

FCC TEST REPORT

FCC ID: 2A8QR-CD229

Product Name	:	Electronic induction lock
Model Name	:	CD229
Brand Name	:	N/A
Report No.	:	PTC22082205601E-FC01
Sample ID	:	PTC22082205601E-1#

Prepared for

Shenzhen Candon Technology Co.,Ltd.

2nd Floor, Building 2, No. 7, Lianxing Road, Shatian Community, Kengzi Street, Pingshan District, Shenzhen

Prepared by

Precise Testing & Certification Co., Ltd

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

Report No.: PTC22082205601E-FC01

1 TEST RESULT CERTIFICATION

Applicant's name : Shenzhen Candon Technology Co.,Ltd.
Address : 2nd Floor, Building 2, No. 7, Lianxing Road, Shatian Community, Kengzi Street, Pingshan District, Shenzhen
Manufacturer's name : Shenzhen Candon Technology Co.,Ltd.
Address : 2nd Floor, Building 2, No. 7, Lianxing Road, Shatian Community, Kengzi Street, Pingshan District, Shenzhen
Product name : Electronic induction lock
Model name : CD229
Standards : FCC CFR47 Part 15C
Test procedure : ANSI C63.10:2013
Test Date : Sept.05-Sept.16 2022
Date of Issue : Sept.18 2022
Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

A handwritten signature in black ink that reads 'Leo Yang'.

Leo Yang / Engineer

Technical Manager:

A handwritten signature in black ink that reads 'Ronnie Liu'.

Ronnie Liu / Manager

Contents

	Page
1 TEST RESULT CERTIFICATION	2
2 TEST SUMMARY	5
3 TEST FACILITY	6
4 GENERAL INFORMATION	7
4.1 GENERAL DESCRIPTION OF E.U.T	7
4.2 TEST MODE	8
5 EQUIPMENT DURING TEST	9
5.1 EQUIPMENTS LIST	9
5.2 MEASUREMENT UNCERTAINTY	9
5.3 DESCRIPTION OF SUPPORT UNITS	12
6 CONDUCTED EMISSION	13
6.1 E.U.T. OPERATION	13
6.2 EUT SETUP	13
6.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
6.4 MEASUREMENT PROCEDURE:	14
6.5 CONDUCTED EMISSION LIMIT	14
6.6 MEASUREMENT DESCRIPTION	14
6.7 CONDUCTED EMISSION TEST RESULT	14
7 RADIATED SPURIOUS EMISSIONS	15
7.1 EUT OPERATION	15
7.2 TEST SETUP	16
7.3 SPECTRUM ANALYZER SETUP	17
7.4 TEST PROCEDURE	18
7.5 SUMMARY OF TEST RESULTS	19
8 20DB BANDWIDTH	22
8.1 BLOCK DIAGRAM OF TEST SETUP	22
8.2 RULES AND SPECIFICATIONS	22
8.3 TEST PROCEDURE	22
8.4 RESULT	22

Report No.: PTC22082205601E-FC01

9 TEST PHOTOS	24
10 EUT PHOTOS	25

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	N/A
Radiated Spurious Emissions	15.209	PASS
20dB bandwidth	15.215(c)	PASS

Report No.: PTC22082205601E-FC01

3 TEST FACILITY

Precise Testing & Certification Co., Ltd

Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A-1

Designation Number: CN1219

4 General Information

4.1 General Description of E.U.T.

Product Name	:	Electronic induction lock
Model Name	:	CD229
Operating frequency	:	125KHz
Antenna Type	:	Coil Antenna
Battery	:	DC 6V
Hardware Version	:	V01
Software Version	:	V01

4.2 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode or test configuration mode mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Keeping TX

