4.2 Equipment lists	12
4.3 Radiated field strength emissions 30 MHz – 1 GHz	13
4.4 Equipment lists	15
4.5 Radiated field strength emissions above 1 GHz	16
4.6 Equipment lists	18
5 Measurement Uncertainty valid for conducted/radiated measurements	19
6 Versions of test reports (change history)	19

Table of Annex

Annex No.	Contents	Reference Description	Total Pages
Annex 1	Test result diagrams	CETECOM_TR21-1-0185701T08a-A1	3
Annex 2	Internal photographs of EUT	CETECOM_TR21-1-0185701T08a-A2	5
Annex 3	External photographs of EUT	--	--
Annex 4	Test set-up photographs	CETECOM_TR21-1-0185701T08a-A4	7
The listed attachments are separate documents.			

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

Test case	Reference in FCC <input checked="" type="checkbox"/>	Reference in ISED <input checked="" type="checkbox"/>	Reference in RSS-GEN <input checked="" type="checkbox"/>	Page	Remark	Result
<u>AC-Power Lines Conducted Emissions</u>	§15.107	ICES-003, Issue 7	RSS Gen, Issue 5, Chapter 8.8	11	--	
<u>Radiated field strength emissions 30 MHz – 1 GHz</u>	§15.109 §15.33 §15.35	ICES-003, Issue 7	RSS-Gen., Issue 5 Chapter 8.9, Chapter 7.3	14	--	
<u>Radiated field strength emissions above 1 GHz</u>	§15.109 §15.33 §15.35	ICES-003, Issue 7	RSS-Gen., Issue 5 Chapter 8.9, Chapter 7.3	17	--	

PASSED

The EUT complies with the essential requirements in the standard.

FAILED

The EUT does not comply with the essential requirements in the standard.

N/A

Test case does not apply to the test object.

NP

The test was not performed by the CETECOM Laboratory.

Decision Rule: CETECOM GmbH follows [ILAC G8:2019 chapter 4.2.1 \(Simple Acceptance Rule\)](#).

1.4 Summary of Test Methods

Test case	Test method
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 chapter 7
Radiated field strength emissions 30 MHz – 1 GHz	ANSI C63.4-2014 chapter 8.2.3
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 chapter 8.3

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	CETECOM GmbH
Address:	Im Teelbruch 116 45219 Essen - Kettwig Germany
Responsible for testing laboratory:	Dipl.-Ing. Ninovic Perez
Accreditation scope:	DAkkS Webpage: FCC ISED
IC Lab company No. / CAB ID:	3462D / DE0005
Test location:	CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:	--
---------------	----

2.4 Organizational Items

Responsible test manager:	Hicham Laayouni
Receipt of EUT:	20.09.2022
Date(s) of test:	2022-Oct-28 to 2022-Nov-09
Version of template:	22.0901

2.5 Applicant's details

Applicant's name:	Wapice Oy
Address:	Yliopistonranta 5 65200 Vaasa Finland
Contact Person:	Risto Pajula
Contact Person's Email:	risto.pajula@wapice.com

2.6 Manufacturer's details

Manufacturer's name:	Wapice Oy
Address:	Yliopistonranta 5 65200 Vaasa Finland

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Type	SN	HW	SW
EUT 1	21-1-01857S15_C01	IOT Device	WRM247LTE	WRM247LTE-EM-V8AG-RB01	1144492033	B1	1.0.1

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Auxiliary Equipment (AE)

AE No.*)	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
AE 1	21-1-01857S32_C01	WRM247LTE power supply	--	--	--	--
AE 2	21-1-01857S25_C01	LTE/GNSS antenna	--	--	--	--
AE 3	21-1-01857S27_C01	WLAN antenna	--	--	--	--

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.9 Connected cables (CAB)

