

Page 1 of 60

FCCID: 2A8NB-PINTAB-V

SAR TEST REPORT

For Pine Store Sdn Bhd

PineTab-V tablet

Test Model: PINETAB-V

Additional Model No.: Please Refer to Page 8

Prepared for Pine Store Sdn Bhd

Address 18-2-15, Gembira Parade, Lorong Delima 1, Island Glades,

11700 Penang, Malaysia.

Prepared by Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Address

Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

Report No.: LCSA08013060EB

518000. China

Tel (86)755-82591330 Fax (86)755-82591332 www.LCS-cert.com Web

Mail webmaster@LCS-cert.com

Date of receipt of test sample August 02, 2023

Number of tested samples

Sample number A08013060-1 Prototype Serial number

Date of Test August 02, 2023 ~ September 08, 2023

Date of Report September 12, 2023

Page 2 of 60

FCCID: 2A8NB-PINTAB-V

SAR TEST REPORT Report Reference No...... LCSA08013060EB Date Of Issue....: September 12, 2023 Testing Laboratory Name....: **Shenzhen LCS Compliance Testing Laboratory Ltd.** Address....: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Testing Location/ Procedure....: Full application of Harmonised standards Partial application of Harmonised standards □ Other standard testing method \square Applicant's Name.....: Pine Store Sdn Bhd 18-2-15, Gembira Parade, Lorong Delima 1, Island Glades, 11700 Address :: Penang, Malaysia. **Test Specification:** FCC 47CFR §2.1093, ANSI/IEEE C95.1-1992, IEEE 1528-2013, KDB Standard....: 248227/447498/865664/690783/616217 Test Report Form No.....: LCSEMC-1.0 Master TRF...... Dated 2014-09 Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.....: PineTab-V tablet Trade Mark....: Model/Type Reference...... PINETAB-V Input: DC 5V, 3A Ratings....: Battery: DC 3.8V, 6000mAh **Positive** Result:

Compiled by:

Supervised by:

Approved by:

Report No.: LCSA08013060EB

Jayzhan

Jay Zhan/ File administrators

Cary Luo / Technique principal

Gavin Liang/ Manager

FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

<u>September 12, 2023</u>

SAR -- TEST REPORT

Test Report No.: LCSA08013060EB Date of issue : PineTab-V tablet Type / Model..... · PINETAB-V EUT..... Pine Store Sdn Bhd Applicant..... 18-2-15, Gembira Parade, Lorong Delima 1, Island Glades, Address..... 11700 Penang, Malaysia. Telephone..... Fax....: : / ShenZhen TianheZhiYan Science and technology Manufacturer..... Devecopemen Co., LTD Room113.Zixinda.Building, NO.1053, Baoyuan Road, XiXiang Address..... Sub-district, Baoan Distric, ShenZhen, China Telephone..... Fax..... : / Factory.....: : / Address..... " Jesting Telephone..... Fax.....: : /

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 4 of 60

FCCID: 2A8NB-PINTAB-V

Revison History

Revision	Issue Date	Revision Content	Revised By
000	September 12, 2023	Initial Issue	

Report No.: LCSA08013060EB

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

TABLE OF CONTENTS

		TABLE OF CONTENTS		
1. TES	ST STANDARDS AND TEST DESC	CRIPTION	Timesin	6
1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8.	STATEMENT OF COMPLIANCE TEST LOCATION TEST FACILITY TEST LABORATORY ENVIRONMENT. PRODUCT DESCRIPTION DUT ANTENNA LOCATIONS(FRONT TEST SPECIFICATION RF EXPOSURE LIMITS	View).		6 7 8 10
2. SAR	R MEASUREMENTS SYSTEM CO	ONFIGURATION		13
2.4. 2.5. 2.6.	ISOTROPIC E-FIELD PROBE EX3DV4 DATA ACQUISITION ELECTRONICS (SAM TWIN PHANTOM ELI PHANTOM DEVICE HOLDER FOR TRANSMITTER	4DAE)	A TOTAL OF THE STATE OF THE STA	15 16 16 17
3. SAR	R MEASUREMENT VARIABILITY	Y AND UNCERTAINTY		23
3.2.	SAR MEASUREMENT UNCERTAINTY.			23
		F F F 100 100 100 100 100 100 100 100 10		
4.2.	BODY EXPOSURE CONDITION	Control Contro	TEW TEN	27
5. SAR	R SYSTEM VERIFICATION PROC	CEDURE		29
5.1. 5.2.				
6. SAR	R MEASUREMENT PROCEDURE	·		.33
6.2.	WIFI TEST CONFIGURATIONPower Reduction			33 35
7. TES	T CONDITIONS AND RESULTS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.36
7.1. 7.2. 7.3.	STAND-ALONE SAR TEST EVALUATI	ION.	755 "	51

TEST STANDARDS AND TEST DESCRIPTION

1.1. Statement of Compliance

The maximum of results of SAR found during testing for BHWW Laptop are follows:

<Highest Reported standalone SAR Summary>

Classment Class	Frequency Band	Body (Report SAR1-g (W/kg)	Body (Report SAR1-g (W/kg)
Olass	Dana	(Separation Distance 0mm) Ant0	(Separation Distance 0mm) Ant1
DTS	WIFI2.4G	0.272	0.266
	WIFI5.2G	0.144	0.126
NIII.	WIFI5.3G	0.147	0.137
NII	WIFI5.5G	0.166	0.137
1/201	WIFI5.8G	0.159	0.151

Note

1) This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position		Classment	Body	Highest Reported Simultaneous Transmission	
		Class	(Report SAR1-g (W/kg)	SAR1-g (W/kg)	
	Body	DTS (Ant0)	0.272	0.538	
	ьошу	DTS (Ant1)	0.266	0.330	

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 7 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

1.2. Test Location

Company: Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan Address:

District, Shenzhen, 518000, China

Telephone: (86)755-82591330 (86)755-82591330 Fax: Web: www.LCS-cert.com

webmaster@LCS-cert.com E-mail:

1.3. Test Facility

SAR Lab.

The test facility is recognized, certified, or accredited by the following organizations:

Site Description

NVLAP Accreditation Code is 600167-0. FCC Designation Number CN5024. is CAB identifier CN0071. is

CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

1.4. Test Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	Till William La
Relative humidity	Min. = 30%, Max. = 70%	151 1cs 100
Ground system resistance	< 0.5	
Atmospheric pressure:	950-1050mbar	
	w and in compliance with requirement of standa ed and in compliance with requirement of standa	

1.5. Product Description

The **Hot Pepper Mobile Inc.**'s Model: HPPLP11 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description				
Product Name:	PineTab-V tablet			
Test Model:	PINETAB-V			
Additional Model No.	PINETAB-KEY-4+64GB-RISCV, PINETAB-KEY-8+128GB-RISCV, PINETAB-4+64GB-RISCV, PINETAB-8+128GB-RISCV			
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested			
Hardware Version:	PineTab-V_V1_20231617			
Software Version:	pinetabv_linux_v1.0			
Power supply:	Input: DC 5V, 3A Battery: DC 3.8V, 6000mAh			

Technical Characteristics				
Bluetooth				
Frequency Range:	2402MHz ~ 2480MHz			
Bluetooth Channel Number:	79 channels for Bluetooth V5.2(DSS)			
Bluetooth Channel Number.	40 channels for Bluetooth V5.2 (DTS)			
Divistanth Channel Chaning	1MHz for Bluetooth V5.2 (DSS)			
Bluetooth Channel Spacing:	2MHz for Bluetooth V5.2 (DTS)			
Bluetooth Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.2(DSS)			
Bluetootti Modulatiori Type.	GFSK for Bluetooth V5.2 (DTS)			
Bluetooth Version:	V5.2			
Antenna Description:	FPC Antenna, 2.15dBi(Max.)			
2.4G WLAN				
Frequency Range:	2412MHz~2462MHz			
Channel Number:	11 Channels for 20MHz bandwidth (2412~2462MHz)			
Channel Number.	7 Channels for 40MHz bandwidth (2422~2452MHz)			
Channel Spacing:	5MHz			
·	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)			
Modulation Type	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)			
Antonna Description:	Antenna0: FPC Antenna, 2.15dBi(Max.)			
Antenna Description:	Antenna1: FPC Antenna, 1.04dBi(Max.)			
5.2G WLAN				
Frequency Range:	5150MHz~5250MHz			
	4 channels for 20MHz bandwidth(5180MHz~5240MHz)			
Channel Number	2 channels for 40MHz bandwidth(5190MHz~5230MHz)			
	1 channels for 80MHz bandwidth(5210MHz)			
	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)			
Modulation Type	IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM,			
	QPSK, BPSK)			
Antenna Description	Antenna0: FPC Antenna, 0.57dBi(Max.)			
Antenna1: FPC Antenna, 0.60dBi(Max.)				
5.3G WLAN				
Frequency Range	5250-5350MHz			
Channel Number	4 Channels for 20MHz bandwidth(5260MHz-5320MHz)			
Chambel Number	2 channels for 40MHz bandwidth(5270MHz~5310MHz)			