Channel list

channel	Frequency(khz)
1	125

Test channel

channel	Frequency(khz)
1	125

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
MXA Signal Analyzer	Agilent	N9020A	MY56070279	Aug. 21, 2022	Aug. 20, 2023	1 year
Coaxial Cable	CDS	79254	46107086	Aug. 21, 2022	Aug. 20, 2023	1 year
Power Meter	Anritsu	ML2495A	0949003	Aug. 21, 2022	Aug. 20, 2023	1 year
Power Sensor	Anritsu	MA2411B	0917017	Aug. 21, 2022	Aug. 20, 2023	1 year
Spectrum Analyzer	Rohde&Schwarz	FSU26	1166.1660.26	Aug. 21, 2022	Aug. 20, 2023	1 year
Scope	Tektronix	TDS3032B	B014131	Aug. 21, 2022	Aug. 20, 2023	1 year
DC power	eTOMENS	eTM-1560	--	Aug. 21, 2022	Aug. 20, 2023	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	Aug. 21, 2022	Aug. 20, 2023	1 year
Loop Antenna	Schwarzbeck	FMZB 1519	012	Aug. 21, 2022	Aug. 20, 2023	1 year
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	Aug. 21, 2022	Aug. 20, 2023	1 year
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	Aug. 21, 2022	Aug. 20, 2023	1 year
Cable	Schwarzbeck	PLF-100	549489	Aug. 21, 2022	Aug. 20, 2023	1 year
Spectrum Analyzer	Agilent	E4407B	MY45109572	Aug. 21, 2022	Aug. 20, 2023	1 year
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	Aug. 21, 2022	Aug. 20, 2023	1 year
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	Aug. 21, 2022	Aug. 20, 2023	1 year
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	Aug. 21, 2022	Aug. 20, 2023	1 year

Amplifier	SCHWARZBECK	BBV 9721	9721-205	Aug. 21, 2022	Aug. 20, 2023	1 year
Cable	H+S	CBL-26	N/A	Aug. 21, 2022	Aug. 20, 2023	1 year
RF Cable	R&S	R204	R21X	Aug. 21, 2022	Aug. 20, 2023	1 year

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	Aug. 21, 2022	Aug. 20, 2023	1 year
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	Aug. 21, 2022	Aug. 20, 2023	1 year
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	Aug. 21, 2022	Aug. 20, 2023	1 year

5.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	$\pm 1.0\text{dB}$
Power Spectral Density, conducted	$\pm 2.2\text{dB}$
Radio Frequency	$\pm 1 \times 10^{-6}$
Bandwidth	$\pm 1.5 \times 10^{-6}$
Time	$\pm 2\%$
Duty Cycle	$\pm 2\%$
Temperature	$\pm 1^\circ\text{C}$
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 3\%$
Conducted Emissions (150kHz~30MHz)	$\pm 3.64\text{dB}$
Radiated Emission(9KHz~30MHz)	$\pm 2.54\text{dB}$
Radiated Emission(30MHz~1GHz)	$\pm 5.03\text{dB}$
Radiated Emission(1GHz~25GHz)	$\pm 4.74\text{dB}$
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%	