CAB No.*)	Sample No.	Cable Type	Connectors / Details	Length
CAB 1	21-1-01857S69_C01	WRMLTE EMC X1 cable		
CAB 2	21-1-01857S62_C01	WRMLTE EMC X2 cable	M12 8-pol. socket connector to 4 x battery connector	300 cm
CAB 3	21-1-01857S68_C01	WRMLTE EMC X3 cable	M12 8-pol. socket connector	100 cm
CAB 4	21-1-01857S30_C01	WRMLTE EMC X4 cable		
CAB 5	21-1-01857S65_C01	WRMLTE EMC X5 cable	M12 8-pol. socket connector	
CAB 6	21-1-01857S61_C01	WRMLTE EMC X6 cable	M12 8-pol. socket connector to DB9 socket connector	100cm
CAB 7	21-1-01857S57_C01	WRMLTE Ethernet cable long	--	500cm
CAB 8	21-1-01857S55_C01	WRMLTE Ethernet cable short	--	200cm

*) CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.10 Software (SW)

SW No.*)	Sample No.	SW Name	Description	SW Status
--	--	--	--	--

*) SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.11 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 1 + AE1 + AE2 + AE3 + CAB1 + CAB2 + CAB3 + CAB4 + CAB5 + CAB6 + CAB7 + CAB8	--

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.12 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
	CAN + Ethernet + GNSS	<p>During the measurements the following was active :</p> <ul style="list-style-type: none"> • CAN communication • Ethernet communication • GNSS in receive mode

*) EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	<input type="checkbox"/> for normal use	<input checked="" type="checkbox"/> Special version for test execution
Power supply	<input checked="" type="checkbox"/> AC Mains	single Line (L1/N) 120 V 60 Hz
	<input type="checkbox"/> DC Mains	--
	<input type="checkbox"/> Battery	-
Operational conditions	T _{nom} =XX °C	T _{min} =XX °C T _{max} =XX °C
EUT sample type	Engineering Samples	
Weight	0.600 kg	
Size [LxWxH]	17.0 cm x 9.0 cm x 5.0 cm	
Interfaces/Ports	--	
For further details refer Applicants Declaration & following technical documents		

3.2 Modifications on Test sample

Additions/deviations or exclusions	--
------------------------------------	----

4 Measurements

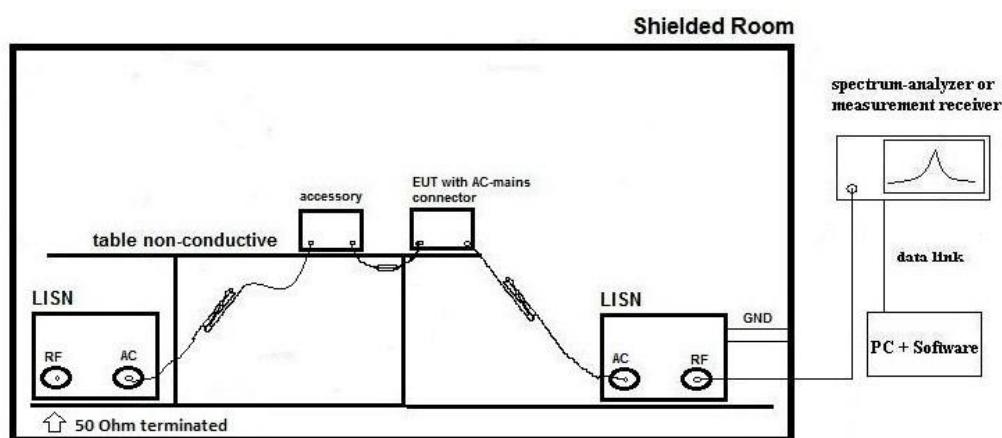
4.1 AC-Power Lines Conducted Emissions

4.1.1 Description of the general test setup and methodology, see below example:

The radio frequency voltage conducted back into the AC power line in the frequency range 150 kHz to 30 MHz has to be investigated.

Compliance should be tested by measuring the radio frequency voltage between each power line and ground at the power terminals in the stated frequency range.

A 50 Ohm / 50 μ H line impedance stabilization network (LISN) is used coupling the interface to the measurement equipment.


The EUT power input leads are connected through the LISN to the AC-power source. The LISN enclosure is electrically connected to the ground plane. The measuring instrument is connected to the coaxial output of the LISN.

Tabletop devices were set-up on an 80 cm height above reference ground plane, floor standing equipment 10 cm raised above ground plane.

Measurements have been performed on each phase line and neutral line of the devices AC-power lines.