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Page 9 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

	1 channels for 80MHz bandwidth(5290MHz)
Modulation Type	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Description	Ant0: FPC Antenna, 0.39dBi(Max.) Ant1: FPC Antenna, 0.75dBi(Max.)
5.5G WLAN	
Frequency Range	5470-5725MHz
Channel Number	11 Channels for 20MHz bandwidth(5500MHz-5700MHz) 5 Channels for 40MHz bandwidth(5510MHz-5670MHz) 2 Channels for 80MHz bandwidth(5530MHz, 5610MHz)
Modulation Type	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Description	Ant0: FPC Antenna, 0.86dBi(Max.) Ant1: FPC Antenna, 0.68dBi(Max.)
5.8G WLAN	
Frequency Range:	5725MHz~5850MHz
Channel Number	5 channels for 20MHz bandwidth(5745MHz~5825MHz) 2 channels for 40MHz bandwidth(5755MHz~5795MHz) 1 channels for 80MHz bandwidth(5775MHz)
Modulation Type Antenna Description	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) Ant0: FPC Antenna, 0.68dBi(Max.)
Exposure category:	Ant1: FPC Antenna, 0.55dBi(Max.) Uncontrolled Environment General Population
Exposure outegory.	Oncommond Environment Control Fopulation

Report No.: LCSA08013060EB

1.6. DUT Antenna Locations(Front View)

Note:

- 1) Antenna Ant0: WIFI2.4G/WIFI5.2G/WIFI5.3G/WIFI5.5G/WIFI5.8G,
- Antenna Ant1: WIFI2.4G/WIFI5.2G/WIFI5.3G/WIFI5.5G/WIFI5.8G BT,
- 3) Per KDB 616217, the diagonal length is > 200mm, the device is considered a "tablet" device and needed to test 0mm 1-g body SAR.

According to the distance between WIFI&BT antennas and the sides of the EUT we can draw the conclusion that:

reservaning to the distance settles.						2.00	
	EUT Sides fo	r SAR Tes	ting				
Mode	Exposure Condition	Front	Back	Left	Right	Тор	Bottom
WIFI 2.4G/WIFI 5G/BT Ant0	Hotspot/Product specific 10g SAR	No	Yes	No	Yes	Yes	No
WIFI 2.4G/WIFI 5G/BT Ant1	Hotspot/Product specific 10g SAR	No	Yes	Yes	No	Yes	No

Table 1: **EUT Sides for SAR Testing**

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

1.7. Test Specification

Identity	Document Title	
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices	
ANSI/IEEE C95.1-1992	EEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.	
IEEE 1528-2013	ecommended Practice for Determining the Peak Spatial-Average Specific Absorption ate (SAR) in the Human Head from Wireless Communications Devices: Measurement echniques	
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02	
KDB 616217 D04	SAR for Tablet and Laptop	
KDB 447498 D01	General RF Exposure Guidance v06	
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04	
KDB 865664 D02	RF Exposure Reporting v01r02	
KDB 690783 D01	SAR Listings on Grants v01r03	

8. RF exposure limits		
Human Exposure	Uncontrolled Environment General Population	Controlled Environment
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

1.9. Equipment list

Test Platform	SPEAG DASY5 Professional	在形位 源
Description	SAR Test System (Frequency range 300MHz-6GHz)	//alreales
Software Reference	DASY52; SEMCAD X	No.

Hardware Reference

	nardware Reference							
	Equipment	Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration		
\boxtimes	PC	Lenovo	NA	NA	NA	NA		
\boxtimes	Twin Phantom	SPEAG	SAM V5.0	1850	NCR	NCR		
\boxtimes	ELI Phantom	SPEAG	ELI V6.0	2010	NCR	NCR		
	DAE	SPEAG	DAE3	3 419	2023/6/20	2024/6/19		
\boxtimes	E-Field Probe	SPEAG	EX3DV4	a ¹⁰ 3805	2023/6/21	2024/6/20		
\boxtimes	Validation Kits	SPEAG	D2450V2	965	2023/6/12	2026/6/11		
\boxtimes	Validation Kits	SPEAG	D5GHzV2	1046	2023/6/20	2026/6/19		
\boxtimes	Agilent Network Analyzer	Agilent	8753E	SU38432944	2023/6/9	2024/6/8		
\boxtimes	Dielectric Probe Kit	SPEAG	DAK3.5	1425	NCR	NCR		
\boxtimes	Universal Radio Communication Tester	R&S	CMW500	42115	2022/10/29	2023/10/28		
\boxtimes	Directional Coupler	MCLI/USA	4426-20	03746	2023/6/9	2024/6/8		
\boxtimes	Power meter	Agilent	E4419B	MY45104493	2022/10/29	2023/10/28		
\boxtimes	Power meter	Agilent	E4419B	MY45100308	2022/10/29	2023/10/28		
	Power sensor	Agilent	³⁰ E9301H	MY41495616	2022/10/29	2023/10/28		
	Power sensor	Agilent	E9301H	MY41495234	2022/10/29	2023/10/28		
	Signal Generator	Agilent	E4438C	MY49072627	2023/6/9	2024/6/8		
\boxtimes	Broadband Preamplifier	/	BP-01M18G	P190501	2023/6/15	2024/6/14		
\boxtimes	DC POWER SUPPLY	I-SHENG	SP-504	NA	NCR	NCR		
\boxtimes	Speed reading thermometer	HTC-1	NA	LCS-E-138	2023/6/13	2024/6/12		

Note: All the equipments are within the valid period when the tests are performed.

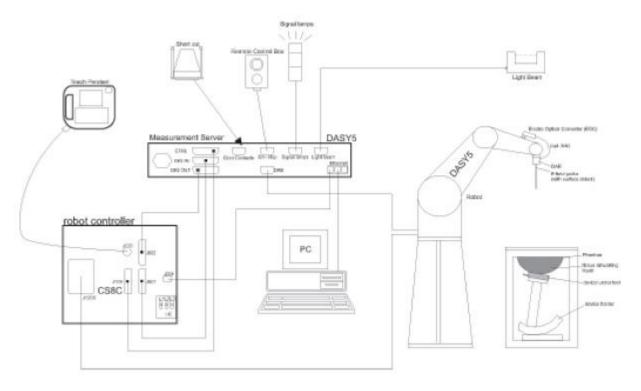
LCS Tosting Lab

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

SAR MEASUREMENTS SYSTEM CONFIGURATION

2.1. SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

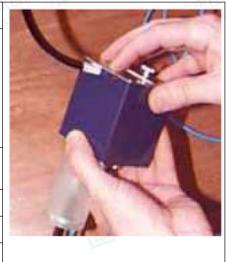
Page 14 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

2.2. Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 <u>calibration service</u> available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI


Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

FCCID: 2A8NB-PINTAB-V

Model	DAE
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

2.4. SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

2.5. ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid	Compatible with all SPEAG tissue
Compatibility	simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm
	Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

2.6. Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ϵ =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

THAT LOS TOSLING Lab

版 Tinte测度的

LCS Testing Lab

Report No.: LCSA08013060EB

立语检测股份 LCS Testing Lab

大学 立計権測度份 LCS Testing Lab

2.7. Measurement procedure

2.7.1. Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm ($f \le 2GHz$), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points ($f \le 2GHz$), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

			≤ 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle surface normal at the n			30° ± 1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 − 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan sp	oatial resol	ution: Δx _{Area} , Δy _{Area}	When the x or y dimension o measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one	
Maximum zoom scan s	spatial resc	olution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm ⁴ 4 – 6 GHz: ≤ 4 mm ⁴	
	uniform grid: $\Delta z_{Z_{\infty m}}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid $\Delta z_{Z_{oom}}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$		
Minimum zoom scan volume x, y, z		≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: > 22 mm		

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %

2.7.2. Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

2.7.3. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi Device parameters: - Frequency - Crest factor

Media parameters: - Conductivity ٤

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

H-field probes:

$$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$$

With Vi = compensated signal of channel i (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$$

Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

3. SAR measurement variability and uncertainty

3.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

3.2. SAR measurement uncertainty

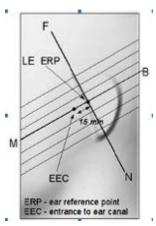
Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.