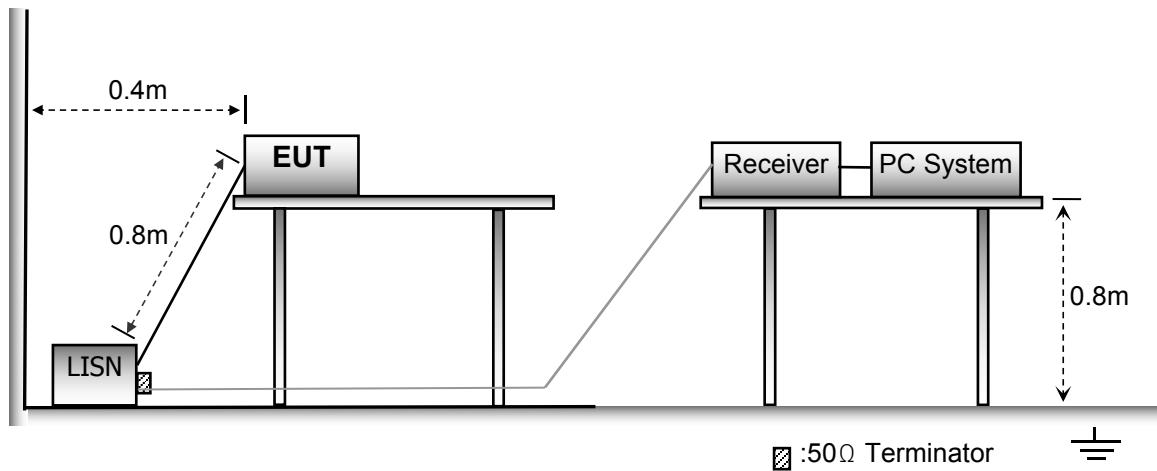
Report No.: PTC22082205601E-FC01

5.3 Description of Support Units

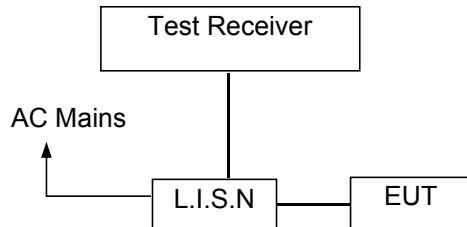
Equipment	Model No.	Series No.
-	-	-

6 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207
 Test Method: : ANSI C63.10:2013
 Test Result: : PASS
 Frequency Range: : 150kHz to 30MHz
 Class/Severity: : Class B
 Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)


6.1 E.U.T. Operation

Operating Environment :


Temperature: : 25.5 °C
 Humidity: : 51 % RH
 Atmospheric Pressure: : 101.2kPa
 Test Voltage : AC 120V/60Hz

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

6.6 Measurement Description

The EUT was power by 4pcs dry battery, so no need test for conduction.

6.7 Conducted Emission Test Result

N/A.