The EUT was power supplied with 120 V/60 Hz. The EUT was tested in the defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses:

(See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

As a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

Final measurement on critical frequencies

For power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

Formula:

$$V_C = V_R + C_L \quad (1)$$

$$M = L_T - V_C \quad (2)$$

V_C = measured Voltage –corrected value

V_R = Receiver reading

C_L = Cable loss

M = Margin

L_T = Limit

All units are dB-units, positive margin means value is below limit.

4.1.2 Measurement Location

Test site	120919 - Conducted Emission
-----------	-----------------------------

4.1.3 Limit

Frequency Range [MHz]	Class B <input checked="" type="checkbox"/>		Class A <input type="checkbox"/>	
	QUASI-Peak [dB μ V]	AVERAGE [dB μ V]	QUASI-Peak [dB μ V]	AVERAGE [dB μ V]
0.15 – 0.5	66 to 56*	56 to 46*	79	66
0.5 – 5	56	46	73	60
5 – 30	60	50	73	60

4.1.4 Result

Diagram	Set-up	Mode	Power Line	Max [dB μ V]	Detector	Result
1.01	1	1	L1/N	38.21	Average	passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0185701T08a-A1

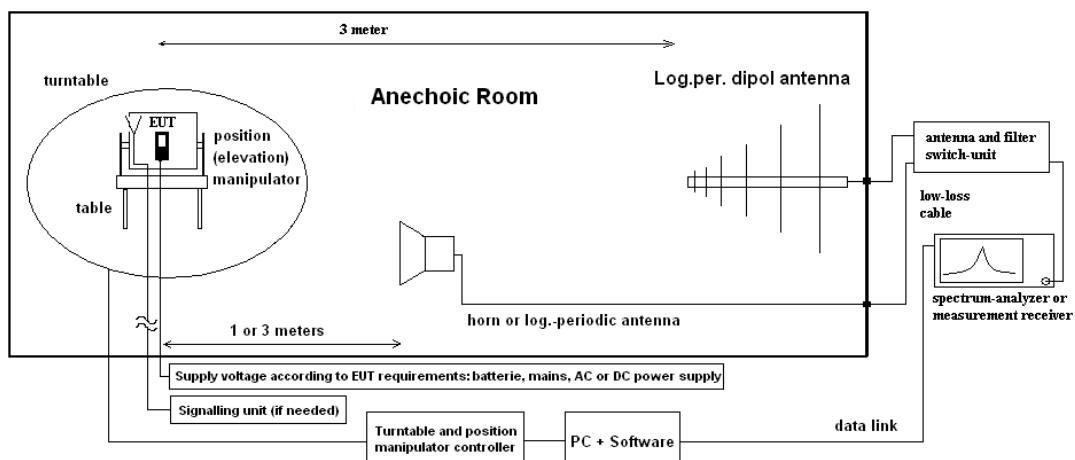
4.2 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120919 - Conducted Emission			cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20005	AC - LISN 50 Ohm/50µH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH / Memmingen	861741/005	cal	cal: 2022-May-19	cal: 12M	cal: 2023-May-19
20007	Single-Line V-Network (50 Ohm/5µH) ESH3-Z6	Rohde & Schwarz Messgerätebau GmbH / Memmingen	892563/002	cal	cal: 2022-May-23	cal: 12M	cal: 2023-May-23
20033	RF-current probe (100kHz-30MHz) ESH2-Z1	Rohde & Schwarz Messgerätebau GmbH	879581/18	cal	cal: 2021-Jun-01	cal: 24M	cal: 2023-Jun-01
20051	VHF-Current Probe ESV-Z1	Rohde & Schwarz Messgerätebau GmbH	872421	cpu			
20099	Passive Voltage Probe ESH2-Z3	Rohde & Schwarz Messgerätebau GmbH	299.7810.52	cpu			
20100	Passive Voltage Probe TK 9416	Schwarzbeck Mess-Elektronik OHG / Schönau	without	cpu			
20300	AC - LISN (50 Ohm/50µH, 1-phase) ESH3-Z5	Rohde & Schwarz Messgerätebau GmbH / Memmingen	892 239/020	cal	cal: 2022-May-23	cal: 12M	cal: 2023-May-23
20348	Shielded Room EMI conducted	Albatross Projects GmbH	without	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20373	Single-Line V-Network (50 Ohm/5µH) ESH3-Z6	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100535	cal	cal: 2022-May-18	cal: 12M	cal: 2023-May-18
20377	Test Receiver ESCS30	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100160	cal	cal: 2022-May-20	cal: 12M	cal: 2023-May-20
20468	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	90090455	cal	cal: 2021-Jun-01	cal: 36M	cal: 2024-Jun-01
20533	Impedance Stabilization Network ISN T200A	Teseq GmbH	25706	cal	cal: 2020-May-20	cal: 36M	cal: 2023-May-20
20534	Impedance Stabilization Network ISN T400A	Teseq GmbH	24881	cal	cal: 2020-May-20	cal: 36M	cal: 2023-May-20
20535	Impedance Stabilization Network ISN T800	Teseq GmbH	26321	cal	cal: 2020-May-20	cal: 36M	cal: 2023-May-20
20536	Impedance Stabilization Network ISN ST08	Teseq GmbH	25867	cal	cal: 2020-May-20	cal: 36M	cal: 2023-May-20
20541	Impedance Stabilization Network ISN T8-Cat6	Teseq GmbH	26373	cal	cal: 2020-May-20	cal: 36M	cal: 2023-May-20
20556	Thermo-/Hygrometer WS-9400	Conrad Electronic GmbH	-	chk	chk: 2021-Jul-15	chk: 24M	chk: 2023-Jul-15