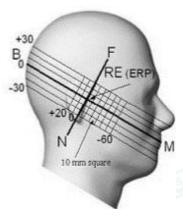
4. Description of Test Position

4.1. Head Exposure Condition

4.1.1. SAM Phantom Shape



F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.


Note: The centre strip including the nose region has a different thickness tolerance.

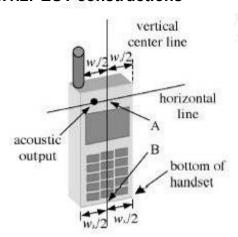
F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

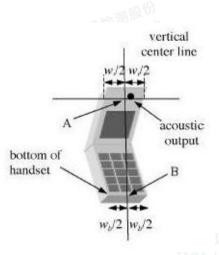
F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Report No.: LCSA08013060EB

TEL LCS Testing Lab




Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

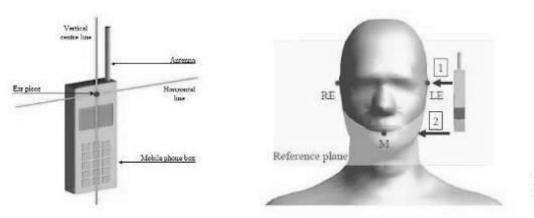
4.1.2. EUT constructions

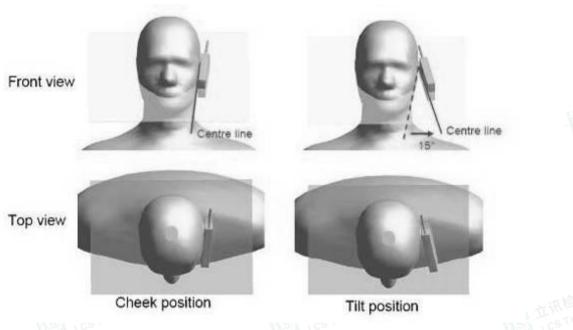
F-1. Handset vertical and horizontal reference lines-"fixed case"

F-2. Handset vertical and horizontal reference lines-"clam-shell case"

4.1.3. Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear. move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.


Shenzhen LCS Compliance Testing Laboratory Ltd.


4.1.4. Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

FCCID: 2A8NB-PINTAB-V

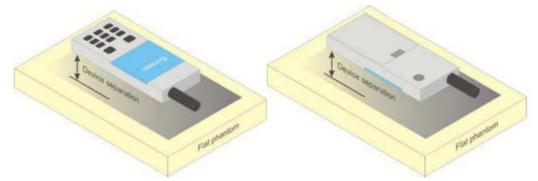
F-1. Definition of the reference lines and points, on the phone and on the phantom and initial position

F-2. "Cheek" and "tilt" positions of the mobile phone on the left side

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

4.2. Body Exposure Condition


4.2.1. Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-1. Test positions for body-worn devices

518000, China

4.2.2. Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

4.3. Extremity exposure conditions

Per FCC KDB 648474D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the device is marketed as "Phablet".

The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for Product Specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Due to the SAR result, the Main antenna frequency bands are not required to test with 0mm for the Product Specific 10 g SAR.

5. SAR System Verification Procedure

5.1. Tissue Simulate Liquid

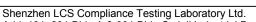
5.1.1. Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients			Frequency (MHz)					
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700			
Water	38.56	40.30	55.24	55.00	54.92			
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23			
Sucrose	56.32	57.90	0	0	0			
HEC	0.98	0.24	0	0	0			
Bactericide	0.19	0.18	0	0	0			
Tween	0	0	44.45	44.80	44.85			
Salt: 99+% Pure S	Sodium Chloride		Sucrose: 98+% Pure	Sucrose	11/198 PM			

Salt: 99⁺% Pure Sodium Chloride Water: De-ionized, 16 MΩ⁺ resistivity

HEC: Hydroxyethyl Cellulose


Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients:

Water: 50-65% Mineral oil: 10-30% Emulsifiers: 8-25% Sodium salt: 0-1.5%

Table 2: Recipe of Tissue Simulate Liquid

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China

5.1.2. Measurement for Tissue Simulate Liquid

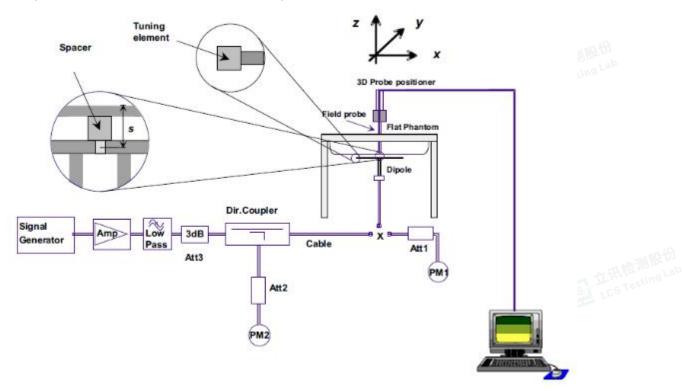
The dielectric properties for this Tissue Simulate Liquids were measured by using the DAKS. The Conductivity (σ) and Permittivity (p) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

	Measured	Target Tiss	ue (±5%)	Measure	ed Tissue	Liquid	Measured
Tissue Type	Frequency (MHz)	ε _r	σ(S/m)	٤r	σ(S/m)	Temp. (℃)	Date
2450 Head	2450	39.2 (37.24~41.16)	1.8 (1.71~1.89)	39.147	1.833	22.3	September 4, 2023
5250Head	5250	35.9 (34.11~37.70)	4.71 (4.47~4.95)	36.725	4.605	21.9	September 5, 2023
5600 Head	5600	35.5 (33.73~37.30)	5.07 (4.82~5.32)	35.646	5.107	22.1	September 6, 2023
5800 Head	5800	35.4 (33.63~37.17)	5.22 (4.96~5.48)	35.056	5.328	22.2	September 7, 2023

Table 3: Measurement result of Tissue electric parameters

Report No.: LCSA08013060EB

Shenzhen LCS Compliance Testing Laboratory Ltd.


Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

5.2. SAR System Check

The microwave circuit arrangement for system Check is sketched in F-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

FCCID: 2A8NB-PINTAB-V

F-1. the microwave circuit arrangement used for SAR system check

5.2.1. Justification for Extended SAR Dipole Calibrations

- 1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
 - There is no physical damage on the dipole; a)
 - System check with specific dipole is within 10% of calibrated value; b)
 - Return-loss is within 20% of calibrated measurement; c)
 - Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.


Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

5.2.2. Summary System Check Result(s)

Valida	tion Kit	Measured SAR 250mW	Measured SAR 250mW	Measured SAR (normalized	Measured SAR (normalized	Target SAR (normalized to 1W) (±10%)	Target SAR (normalized to 1W) (±10%)	Liquid Temp. (°C)	Measured Date
			10g (W/kg)	to 1W) 1g (W/kg)	to 1W) 10g (W/kg)	1-g(W/kg)	10-g(W/kg)	. ,	
D2450V2	Head	12.30	5.91	49.20	23.64	53.5 (48.15~58.85)	25.0 (22.50~27.50)	22.1	September 4, 2023
			Measured	Measured SAR	Measured SAR	Target SAR (normalized	300 01 11	Liquid Temp.	weasured
Valida	tion Kit	SAR 250mW	SAR 250mW	(normalized to 1W)	(normalized to 1W)	to 1W) (±10%)	to 1W) (±10%)	(℃)	Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)		
3	Head (5.25GHz)	7.95	2.02	79.50	20.20	76.9 (69.21~84.59)	21.6 (19.44~23.76)	22	September 5, 2023
D5GHzV2	Head (5.6GHz)	8.27	2.30	82.70	23.00	80.3 (72.27~88.33)	22.5 (20.25~24.75)	21.9	September 6, 2023
	Head (5.8GHz)	8.22	2.16	82.20	21.60	76.8 (69.12~84.48)	21.3 (19.17~23.43)	22.2	September 7, 2023

Table 4: Please see the Appendx A

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

e 33 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

6. SAR measurement procedure

The measurement procedures are as follows:

6.1. Conducted power measurement

a. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.

b. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

6.2. WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

- 1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.
- 2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.
- a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.
- b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands
- c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.
- 3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.
- 4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .
- a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.
- b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.
- 5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.
- 6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test

Page 34 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

- 3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements
 The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11
 configuration with the highest maximum output power specified for production units, including tune-up tolerance,
 in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the
 highest maximum output power channel determined by the default power measurement procedures (section 4).
 When multiple configurations in a frequency band have the same specified maximum output power, the initial test
 configuration is determined according to the following steps applied sequentially.
- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum

e 35 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
- 1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
- 2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.
- a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

6.3. Power Reduction

The product without any power reduction.