7 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209

Test Method : ANSI C63.10:2013

Test Result : PASS

Measurement Distance : 3m

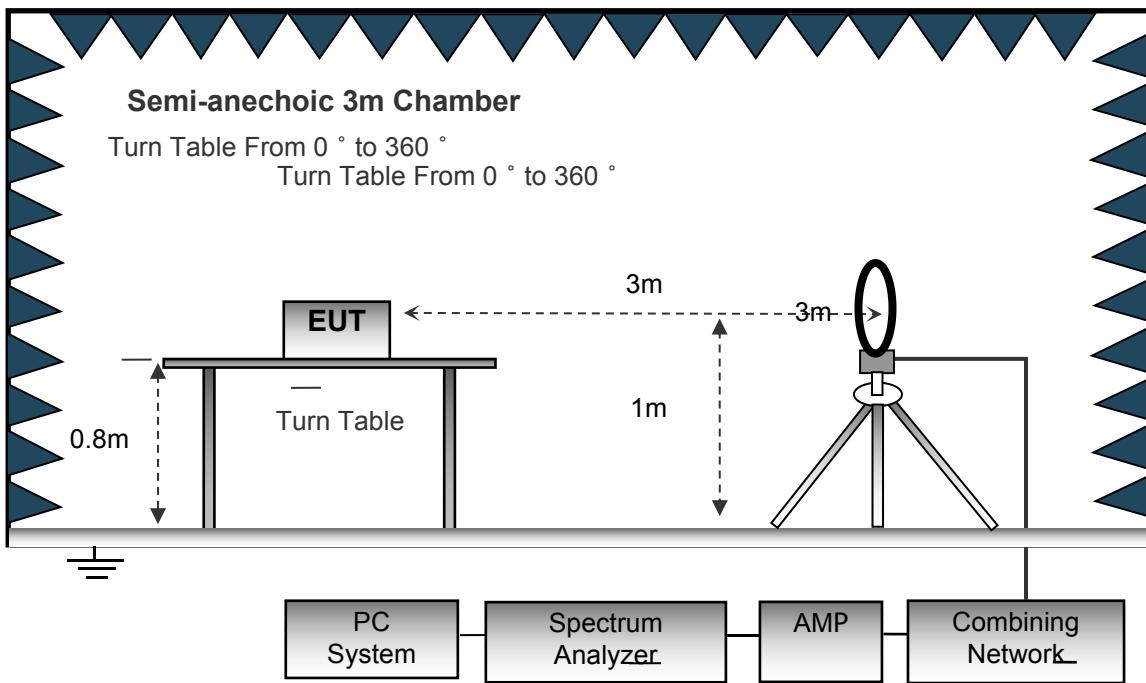
Limit : See the follow table

Frequency (MHz)	Field Strength		Field Strength Limit at 3m Measurement Dist	
	uV/m	Distance (m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	$10000 * 2400/F(\text{kHz})$	$20\log^{(2400/F(\text{kHz}))} + 80$
0.490 ~ 1.705	24000/F(kHz)	30	$100 * 24000/F(\text{kHz})$	$20\log^{(24000/F(\text{kHz}))} + 40$
1.705 ~ 30	30	30	$100 * 30$	$20\log^{(30)} + 40$
30 ~ 88	100	3	100	$20\log^{(100)}$
88 ~ 216	150	3	150	$20\log^{(150)}$
216 ~ 960	200	3	200	$20\log^{(200)}$
Above 960	500	3	500	$20\log^{(500)}$

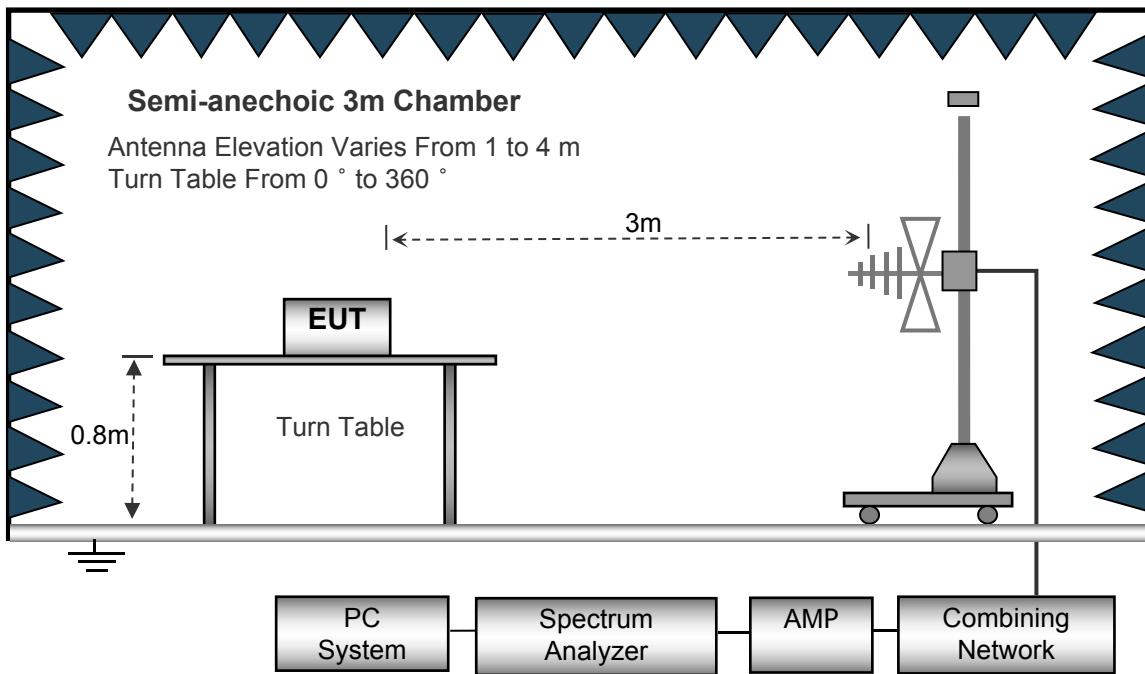
7.1 EUT Operation

Operating Environment :