Tools used in 'P3M1'

4.2.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years


Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
cpu	Verification before usage

4.3 Radiated field strength emissions 30 MHz – 1 GHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the regulatory commissions.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses:
(See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A \quad (1)$$

$$M = L_T - E_C \quad (2)$$

AF = Antenna factor

C_L = Cable loss

D_F = Distance correction factor (if used)

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

L_T = Limit

M = Margin

All units are dB-units, positive margin means value is below limit.

4.3.2 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz				
-----------	--	--	--	--	--

4.3.3 Limit

Frequency Range [MHz]	Class B \boxtimes (3 meters)		Class A \square (10 meters)		Detector	RBW / VBW [kHz]
	Limit [μ V/m]	Limit [dB μ V/m]	Limit [μ V/m]	Limit [dB μ V/m]		
30 - 88	100	40.0	90	39.0	Quasi peak	100 / 300
88 - 216	150	43.5	150	43.5	Quasi peak	100 / 300
216 - 960	200	46.0	210	46.4	Quasi peak	100 / 300
960 - 1000	500	54.0	300	49.5	Quasi peak	100 / 300

4.3.4 Result

Diagram	Set-up	Mode	Maximum Level [dB μ V/m] Frequency Range 30 – 1000 MHz	Result
3.01_laying	1	1	42.68	passed
3.02_standing	1	1	32.90	passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0185701T08a-A1

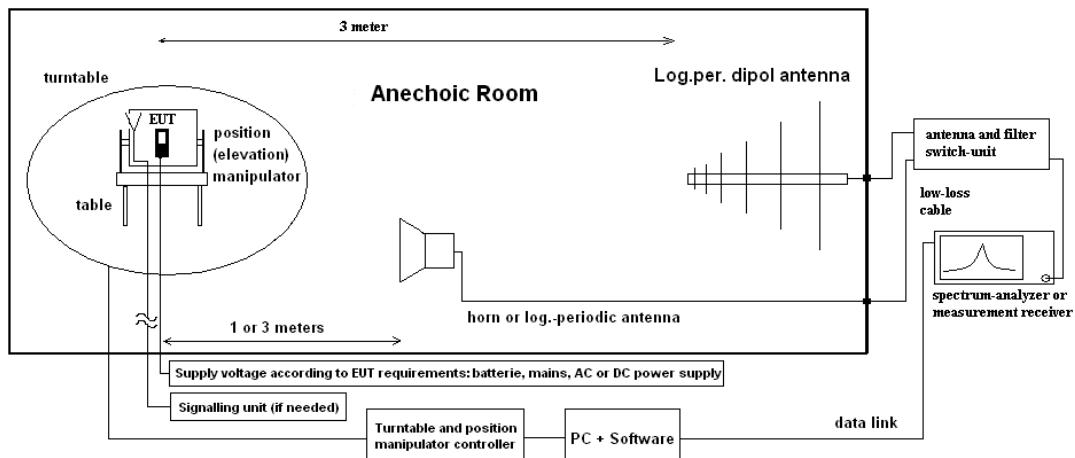
4.4 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21 chk: 2021-Jul-27	cal: 10Y chk: 12M	cal: 2025-Jul-21 chk: 2022-Jul-27
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glotttal	81650455	cal	cal: 2022-May-18	cal: 24M	cal: 2024-May-18
20442	Semi Anechoic Chamber	ETS-Lindgren GmbH / Taufkirchen	-	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH / Heideck	980026L	cal	cal: 2022-Jun-15	cal: 36M	cal: 2025-Jun-15
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100362	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH / Memmingen	879824/13	cal	cal: 2022-Jul-04	cal: 24M	cal: 2024-Jul-04