6.4. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

TEST CONDITIONS AND RESULTS

7.1. Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

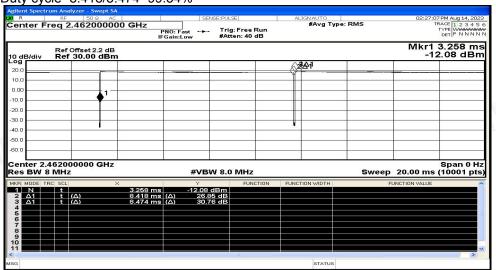
7.1.1. Conducted Power Measurement Results(WIFI 2.4G)

Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	CS T B	2412	Ant0	14.47	15.00
NVNT	b	2437	Ant0	15.07	16.00
NVNT	b	2462	Ant0	15.71	16.00
NVNT	g	2412	Ant0	13.15	14.00
NVNT	g	2437	Ant0	14.68	15.00
NVNT	g	2462	Ant0	15.38	16.00
NVNT	n20	2412	Ant0	13.60	14.00
NVNT	n20	2437	Ant0	14.85	15.00
NVNT	n20	2462	Ant0	16.42	17.00
NVNT	n40	2422	Ant0	13.48	14.00
NVNT	n40	2437	Ant0	14.63	15.00
NVNT	n40	2452	Ant0	14.74	15.00

Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	b	2412	Ant1	15.06	16.00
NVNT	b	2437	Ant1	15.69	16.00
NVNT	b	2462	Ant1	15.10	16.00
NVNT	9	2412	Ant1	15.30	16.00
NVNT	g g	2437	Ant1	15.27	16.00
NVNT	g	2462	Ant1	15.77	16.00
NVNT	n20	2412	Ant1	13.74	14.00
NVNT	n20	2437	Ant1	13.72	14.00
NVNT	n20	2462	Ant1	15.33	16.00
NVNT	n40	2422	Ant1	12.42	13.00
NVNT	n40	2437	Ant1	12.52	13.00
NVNT	n40	2452	Ant1	12.40	13.00

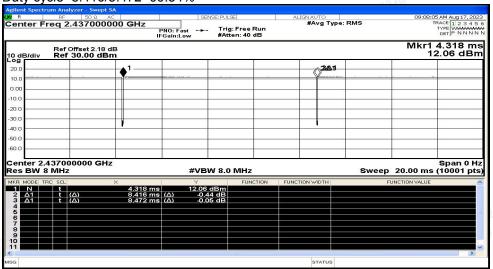
Condition	Mode	Frequency (MHz)	Total Power (dBm)			Tune up
			Ant0	Ant1	Ant0+Ant1	Tune up
NVNT	n20	2412	13.60	13.74	16.68	17.00
NVNT	n20	2437	14.85	13.72	17.33	18.00

Page 37 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB


NVNT	n20	2462	16.42	15.33	18.92	19.00
NVNT	n40	2422	13.48	12.42	15.99	16.00
NVNT	n40	2437	14.63	12.52	a ^{la} 16.71	17.00
NVNT	n40	2452	14.74	12.40	16.74	17.00

Note:

- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.


WIFI 2.4G (802.11b Ant0):

Duty cycle=8.418/8.474=99.34%

WIFI 2.4G (802.11b Ant1):

Duty cycle=8.416/8.472=99.34%

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Page 38 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

7.1.2. Conducted Power Measurement Results(WIFI 5.2G)

Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	а	5180	Ant0	11.93	12.00
NVNT	a	5200	Ant0	12.12	13.00
NVNT	а	5240	Ant0	11.14	12.00
NVNT	n20	5180	Ant0	10.31	11.00
NVNT	n20	5200	Ant0	10.35	11.00
NVNT	n20	5240	Ant0	9.55	11.00
NVNT	n40	5190	Ant0	10.60	11.00
NVNT	n40	5230	Ant0	9.79	11.00
NVNT	ac20	5180	Ant0	10.52	11.00
NVNT	ac20	5200	Ant0	10.66	11.00
NVNT	ac20	5240	Ant0	9.67	11.00
NVNT	ac40	5190	Ant0	10.70	11.00
NVNT	ac40	5230	Ant0	9.88	11.00
NVNT	ac80	5210	Ant0	9.56	11.00
NVNT	ax20	5180	Ant0	10.69	11.00
NVNT	ax20	5200	Ant0	10.74	11.00
NVNT	ax20	5240	Ant0	9.88	11.00
NVNT	ax40	5190	Ant0	10.96	11.00
NVNT	ax40	5230	Ant0	10.23	11.00
NVNT	ax80	5210	Ant0	9.86	11.00

				162 10	
Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	а	5180	Ant1	11.87	12.00
NVNT	а	5200	Ant1	12.00	13.00
NVNT	а	5240	Ant1	11.36	12.00
NVNT	n20	5180	Ant1	10.29	11.00
NVNT	n20	5200	Ant1	10.62	11.00
NVNT	n20	5240	Ant1	9.82	11.00
NVNT	n40	5190	Ant1	10.59	11.00
NVNT	n40	5230	Ant1	9.98	11.00
NVNT	ac20	5180	Ant1	10.37	11.00
NVNT	ac20	5200	Ant1	10.76	11.00
NVNT	ac20	5240	Ant1	9.98	11.00
NVNT	ac40	5190	Ant1	10.60	11.00
NVNT	ac40	5230	Ant1	10.11	11.00
NVNT	ac80	5210	Ant1	9.56	11.00
NVNT	ax20	5180	Ant1	10.51	11.00
NVNT	ax20	5200	Ant1	10.86	11.00
NVNT	ax20	5240	Ant1	10.15	11.00
NVNT	ax40	^{CS} 5190	Ant1	10.93	11.00
NVNT	ax40	5230	Ant1	10.42	11.00

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

Page 39 of 60

FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

NVNT ax80 5210 Ant1 9.97 11.00

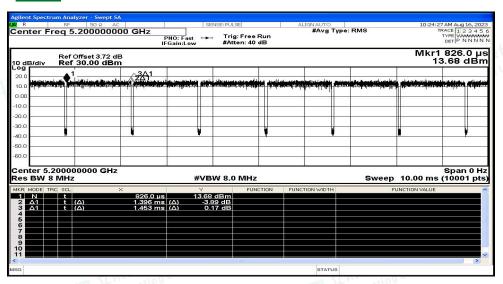
_n lld				1.42			
Condition	Mode	Fraguency (MU=)		Total Power (dBm)			
Condition	Wiode	Frequency (MHz)	Ant0	Ant1	Ant0+Ant1	Tune up	
NVNT	n20	5180	10.31	10.29	13.31	14.00	
NVNT	n20	5200	10.35	10.62	13.50	14.00	
NVNT	n20	5240	9.55	9.82	12.70	13.00	
NVNT	n40	5190	10.60	10.59	13.61	14.00	
NVNT	n40	5230	9.79	9.98	12.90	13.00	
NVNT	ac20	5180	10.52	10.37	13.46	14.00	
NVNT	ac20	5200	10.66	10.76	13.72	14.00	
NVNT	ac20	5240	9.67	9.98	12.84	13.00	
NVNT	ac40	5190	10.70	10.60	13.66	ag Lab 14.00	
NVNT	ac40	5230	9.88	10.11	13.01	14.00	
NVNT	ac80	5210	9.56	9.56	12.57	13.00	
NVNT	ax20	5180	10.69	10.51	13.61	14.00	
NVNT	ax20	5200	10.74	10.86	13.81	14.00	
NVNT	ax20	5240	9.88	10.15	13.03	14.00	
NVNT	ax40	5190	10.96	10.93	13.96	14.00	
NVNT	ax40	5230	10.23	10.42	13.34	14.00	
NVNT	ax80	5210	9.86	9.97	12.93	13.00	

Note

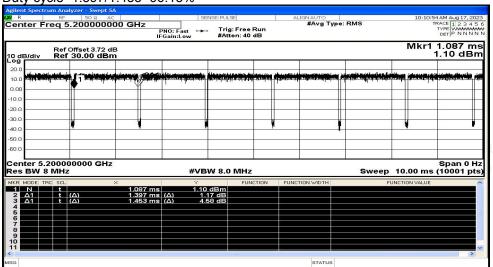
- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 5.2G (802.11a Ant0):