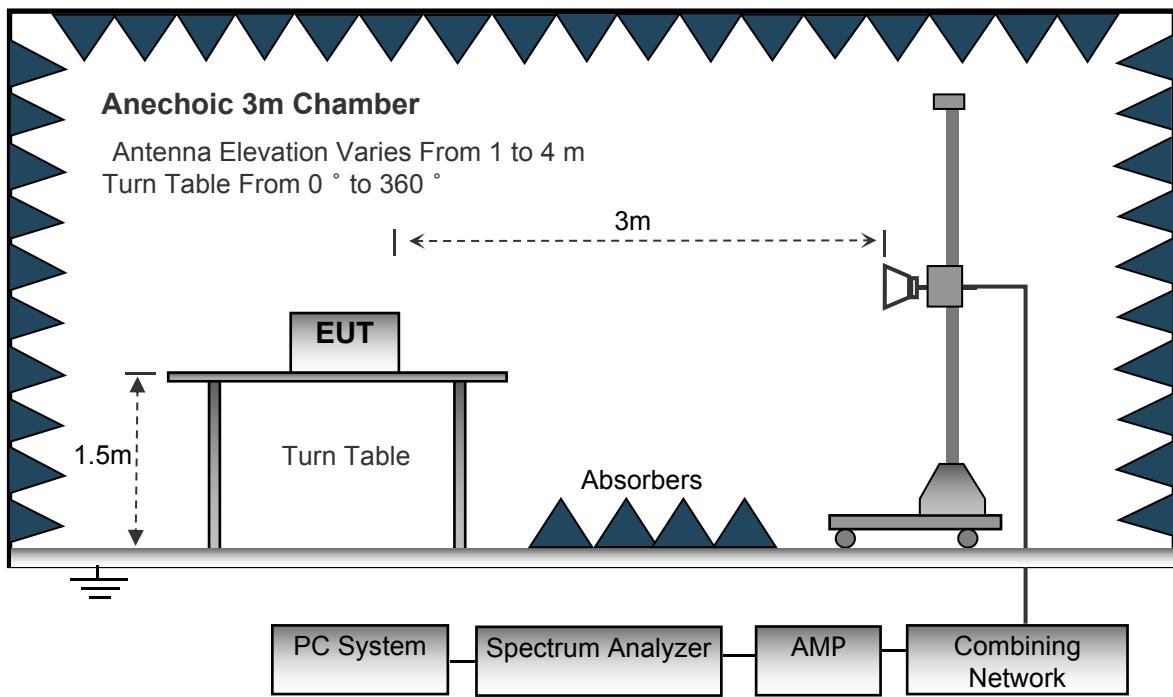
Temperature : 23.5 °C


Humidity : 51.1 % RH

Atmospheric Pressure : 101.2kPa


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site


The test setup for emission measurement below 30MHz.

