

# Test Report

## 21-1-0156601T01a-C1



**Number of pages:** 19 **Date of Report:** 2023-Nov-14

**Testing company:** CETECOM GmbH  
Im Teelbruch 116  
45219 Essen Germany  
Tel. + 49 (0) 20 54 / 95 19-0  
Fax: + 49 (0) 20 54 / 95 19-150 **Applicant:** genua GmbH

**Test Object / Tested Device(s):** Cyber Diode  
cyber-diode Revision 3.0

**FCC ID:** 2A8M94260481820320 **IC:** --

**Testing has been carried out in accordance with:** **FCC Regulations:**  
Title 47 CFR, Chapter I  
FCC Regulations, Subchapter A  
Subpart B: §15.107, §15.109 (Class B limits)

**ISED Regulations:**  
ICES-003, Issue 7 (2020)

Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method and limit".

**Test Results:**  **The EUT complies with the requirements in respect of all parameters subject to the test.**  
The test results relate only to devices specified in this document

The current version of test report TR21-1-0156601T01a-C1 replaces the test report TR21-1-0156601T01a dated 2022-MAR-23. The replaced test report is herewith invalid.

**Signatures:**



Dipl.-Ing. Niels Jeß  
Head of Compliance Testing  
Authorization of test report

  
Wolfgang Markus  
Senior Test Manager  
Responsible of test report

## Table of Contents

|                                                                               |    |
|-------------------------------------------------------------------------------|----|
| Table of Annex.....                                                           | 3  |
| 1 General information .....                                                   | 4  |
| 1.1 Disclaimer and Notes.....                                                 | 4  |
| 1.2 Summary of Test Results .....                                             | 5  |
| 1.3 Summary of Test Methods .....                                             | 5  |
| 2 Administrative Data .....                                                   | 6  |
| 2.1 Identification of the Testing Laboratory.....                             | 6  |
| 2.2 General limits for environmental conditions.....                          | 6  |
| 2.3 Test Laboratories sub-contracted.....                                     | 6  |
| 2.4 Organizational Items .....                                                | 6  |
| 2.5 Applicant's details .....                                                 | 6  |
| 2.6 Manufacturer's details .....                                              | 6  |
| 2.7 EUT: Type, S/N etc. and short descriptions used in this test report ..... | 7  |
| 2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions.....      | 7  |
| 2.9 Connected cables .....                                                    | 7  |
| 2.10 Softwares.....                                                           | 8  |
| 2.11 EUT set-ups.....                                                         | 8  |
| 2.12 EUT operation modes.....                                                 | 8  |
| 3 Equipment under test (EUT) .....                                            | 9  |
| 3.1 General Data of Main EUT as Declared by Applicant.....                    | 9  |
| 3.2 Modifications on Test sample.....                                         | 9  |
| 4 Measurements.....                                                           | 10 |
| 4.1 AC-Power Lines Conducted Emissions.....                                   | 10 |
| 4.2 Radiated field strength emissions 30 MHz – 1 GHz.....                     | 12 |
| 4.3 Radiated field strength emissions above 1 GHz .....                       | 14 |
| 4.4 Results from external laboratory.....                                     | 16 |
| 4.5 Opinions and interpretations .....                                        | 16 |
| 4.6 List of abbreviations .....                                               | 16 |
| 5 Equipment lists .....                                                       | 16 |
| 6 Measurement Uncertainty valid for conducted/radiated measurements .....     | 18 |
| 7 Versions of test reports (change history) .....                             | 19 |

**Table of Annex**

| Annex No. | Contents                    | Reference Description                | Total Pages |
|-----------|-----------------------------|--------------------------------------|-------------|
| Annex 1   | Test result diagrams        | <b>CETECOM_TR21_1_0156601T01a_A1</b> | 5           |
| Annex 2   | Internal photographs of EUT | --                                   | --          |
| Annex 3   | External photographs of EUT | <b>CETECOM_TR21_1_0156601T01a_A3</b> | 3           |
| Annex 4   | Test set-up photographs     | <b>CETECOM_TR20_1_0156601T01a_A4</b> | 5           |

The listed attachments are separate documents.