Duty cycle=1.396/1.453=96.08%



LCS Testing Lab


FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

WIFI 5.2G (802.11a Ant1):

Duty cycle=1.397/1.453=96.15%

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

7.1.3. Conducted Power Measurement Results(WIFI 5.3G)

Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	a	5260	Ant0	12.89	13.00
NVNT	а	5300	Ant0	13.25	14.00
NVNT	а	5320	Ant0	13.44	14.00
NVNT	n20	5260	Ant0	11.30	12.00
NVNT	n20	5300	Ant0	11.66	12.00
NVNT	n20	5320	Ant0	11.97	12.00
NVNT	n40	5270	Ant0	11.29	12.00
NVNT	n40	5310	Ant0	12.06	13.00
NVNT	ac20	5260	Ant0	11.47	12.00
NVNT	ac20	5300	Ant0	12.05	13.00
NVNT	ac20	5320	Ant0	12.18	13.00
NVNT	ac40	5270	Ant0	11.44	12.00
NVNT	ac40	5310	Ant0	12.50	13.00
NVNT	ac80	5290	Ant0	11.47	12.00
NVNT	ax20	5260	Ant0	11.47	12.00
NVNT	ax20	5300	Ant0	12.34	13.00
NVNT	ax20	5320	Ant0	12.80	13.00
NVNT	ax40	5270	Ant0	11.89	12.00
NVNT	ax40	5310	Ant0	12.93	13.00
NVNT	ax80	5290	Ant0	10.89	12.00

Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	а	5260	Ant1	11.26	12.00
NVNT	а	5300	Ant1	11.20	12.00
NVNT	а	5320	Ant1	11.23	12.00
NVNT	n20	5260	Ant1	11.02	11.50
NVNT	n20	5300	Ant1	10.42	11.00
NVNT	n20	5320	Ant1	10.56	11.00
NVNT	n40	5270	Ant1	10.68	11.00
NVNT	n40	5310	Ant1	10.88	11.00
NVNT	ac20	5260	Ant1	10.98	11.00
NVNT	ac20	5300	Ant1	10.58	11.00
NVNT	ac20	5320	Ant1	10.60	11.00
NVNT	ac40	5270	Ant1	10.52	11.00
NVNT	ac40	5310	Ant1	10.98	11.00
NVNT	ac80	5290	Ant1	10.38	11.00
NVNT	ax20	5260	Ant1	11.41	11.50
NVNT	ax20	5300	Ant1	10.88	11.00
NVNT	ax20	5320	Ant1	10.82	11.00
NVNT	ax40	5270	Ant1	10.97	11.00

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

NVNT

Page 42 of 60

ax40

ax80

FCCID: 2A8NB-PINTAB-V

Ant1

5290

5310	Ant1	11.23	11.50

10.79

Report No.: LCSA08013060EB

11.00

Candition	Mode Frequency (MHz)			Tune		
Condition	mode Frequency	Frequency (MHz)	Ant0	Ant1	Ant0+Ant1	Tune up
NVNT	n20	5260	11.30	11.02	14.17	15.00
NVNT	n20	5300	11.66	10.42	14.09	15.00
NVNT	n20	5320	11.97	10.56	14.33	15.00
NVNT	n40	5270	11.29	10.68	14.01	15.00
NVNT	n40	5310	12.06	10.88	14.52	15.00
NVNT	ac20	5260	11.47	10.98	14.24	15.00
NVNT	ac20	5300	12.05	10.58	14.39	15.00
NVNT	ac20	5320	12.18	10.60	14.47	15.00
NVNT	ac40	5270	11.44	10.52	14.01	15.00
NVNT	ac40	5310	12.50	10.98	14.82	15.00
NVNT	ac80	5290	11.47	10.38	13.97	14.00
NVNT	ax20	5260	11.47	11.41	14.45	15.00
NVNT	ax20	5300	12.34	10.88	14.68	15.00
NVNT	ax20	5320	12.80	10.82	14.93	15.00
NVNT	ax40	5270	11.89	10.97	14.46	15.00
NVNT	ax40	5310	12.93	11.23	15.17	16.00
NVNT	ax80	5290	10.89	10.79	13.85	14.00

- Note: CS Testing a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 5.3G (802.11a Ant0):

Duty cycle=1.396/1.453=96.08%

60 FCCID: 2A8NB-PINTAB-V

LEA LCS Test

Aglient Spectrum Analyzer - Swept SA

W. R. RF SO Q. AC

Center Freq 5.320000000 GHz

PRO: Fast IFGain:Low Ref Offset 3.29 dB

Ref 20.00 dBm

WIFI 5.3G (802.11a Ant1):

Duty cycle=1.397/1.453=96.15%

R	RF 50 Ω		SENSE:PU	LSE	ALIGN AUTO		11:24:57 AM Aug 17, 202
nter Fre	eq 5.260000	PNO		ig: Free Run tten: 30 dB	#Avg Typ	e: RMS	TRACE 1 2 3 4 5 TYPE WWWWWW DET P N N N N
dB/div	Ref Offset 2.95 Ref 20.00 dB	m	· ·	<i>(</i> 1)			Mkr1 1.152 m 14.67 dBr
					the state of the s		
00							
.0		2Δ1					
0							
0			1				
0		7				-	, , , , , , , , , , , , , , , , , , ,
0							
nter 5.2 s BW 8	60000000 GH MHz	z	#VBW 8.	0 MHz		Sweep 10	Span 0 H 0.00 ms (10001 pt
R MODE TRO		×	Y	FUNCTION	FUNCTION WIDTH		ION VALUE
Ν Δ1	t t (Δ)	1.152 ms 1.397 ms (/	14.67 dBm 36.80 dB				
Δ1	t (Δ)	1.453 ms (/	4) -0.31 dB				
					1		

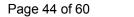
YST 立形检测展份

YEL THRETHE H

LEST TESTING Lab

Report No.: LCSA08013060EB

医 文形检测股份 LCS Testing Lab 拉洲檢測股份 ISI ICS Testing Lab


LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

7.1.4. Conducted Power Measurement Results(WIFI 5.5G)

Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	а	5500	Ant0	11.74	12.00
NVNT	а	5580	Ant0	11.67	12.00
NVNT	а	5700	Ant0	13.11	14.00
NVNT	n20	5500	Ant0	10.05	11.00
NVNT	n20	5580	Ant0	12.92	13.00
NVNT	n20	5700	Ant0	11.58	12.00
NVNT	n40	5510	Ant0	10.35	11.00
NVNT	n40	5550	Ant0	11.10	12.00
NVNT	n40	5670	Ant0	11.13	12.00
NVNT	ac20	5500	Ant0	10.35	11.00
NVNT	ac20	5580	Ant0	13.09	13.50
NVNT	ac20	5700	Ant0	11.80	12.00
NVNT	ac40	5510	Ant0	10.41	11.00
NVNT	ac40	5550	Ant0	11.19	12.00
NVNT	ac40	5670	Ant0	11.28	12.00
NVNT	ac80	5530	Ant0	10.39	11.00
NVNT	ac80	5610	Ant0	12.43	13.00
NVNT	ax20	5500	Ant0	10.47	11.00
NVNT	ax20	5580	Ant0	13.26	13.50
NVNT	ax20	5700	Ant0	11.98	12.00
NVNT	ax40	5510	Ant0	10.73	11.00
NVNT	ax40	5550	Ant0	11.48	12.00
NVNT	ax40	5670	Ant0	11.55	12.00
NVNT	ax80	5530	Ant0	10.63	11.00
NVNT	ax80	5610	Ant0	12.77	13.00

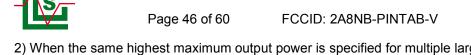
Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	a	5500	Ant1	11.42	12.50
NVNT	CS Ta	5580	S Ant1	11.33	12.50
NVNT	а	5700	Ant1	10.76	11.00
NVNT	n20	5500	Ant1	9.60	10.00
NVNT	n20	5580	Ant1	11.58	12.00
NVNT	n20	5700	Ant1	9.06	10.00
NVNT	n40	5510	Ant1	10.79	11.00
NVNT	n40	5550	Ant1	11.04	12.00
NVNT	n40	5670	Ant1	10.79	11.00
NVNT	ac20	5500	Ant1	9.73	10.00
NVNT	ac20	5580	Ant1	11.24	12.00
NVNT	ac20	5700	Ant1	11.23	12.00
NVNT	ac40	5510	Ant1	10.84	11.00