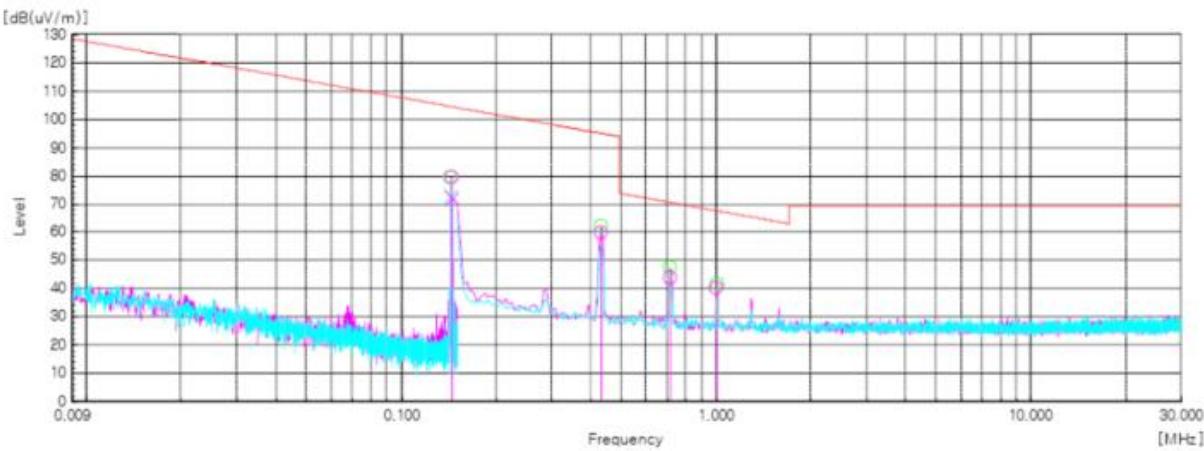
The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