Tools used in 'P1M1'

4.4.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years


Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
cpu	Verification before usage

4.5 Radiated field strength emissions above 1 GHz

4.5.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses:

(See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$$E_C = E_R + A_F + C_L + D_F - G_A \quad (1)$$

E_C = Electrical field – corrected value

E_R = Receiver reading

$$M = L_T - E_C \quad (2)$$

M = Margin

L_T = Limit

A_F = Antenna factor

C_L = Cable loss

D_F = Distance correction factor (if used)

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.5.2 Measurement Location

Test site	120907 - FAC2 - Radiated Emissions
-----------	------------------------------------

4.5.3 Limit

Radiated emissions limits (3 meters)				
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]
Above 1000	500	54	Average	1000 / 3000
Above 1000	5000	74	Peak	1000 / 3000

4.5.4 Result

Diagram	Set-up	Mode	Maximum Level [dBµV/m] Frequency Range 1 – 12.4GHz	Result
4.01_laying	1	1	52.32	Passed
4.02_standing	1	1	50.53	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0185701T08a-A1

Diagram	Set-up	Mode	Maximum Level [dBµV/m] Frequency Range 12.4 – 18 GHz	Result
4.01_laying	1	1	54.77	Passed
4.02_standing	1	1	55.22	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0185701T08a-A1

Diagram	Set-up	Mode	Maximum Level [dBµV/m] Frequency Range 18 – 26.5 GHz	Result
4.01_laying	1	1	59.47	Passed
4.02_standing	1	1	60.69	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0185701T08a-A1

4.6 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120907 - FAC2 - Radiated Emissions			chk	chk: 2021-Aug-30	chk: 18M	chk: 2023-Jan-30
20005	AC - LISN 50 Ohm/50µH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH / Memmingen	861741/005	cal	cal: 2022-May-19	cal: 12M	cal: 2023-May-19
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629	cal	cal: 2020-Apr-08	cal: 36M	cal: 2023-Apr-08
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	cpu	chk: 2020-Apr-15	chk: 12M	
20412	Fully Anechoic Chamber 2	ETS-Lindgren GmbH / Taufkirchen	without	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20729	FS-Z140	Rohde & Schwarz Messgerätebau GmbH	101004	cal	cal: 2020-May-26	cal: 36M	cal: 2023-May-26
20730	FS-Z110	Rohde & Schwarz Messgerätebau GmbH	101468	cal	cal: 2020-Jun-19	cal: 36M	cal: 2023-Jun-19
20731	FS-Z75	Rohde & Schwarz Messgerätebau GmbH / Memmingen	101022	cal	cal: 2022-May-18	cal: 36M	cal: 2025-May-18
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH / Memmingen	104023	cal	cal: 2022-Jun-08	cal: 12M	cal: 2023-Jun-08
20733	Harmonic Mixer FS-Z220	RPG-Radiometer Physics GmbH	101009	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-27
20734	Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH	101005	cal	cal: 2021-May-27	cal: 36M	cal: 2024-May-27
20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH / Meckenheim	010001	cal	cal: 2020-Sep-15	cal: 36M	cal: 2023-Sep-15
20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH / Meckenheim	010011	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L.	29F14182337	cal	cal: 2021-Oct-20	cal: 36M	cal: 2024-Oct-20
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20813	Pickett-Potter Horn Antenna FH-PP 075	RPG-Radiometer Physics GmbH / Meckenheim	10006	cal	cal: 2020-Sep-09	cal: 36M	cal: 2023-Sep-09
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20815	Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH	10014	cal	cal: 2020-Sep-04	cal: 36M	cal: 2023-Sep-04
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20817	Waveguide Rectangular Horn Antenna SAR-2309-22-S2	ERAVAN	13254-01	cal	cal: 2020-Jul-29	cal: 36M	cal: 2023-Jul-29
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001	chk		chk: 36M	
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 / 2079992	chk	chk: 2020-Feb-27	chk: 36M	chk: 2023-May-27
20907	Waveguide WR-15 attenuator STA-30-15-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20908	Waveguide WR 10 attenuator STA-30-10-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH	19041200083	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20913	Phase Amplitude Stable Cable Assembly DC-40GHz	RF-Lambda Europe GmbH	AC19040001	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -