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

518000, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com | Scan code to check authenticity

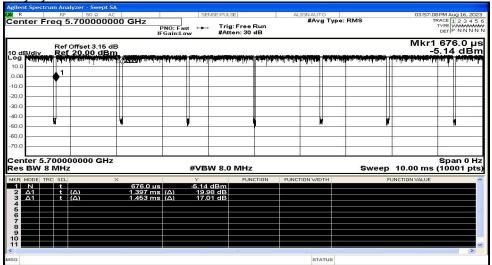
Page 45 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

NVNT	ac40	5550	Ant1	11.13	12.00
NVNT	ac40	5670	Ant1	10.93	11.00
NVNT	ac80	5530	Ant1	11.12	12.00
NVNT	ac80	5610	Ant1	9.99	10.00
NVNT	ax20	5500	Ant1	9.79	10.00
NVNT	ax20	5580	Ant1	11.09	12.00
NVNT	ax20	5700	Ant1	10.81	11.00
NVNT	ax40	5510	Ant1	9.75	10.00
NVNT	ax40	5550	Ant1	10.67	11.00
NVNT	ax40	5670	Ant1	9.97	10.00
NVNT	ax80	5530	Ant1	10.36	11.00
NVNT	ax80	5610	Ant1	11.60	12.00


O a sa allal a sa	Mada	F(8411-)	Total Power (dBm)			T
Condition	Mode	Frequency (MHz)	Ant0	Ant1	Ant0+Ant1	Tune up
NVNT	n20	5500	10.05	9.60	12.84	13.00
NVNT	n20	5580	12.92	11.58	15.31	16.00
NVNT	n20	5700	11.58	9.06	13.51	14.00
NVNT	n40	5510	10.35	10.79	13.59	14.00
NVNT	n40	5550	11.10	11.04	14.08	15.00
NVNT	n40	5670	11.13	10.79	13.97	14.00
NVNT	ac20	5500	10.35	9.73	13.06	14.00
NVNT	ac20	5580	13.09	11.24	15.27	16.00
NVNT	ac20	5700	11.80	11.23	14.53	15.00
NVNT	ac40	5510	10.41	10.84	13.64	14.00
NVNT	ac40	5550	11.19	11.13	14.17	15.00
NVNT	ac40	5670	11.28	10.93	14.12	15.00
NVNT	ac80	5530	10.39	11.12	13.78	14.00
NVNT	ac80	5610	12.43	9.99	14.39	15.00
NVNT	ax20	5500	10.47	9.79	13.15	14.00
NVNT	ax20	5580	13.26	11.09	15.32	16.00
NVNT	ax20	5700	11.98	10.81	14.44	15.00
NVNT	ax40	5510	10.73	9.75	13.28	14.00
NVNT	ax40	5550	11.48	10.67	14.10	15.00
NVNT	ax40	5670	11.55	9.97	13.84	14.00
NVNT	ax80	5530	10.63	10.36	13.51	14.00
NVNT	ax80	5610	12.77	11.60	15.23	16.00

Note:

- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.


BNB-PINTAB-V Report No.: LCSA08013060EB

- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 5.5G (802.11a Ant0):

Duty cycle=1.397/1.453=96.15%

WIFI 5.5G (802.11a Ant1):

Duty cycle=1.397/1.453=96.15%

AC	SENSE:PULSE	ALIGNAUTO		M Aug 17, 20
PNO: Fast IFGain:Low		in .	TY	PE WWWWW ET P NNN
dB 3m			-23.	16 dB
201				-
3Δ1				
Y				
	U	4 4		-
1-				pan 0 I
	#VBW 8.0 MHz			
× 935 0 ue		ON FUNCTION WIDTH	FUNCTION VALUE	
1.397 ms (Δ) 1.453 ms (Δ)	33.05 dB 1.28 dB			
	PRO: Fast IF Gain:Low dB 3m 3Δ1	PNO: Fest Figure 1 Trig: Free Ru Atten: 30 dB Sm	Tris: Free Run #Atten: 30 dB 30 30 30 30 #White in the second of t	Trig: Free Run #Atten: 30 dB MKr1 S -23. JA1 JA2 #VBW 8.0 MHz Sweep 10.00 ms (1

医工工所检测股份 LCS Testing Lab LCS Testing Lab

化氢 LCS Tosting Lab

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

7.1.5. Conducted Power Measurement Results(WIFI 5.8G)

	0.071				and the
Condition	Mode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up
NVNT	а	5745	Ant0	11.34	12.00
NVNT	а	5785	Ant0	10.91	11.00
NVNT	а	5825	Ant0	10.69	11.00
NVNT	n20	5745	Ant0	9.83	10.00
NVNT	n20	5785	Ant0	9.42	10.00
NVNT	n20	5825	Ant0	9.25	10.00
NVNT	n40	5755	Ant0	10.03	11.00
NVNT	n40	5795	Ant0	8.94	10.00
NVNT	ac20	5745	Ant0	9.94	10.00
NVNT	ac20	5785	Ant0	9.57	10.00
NVNT	ac20	5825	Ant0	9.36	10.00
NVNT	ac40	5755	Ant0	10.11	11.00
NVNT	ac40	5795	Ant0	9.04	10.00
NVNT	ac80	5775	Ant0	8.78	10.00
NVNT	ax20	5745	Ant0	10.17	11.00
NVNT	ax20	5785	Ant0	9.71	10.00
NVNT	ax20	5825	Ant0	9.61	10.00
NVNT	ax40	5755	Ant0	10.38	11.00
NVNT	ax40	5795	Ant0	9.34	10.00
NVNT	ax80	5775	Ant0	9.15	10.00

Condition	Mode Frequency (MHz)		Antenna	Total Power (dBm)	Tune up	
NVNT	а	5745	Ant1	11.31	12.00	
NVNT	а	5785	Ant1	10.95	11.00	
NVNT	а	5825	Ant1	10.79	11.00	
NVNT	n20	5745	Ant1	9.76	10.00	
NVNT	n20	5785	Ant1	9.26	10.00	
NVNT	n20	5825	Ant1	9.28	10.00	
NVNT	n40	5755	Ant1	9.83	10.00	
NVNT	n40	5795	Ant1	8.91	10.00	
NVNT	ac20	5745	Ant1	9.84	10.00	
NVNT	ac20	5785	Ant1	9.45	10.00	
NVNT	ac20	5825	Ant1	9.45	10.00	
NVNT	ac40	5755	Ant1	9.92	10.00	
NVNT	ac40	5795	Ant1	8.99	10.00	
NVNT	ac80	5775	Ant1	8.21	10.00	
NVNT	ax20	5745	Ant1	9.61	10.00	
NVNT	ax20	5785	Ant1	9.21	10.00	
NVNT	ax20	5825	Ant1	cs 1 es 1 9.09	10.00	
NVNT	ax40	5755	Ant1	9.65	10.00	

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

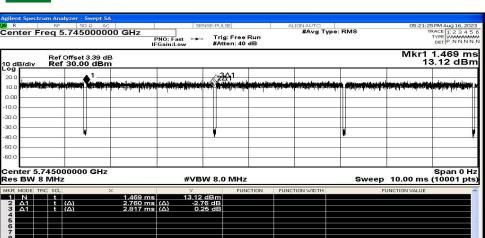
Page 48 of 60

FCCID: ZA8NB-PINTAB-V	Report No.: LCSAU8013060EB

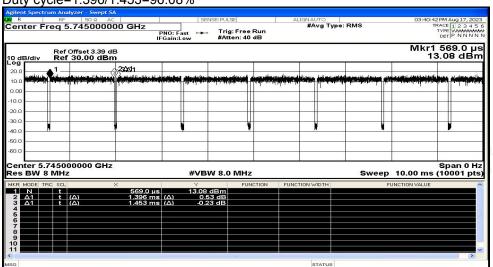
NVNT	ax40	5795	Ant1	8.83	10.00
NVNT	ax80	5775	Ant1	8.63	10.00

				r (dBm)				
Condition	Mode	Frequency (MHz)	Ant0	Ant1	Ant0+Ant1	Tune up		
NVNT	n20	5745	9.83	9.76	12.81	13.00		
NVNT	n20	5785	9.42	9.26	12.35	13.00		
NVNT	n20	5825	9.25	9.28	12.28	13.00		
NVNT	n40	5755	10.03	9.83	12.94	13.00		
NVNT	n40	5795	8.94	8.91	11.94	12.00		
NVNT	ac20	5745	9.94	9.84	12.90	13.00		
NVNT	ac20	5785	9.57	9.45	12.52	13.00		
NVNT	ac20	5825	9.36	9.45	12.42	13.00		
NVNT	ac40	5755	10.11	9.92	13.03	14.00		
NVNT	ac40	5795	9.04	8.99	12.03	13.00		
NVNT	ac80	5775	8.78	8.21	11.51	12.00		
NVNT	ax20	5745	10.17	9.61	12.91	13.00		
NVNT	ax20	5785	9.71	9.21	12.48	13.00		
NVNT	ax20	5825	9.61	9.09	12.37	13.00		
NVNT	ax40	5755	10.38	9.65	13.04	14.00		
NVNT	ax40	5795	9.34	8.83	12.10	13.00		
NVNT	ax80	5775	9.15	8.63	11.91	12.00		

- Note: CS Testing a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.
- 1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.