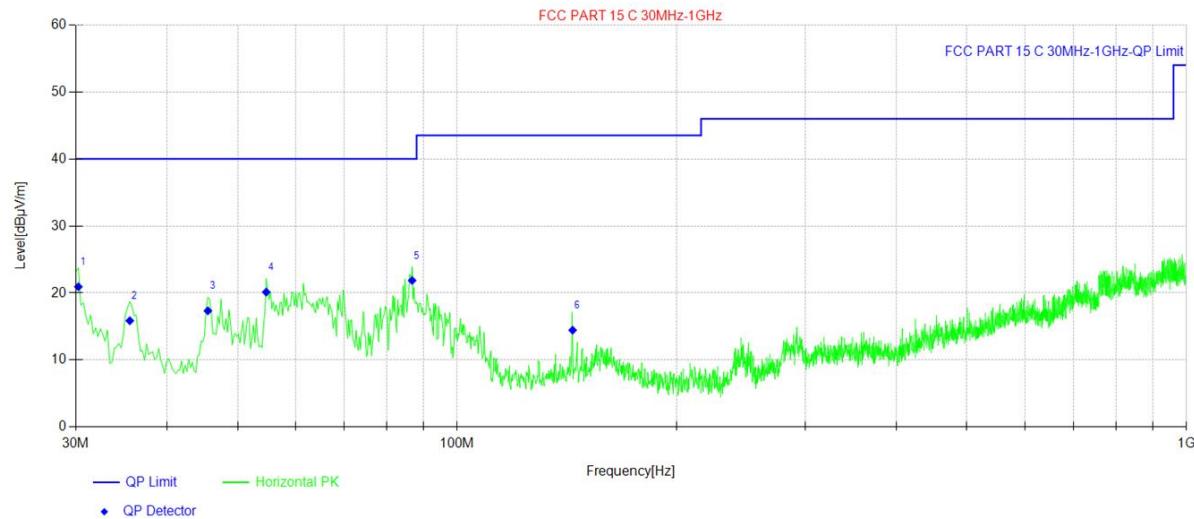


7.4 Test Procedure

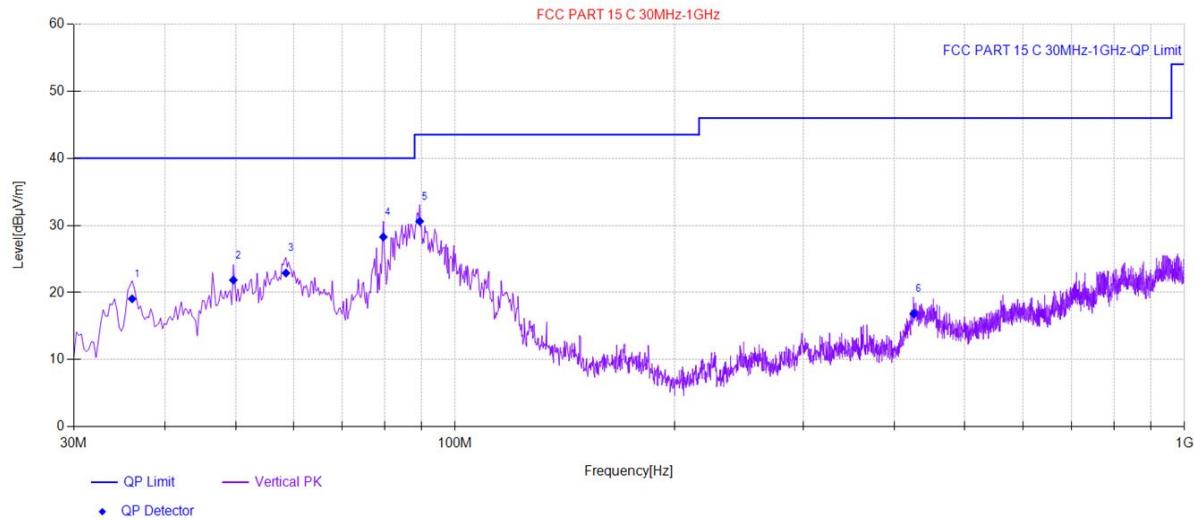
1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/ Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

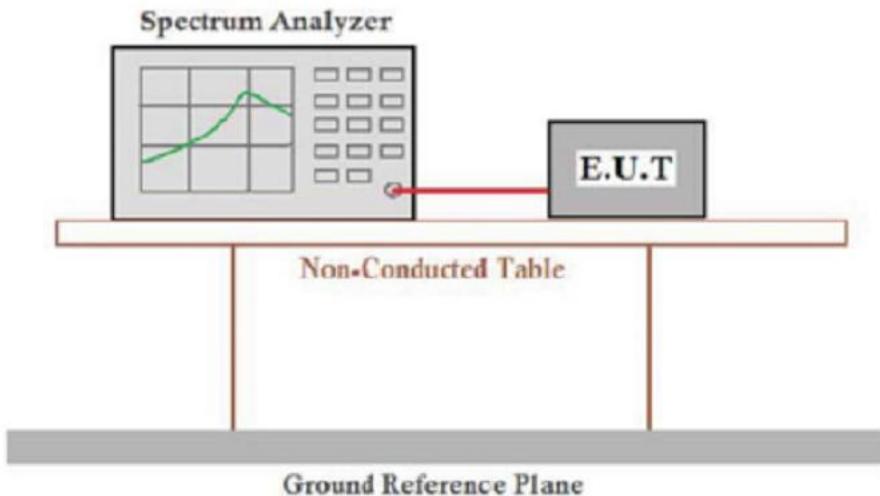


Frequency (MHz)	Reading (dBuV)	CABLE LOSS (dB)	AMP GAIN (dB)	ANTENNA FACTOR (dB)	FACTOR (dB)	3m field strength (dBuV/m)	Result at 300m (dBuV/m)	Limit at 300m (dBuV/m)	Margin (dB)	remark	Coaxial / coplane
0.125	97.20	0.55	-32.76	19.91	-12.30	84.90	4.90	25.67	20.77	PK	Coaxial
0.430	72.30	0.58	-32.73	19.76	-12.40	59.90	-20.10	14.93	35.03	PK	Coaxial
0.717	56.20	0.70	-32.73	19.73	-12.30	43.90	3.90	30.49	26.59	PK	Coaxial
1.004	52.40	0.82	-32.72	19.70	-12.20	40.20	0.20	27.57	27.37	PK	Coaxial


Remark: Both Coaxial and coplane are tested and record worst case of coaxial. According to FCC Part 15.209(d), the emission limits for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. The value PK>QP>AV, so it is regular.