Tools used in 'P2M1'

4.6.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation	Check Type	Description
cnn		Calibration and verification not necessary
cal		Calibration
calchk		Calibration plus intermediate Verification
chk		Verification
cpu		Verification before usage

5 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and its contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	Frequency range of measurement		Calculated Uncertainty based on confidence level of 95.54%	Remarks
	Start [MHz]	Stop [MHz]		
Magnetic field strength	0.009	30	4.86	Magnetic loop antenna, Pre-amp on
RF-Output power (eirp) Unwanted emissions (eirp) [dB]	30	100	4.57	without Pre-Amp
	30	100	4.91	with PreAmp
	100	1000	4.02	without Pre-Amp
	100	1000	4.26	with PreAmp
	1000	18000	4.36	without Pre-Amp
	1000	18000	5.23	with PreAmp
	18000	33000	4.92	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna
	33000	50000	4.17	Set-up for Q-Band (WR-22), non-waveguide antenna
	40000	60000	4.69	Set-up U-Band (WR-19), non-waveguide antenna
	50000	75000	4.06	External Mixer set-up V-Band (WR-15)
	75000	110000	4.17	External Mixer set-up W-Band (WR-6)
	90000	140000	5.49	External Mixer set-up F-Band (WR-8)
	140000	225000	6.22	External Mixer set-up G-Band (WR-5)
	225000	325000	7.04	External Mixer set-up (WR-3)
	325000	500000	8.84	External Mixer set-up (WR-2.2)
Radiated Blocking [dB]	1000	18000	2.85	Typical set-up with microwave generator and antenna, value for 7GHz calculated
	18000	33000	4.66	Typical set-up with microwave generator and antenna
	33000	50000	3.48	WR-22 set-up
	50000	75000	3.73	WR-15 set-up
	75000	110000	4.26	WR-6 set-up
Frequency Error [kHz]	40000	77000	276.19	calculated for 77 GHz (FMCW) carrier
	6000	7000	33.92	calculated for 6.5GHz UWB Ch.5
TS 8997 conducted Parameters	30	6000	1.11	1. Power measurement with Fast-sampling-detector
	30	6000	1.20	2. Power measurement with Spectrum-Analyzer
	30	6000	1.20	3. Power Spectrum-Density measurement
	30	7500	1.20	4. Conducted Spurious emissions:
	0.009	30	2.56	5. Conducted Spurious emissions:
	2.4	2.48	1.95 ppm	6a. Bandwidth / 2-Marker Method for 2.4GHz ISM
	5.18	5.825	7.180 ppm	6b. Bandwidth / 2-Marker Method for 5GHz WLAN
	5.18	5.825	1.099 ppm	7 Frequency (Marker method) for 5GHz WLAN
	30	6000	0.11561μs	8 Medium-Utilization factor / Timing
	30	6000	1.85	9 Blocking-Level of companion device
	30	6000	1.62	9 Blocking Generator level
Conducted emissions	0.009	30	3.57	

6 Versions of test reports (change history)

Version	Applied changes	Date of release
--	Initial release	2023-Jan-10
--	--	--

End Of Test Report