WIFI 5.8G (802.11a Ant0):

Duty cycle=2.76/2.817=97.98%



FCCID: 2A8NB-PINTAB-V

WIFI 5.8G (802.11a Ant1):

Duty cycle=1.396/1.453=96.08%

NSA 立语物测验的

THI LCS Testing Lab

LCS Testing Lab

Report No.: LCSA08013060EB

医工工消检测度份 LCS Testing Lab TiH检测版的

大学 立計権測度份 LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Page 50 of 60

FCCID: 2A8NB-PINTAB-V

Report No.: LCSA08013060EB

7.1.6. Conducted Power Measurement Results(Bluetooth)

TestMode	Antenna	Channel	Result[dBm]	Tune up
I I I I I I I I I I I I I I I I I I I	VS CSTOS	2402	-0.25	-1.00
DH5	Ant1	2441	0.11	1.00
		2480	0.06	1.00
		2402	-0.43	-1.00
2DH5	Ant1	2441	-0.17	-1.00
		2480	-0.18	-1.00
		2402	-0.28	-1.00
3DH5	Ant1	2441	0.05	1.00
		2480	-0.05	-1.00

BLE	检测度份	10000000000000000000000000000000000000	b an his		
TestMode	Frequency (MHz)	Antenna	Total Power (dBm)	Tune up	
BLE 1M	2402	Ant1	-2.77	-2.00	
BLE 1M	2440	Ant1	-3.14	-3.00	
BLE 1M	2480	Ant1	-3.87	-3.00	
BLE 2M	2402	Ant1	-3.39	-3.00	
BLE 2M	2440	Ant1	-3.72	-3.00	
BLE 2M	2480	Ant1	-4.50	-4.00	

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

7.2. Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency (GHz)	Position	Ave	rage ver	Test Separation	Calculate Value	Exclusion Threshold	Exclusion (Y/N)
Бапо	(GHZ)		dBm	mW	(mm)	Value	Tillesiloid	(1714)
Bluetooth	2.48	Body- worn	1.00	1.26	5 Lab	0.397	3	g Lab Y

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

7.3. SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10(Ptarget-Pmeasured))/10

Scaling factor=10(Ptarget-Pmeasured))/10

Reported SAR= Measured SAR* Scaling factor

Where

Ptarget is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

7.3.1. SAR Results [WIFI 2.4G Ant0]

	SAR Values [WIFI 2.4G] Ant0									
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} results(W/kg)		
Freq. (MHz)	Type Position	n Factor Power	Power (dBm)	Power (%) (dBm)	Factor	Measured	Reported			
			measured / rep	ported SAR num	bers - Body (dis	stance 0mm)				
11/2462	802.11b	Rear	1.007	15.71	16.00	0.07	1.069	0.253	0.272	
11/2462	802.11b	Right	1.007	15.71	16.00	-0.03	1.069	0.089	0.096	
11/2462	802.11b	Тор	1.007	15.71	16.00	0.04	1.069	0.187	0.201	

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg.
- When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

7.3.2. SAR Results [WIFI 2.4G Ant1]

	SAR Values [WIFI 2.4G] Ant1									
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)	
Freq. (MHz)		Position		Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported	
			measured / re	ported SAR num	bers - Body (dis	stance 0mm)				
6/2437	802.11b	Rear	1.007	15.69	16.00	0.01	1.074	0.246	0.266	
6/2437	802.11b	Left	1.007	15.69	16.00	-0.12	1.074	0.087	0.094	
6/2437	802.11b	Тор	1.007	15.69	16.00	-0.09	1.074	0.154	0.166	

Note:

- The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B. 1)
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg.
- When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

7.3.3. SAR Results [WIFI 5.2G Ant0]

7.3.3. SAF	Results	[WIFI 5	.2G Ant0]					(分别服务)		
			;	SAR Values [WI	FI 5.2G] Ant0					
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)	
Freq. (MHz)			, ,	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported	
			measured / re	ported SAR num	bers - Body (dis	stance 0mm)				
40/5200	802.11a	Rear	1.041	12.120	13.00	0.09	1.225	0.113	0.144	
40/5200	802.11a	Right	1.041	12.120	13.00	-0.07	1.225	0.068	0.087	
40/5200	802.11a	Тор	1.041	12.120	13.00	-0.09	1.225	0.102	0.130	

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-a reported SAR < 1.2 W/ka
- 3) When the same maximum output power is specified for both bands begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement. If the highet reported SAR for a test configuration is≤1.2W/kg,SAR i s not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition); otherwise, each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

7.3.4. SAR Results [WIFI 5.2G Ant1]

	SAR Values [WIFI 5.2G] Ant1														
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)						
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported						
	measured / reported SAR numbers - Body (distance 0mm)														
40/5200	802.11a	Rear	1.040	12.00	13.00	-0.17	1.259	0.096	0.126						
40/5200	802.11a	Left	1.040	12.00	13.00	0.09	1.259	0.054	0.071						
40/5200	802.11a	Тор	1.040	12.00	13.00	0.16	1.259	0.081	0.106						

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-a reported SAR < 1.2 W/ka
- 3) When the same maximum output power is specified for both bands begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR i s not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition); otherwise, each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

Page 54 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

7.3.5. SAR Results [WIFI 5.3G Ant0]

	SAR Values [WIFI 5.3G] Ant0														
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)						
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported						
	measured / reported SAR numbers - Body (distance 0mm)														
64/5320	802.11a	Rear	1.041	13.44	14.00	-0.15	1.138	0.124	0.147						
64/5320	802.11a	Right	1.041	13.44	14.00	-0.10	1.138	0.054	0.064						
64/5320	802.11a	Тор	1.041	13.44	14.00	-0.14	1.138	0.117	0.139						

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg
- 3) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR is not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition); otherwise, each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

7.3.6. SAR Results [WIFI 5.3G Ant1]

	SAR Values [WIFI 5.3G] Ant1													
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)					
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported					
	measured / reported SAR numbers - Body (distance 0mm)													
52/5260	802.11a	Rear	1.040	11.26	12.00	0.17	1.186	0.111	0.137					
52/5260	802.11a	Left	1.040	11.26	12.00	-0.01	1.186	0.036	0.044					
52/5260	802.11a	Тор	1.040	11.26	12.00	-0.02	1.186	0.080	0.099					

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg
- 3) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR is not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition); otherwise, each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

立讯检测股份 LCS Testing Lab

Page 55 of 60 FCCID: 2A8NB-PINTAB-V Report No.: LCSA08013060EB

7.3.7. SAR Results [WIFI 5.5G Ant0]

	SAR Values [WIFI 5.5G] Ant0													
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)					
Freq. (MHz)	Туре	Position	Factor			(%)	Factor	Measured	Reported					
	measured / reported SAR numbers - Body (distance 0mm)													
140/5700	802.11a	Rear	1.040	13.11	14.00	-0.09	1.227	0.130	0.166					
140/5700	802.11a	Right	1.040	13.11	14.00	0.17	1.227	0.065	0.083					
140/5700	802.11a	Тор	1.040	13.11	14.00	-0.07	1.227	0.109	0.139					

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg
- 3) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR is not required for U-NII-
- 1 band for that configuration (802.11 node and exposure condition); otherwise, each band is tested independily for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

7.3.8. SAR Results [WIFI 5.5G Ant1]

	SAR Values [WIFI 5.5G] Ant1													
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)					
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported					
	measured / reported SAR numbers - Body (distance 0mm)													
100/5500	802.11a	Rear	1.040	11.42	12.50	0.08	1.282	0.103	0.137					
100/5500	802.11a	Left	1.040	11.42	12.50	-0.02	1.282	0.045	0.060					
100/5500	802.11a	Тор	1.040	11.42	12.50	-0.05	1.282	0.077	0.103					