Test Frequency: 30MHz ~ 1GHz

Horizontal:


Final Data List[QP]							
NO.	Freq. [MHz]	QP Reading [dBμV/m]	Factor [dB]	QP Value [dBμV/m]	QP Limit [dBμV/m]	QP Margin [dB]	Polarity
1	30.24	39.26	-18.33	20.93	40.00	19.07	Horizontal
2	35.58	34.05	-18.18	15.87	40.00	24.13	Horizontal
3	45.52	34.79	-17.44	17.35	40.00	22.65	Horizontal
4	54.74	38.02	-17.88	20.14	40.00	19.86	Horizontal
5	86.75	42.74	-20.87	21.87	40.00	18.13	Horizontal
6	143.98	30.92	-16.46	14.46	43.50	29.04	Horizontal

Vertical:

Final Data List[QP]							
NO.	Freq. [MHz]	QP Reading [dBμV/m]	Factor [dB]	QP Value [dBμV/m]	QP Limit [dBμV/m]	QP Margin [dB]	Polarity
1	36.06	37.26	-18.19	19.07	40.00	20.93	Vertical
2	49.64	39.63	-17.77	21.86	40.00	18.14	Vertical
3	58.62	40.79	-17.88	22.91	40.00	17.09	Vertical
4	79.71	49.48	-21.20	28.28	40.00	11.72	Vertical
5	89.41	51.3	-20.69	30.61	43.50	12.89	Vertical
6	425.28	29.4	-12.53	16.87	46.00	29.13	Vertical

8 20dB Bandwidth

8.1 Block Diagram of Test Setup

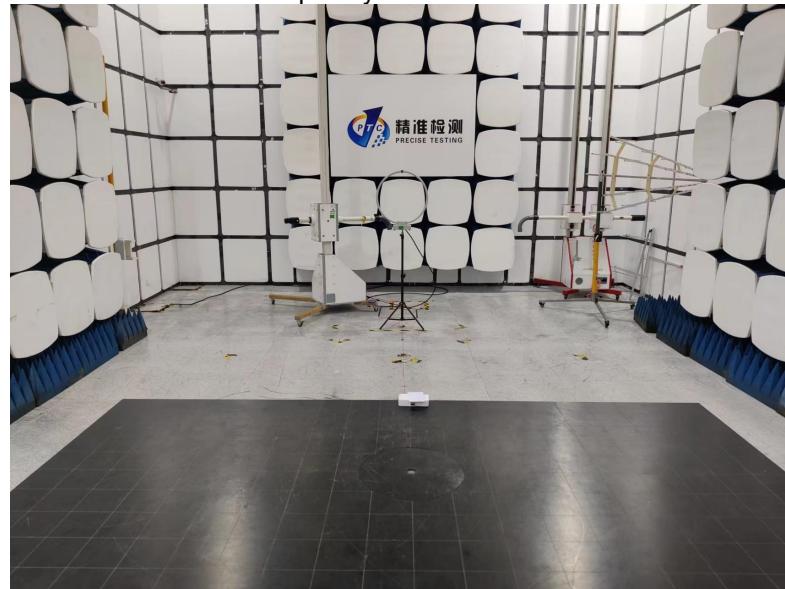
8.2 Rules and specifications

DFR 47 Part 15.215(c)

ANSI C63.10-2013

8.3 Test Procedure

Intentional radiator operating under the alternative provisions to the general emission limits, as contained in 15.217 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment complies with the 20dB attenuation specification may be based on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be demonstrated by measuring the radiated emissions.


8.4 Result

Pass.

9 TEST PHOTOS

Radiated Spurious Emissions
Test Frequency From 9KHz-30MHz

Test frequency from 30MHz-1000MHz

Report No.: PTC22082205601E-FC01

10 EUT PHOTOS

Please reference "EUT photos"

*****THE END REPORT*****