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg
- 3) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR is not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition); otherwise, each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

7.3.9. SAR Results [WIFI 5.8G Ant0]

10	SAR Values [WIFI 5.8G] Ant0														
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)						
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported						
	measured / reported SAR numbers - Body (distance 0mm)														
149/5745	802.11a	Rear	1.021	11.34	12.00	0.05	1.164	0.134	0.159						
149/5745	802.11a	Right	1.021	11.34	12.00	-0.17	1.164	0.051	0.061						
149/5745	802.11a	Тор	1.021	11.34	12.00	-0.20	1.164	0.102	0.121						

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg
- 3) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR is not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition);otherwise,each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

7.3.10. SAR Results [WIFI 5.8G Ant1]

	SAR Values [WIFI 5.8G] Ant1														
Ch/	Channel	Test	Duty Cyclo	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)						
Freq. (MHz)	Туре	Position	Duty Cycle Factor	Power (dBm)	Power		Factor	Measured	Reported						
	measured / reported SAR numbers - Body (distance 0mm)														
149/5745	802.11a	Rear	1.041	11.31	12.00	-0.04	1.172	0.124	0.151						
149/5745	802.11a	Left	1.041	11.31	12.00	0.00	1.172	0.055	0.067						
149/5745	802.11a	Тор	1.041	11.31	12.00	0.19	1.172	0.099	0.121						

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 2) Per KDB 648474 D04, Product Specific 10-g SAR test is not required for this frequency band since hotspot mode 1-g reported SAR < 1.2 W/kg
- 3) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-
- 2A band by applying the OFDM SAR requirement.If the highet reported SAR for a test configuration is≤1.2W/kg,SAR is not required for U-NII-
- 1 band for that configuration(802.11 node and exposure condition); otherwise, each band is tested independtly for SAR.
- 4) Body worn mode and hotspot mode use the same test distance for 10mm. The above data only reflects hotspot mode

NEL 立语检测股份

LCS Tosting Lab

Report No.: LCSA08013060EB

7.4. Multiple Transmitter Evaluation

7.4.1. Simultaneous SAR SAR test evaluation

9/1 . 65	W.S.A. , CS \	<u>M.Sa., c5 17</u>
NO.	Simultaneous Tx Combination	Body
1	WiFi 2.4G Ant0+WiFi 2.4G Ant1	Yes
2	WiFi 2.4G Ant0+WiFi 5.2G Ant1	Yes
3	WiFi 2.4G Ant0+WiFi 5.3G Ant1	Yes
4	WiFi 2.4G Ant0+WiFi 5.5G Ant1	Yes
5	WiFi 2.4G Ant0+WiFi 5.8G Ant1	Yes
6	WiFi 2.4G Ant0+Bluetooth Ant1	Yes
7	WiFi 2.4G Ant1+WiFi 5.2G Ant0	Yes
8	WiFi 2.4G Ant1+WiFi 5.3G Ant0	Yes
9	WiFi 2.4G Ant1+WiFi 5.5G Ant0	Yes
10	WiFi 2.4G Ant1+WiFi 5.8G Ant0	Yes
11	WiFi 5.2G Ant0+WiFi 5.2G Ant1	Yes
12	WiFi 5.2G Ant0+WiFi 5.3G Ant1	Yes
13	WiFi 5.2G Ant0+WiFi 5.5G Ant1	Yes
14	WiFi 5.2G Ant0+WiFi 5.8G Ant1	Yes
15	WiFi 5.2G Ant0+Bluetooth Ant1	Yes
16	WiFi 5.2G Ant1+WiFi 5.3G Ant0	Yes
17	WiFi 5.2G Ant1+WiFi 5.5G Ant0	Yes
18	WiFi 5.2G Ant1+WiFi 5.8G Ant0	Yes
19	WiFi 5.3G Ant0+WiFi 5.3G Ant1	Yes
20	WiFi 5.3G Ant0+WiFi 5.5G Ant1	Yes
21	WiFi 5.3G Ant0+WiFi 5.8G Ant1	Yes
22	WiFi 5.3G Ant0+Bluetooth Ant1	Yes
23	WiFi 5.3G Ant1+WiFi 5.5G Ant0	Yes
24	WiFi 5.3G Ant1+WiFi 5.8G Ant0	Yes
25	WiFi 5.5G Ant0+WiFi 5.5G Ant1	Yes
26	WiFi 5.5G Ant0+WiFi 5.8G Ant1	Yes
27	WiFi 5.5G Ant0+Bluetooth Ant1	Yes
28	WiFi 5.5G Ant1+WiFi 5.8G Ant0	Yes
29	WiFi 5.8G Ant0+WiFi 5.8G Ant1	Yes
30	WiFi 5.8G Ant0+Bluetooth Ant1	Yes

Note:

1) Wi-Fi 2.4G/Wi-Fi 5G and Bluetooth share the same Tx antenna and can't transmit simultaneously.

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

7.4.2. Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. **Estimated SAR Result**

Freq. Band	Frequency (GHz)	max. power (dBm)	max. power (mw)	Test Separation (mm)	Estimated 1g SAR (W/kg)
Bluetooth	2.48	1.00	1.26	5	0.053

Shenzhen LCS Compliance Testing Laboratory Ltd.

7.4.3. Simultaneous Transmission SAR Summation Scenario

7.4.3	3. Simult	aneous	Transn	nission	SAR Su	mmatio	n Scena	ario				
						WiFi Anter	nna SARmax	k (W/kg)				
Т	4	1	2	3	4	5	6	7	8	9	10	11
res	t position	WLAN 2.4G Ant0	WLAN 2.4G Ant1	WLAN 5.2G Ant0	WLAN 5.2G Ant1	WLAN 5.3G Ant0	WLAN 5.3G Ant1	WLAN 5.5G Ant0	WLAN 5.5G Ant1	WLAN 5.8G Ant0	WLAN 5.8G Ant1	BT Ant1
	Rear side	0.272	0.266	0.144	0.126	0.147	0.137	0.166	0.137	0.159	0.151	0.053
D d	Left side	0	0.094	0.000	0.071	0.000	0.044	0.000	0.060	0.000	0.067	0.053
Body	Right side	0.096	0.000	0.087	0.000	0.064	0.000	0.083	0.000	0.061	0.000	0.053
	Top side	0.201	0.166	0.130	0.106	0.139	0.099	0.139	0.103	0.121	0.121	0.053

Te	st position								Summed g SARma (W/kg)							
		1+2 1+4 1+6 1+8 1+10 1+11 2+3 2+5 2+7 2+9 3+4 3+6 3+8									3+8	3+10	3+11			
	Rear side	0.538	0.398	0.409	0.409	0.423	0.325	0.410	0.413	0.432	0.425	0.270	0.281	0.281	0.295	0.197
Dadu	Left side	0.094	0.071	0.044	0.060	0.067	0.053	0.094	0.094	0.094	0.094	0.071	0.044	0.060	0.067	0.053
Body	Right side	0.096	0.096	0.096	0.096	0.096	0.149	0.087	0.064	0.083	0.061	0.087	0.087	0.087	0.087	0.140
	Top side	0.367	0.307	0.300	0.304	0.322	0.254	0.296	0.305	0.305	0.287	0.236	0.229	0.233	0.251	0.183

Test position			Summed 1g SARmax (W/kg)														
		4+5	4+7	4+9	5+6	5+8	5+10	5+11	6+7	6+9	7+8	7+10	7+11	8+9	9+10	9+11	
Body	Rear side	0.273	0.292	0.285	0.284	0.284	0.298	0.200	0.303	0.296	0.303	0.317	0.219	0.296	0.310	0.212	
	Left side	0.071	0.071	0.071	0.044	0.060	0.067	0.053	0.044	0.044	0.060	0.067	0.053	0.060	0.067	0.053	
	Right side	0.064	0.083	0.061	0.064	0.064	0.064	0.117	0.083	0.061	0.083	0.083	0.136	0.061	0.061	0.114	
	Top side	0.245	0.245	0.227	0.238	0.242	0.260	0.192	0.238	0.220	0.242	0.260	0.192	0.224	0.242	0.174	

Note:

2) MAX. ΣSAR_{10g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Á & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

8. SYSTEM CHECK RESULTS

Please see the Appendix A

9. CALIBRATION CERTIFICATE

Please see the Appendix C

10. PHOTOGRAPH

Please see the Appendix D

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