## 1 General information

### 1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

## 1.2 Summary of Test Results

| Test case                                                        | Reference in FCC  | Reference in ISED  | Reference in RSS-GEN  | Remark | Result |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------|--------|
| <a href="#">AC-Power Lines Conducted Emissions</a>               | §15.107                                                                                            | ICES-003, Issue 6                                                                                   | RSS Gen, Issue 5, Chapter 8.8                                                                            | --     | PASSED |
| <a href="#">Radiated field strength emissions 30 MHz – 1 GHz</a> | §15.109<br>§15.33<br>§15.35                                                                        | ICES-003, Issue 6                                                                                   | RSS-Gen., Issue 5 Chapter 8.9, Chapter 7.3                                                               | --     | PASSED |
| <a href="#">Radiated field strength emissions above 1 GHz</a>    | §15.109<br>§15.33<br>§15.35                                                                        | ICES-003, Issue 6                                                                                   | RSS-Gen., Issue 5 Chapter 8.9, Chapter 7.3                                                               | --     | PASSED |

PASSED

The EUT complies with the essential requirements in the standard.

FAILED

The EUT does not comply with the essential requirements in the standard.

NP

The test was not performed by the CETECOM Laboratory.

\*The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

## 1.3 Summary of Test Methods

| Test case                                        | Test method                   |
|--------------------------------------------------|-------------------------------|
| AC-Power Lines Conducted Emissions               | ANSI C63.4-2014 chapter 7     |
| Radiated field strength emissions 30 MHz – 1 GHz | ANSI C63.4-2014 chapter 8.2.3 |
| Radiated field strength emissions above 1 GHz    | ANSI C63.4-2014 chapter 8.3   |

## 2 Administrative Data

### 2.1 Identification of the Testing Laboratory

|                                     |                                                       |
|-------------------------------------|-------------------------------------------------------|
| Company name:                       | CETECOM GmbH                                          |
| Address:                            | Im Teelbruch 116<br>45219 Essen - Kettwig<br>Germany  |
| Responsible for testing laboratory: | Dipl.-Ing. Ninovic Perez                              |
| Accreditation scope:                | <b>DAkkS Webpage: <a href="#">FCC ISED</a></b>        |
| Test location:                      | CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig |

### 2.2 General limits for environmental conditions

|                     |           |
|---------------------|-----------|
| Temperature:        | 22±2 °C   |
| Relative. humidity: | 45±15% rH |

### 2.3 Test Laboratories sub-contracted

|               |    |
|---------------|----|
| Company name: | -- |
|---------------|----|

### 2.4 Organizational Items

|                           |                           |
|---------------------------|---------------------------|
| Responsible test manager: | Wolfgang Markus           |
| Receipt of EUT:           | 2022-Jan-26               |
| Date(s) of test:          | 2022-Feb-14 – 2022-Mar-02 |
| Version of template:      | 14.3                      |

### 2.5 Applicant's details

|                         |                                                                                          |
|-------------------------|------------------------------------------------------------------------------------------|
| Applicant's name:       | genua GmbH                                                                               |
| Address:                | Domagkstraße 7<br>85551 Kirchheim bei München<br><br>Germany                             |
| Contact Person:         | Sebastian Schwarzfischer                                                                 |
| Contact Person's Email: | <a href="mailto:sebastian_schwarzfischer@genua.de">sebastian_schwarzfischer@genua.de</a> |

### 2.6 Manufacturer's details

|                      |                                        |
|----------------------|----------------------------------------|
| Manufacturer's name: | duagon Germany GmbH                    |
| Address:             | Neuwieder Straße 1-7<br>90411 Nürnberg |
|                      | Germany                                |

## 2.7 EUT: Type, S/N etc. and short descriptions used in this test report

| Short description*) | PMT Sample No.    | EUT         | Model                    | Type | S/N    | HW status                                                              | SW status       |
|---------------------|-------------------|-------------|--------------------------|------|--------|------------------------------------------------------------------------|-----------------|
| EUT 01              | 21-1-01566S02_C01 | Cyber Diode | cyber-diode Revision 3.0 | n/a  | 000225 | cyber-diode Revision 3.0 based on hardware Variante von duagon (MC501) | cyber-diode 2.0 |

\*) EUT short description is used to simplify the identification of the EUT in this test report.

## 2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

| Short description*) | PMT Sample No. | Auxiliary Equipment | Model          | Type | S/N      | HW status       | SW status |
|---------------------|----------------|---------------------|----------------|------|----------|-----------------|-----------|
| AE 1                | --             | DELL Laptop         | Latitude E6430 | --   | 26N17A00 | Intel® Core™ i5 | Windows 7 |
| AE 2                | --             | DELL Laptop         | Latitude E6430 | --   | 4XF49A02 | Intel® Core™ i5 | Windows 7 |

\*) AE short description is used to simplify the identification of the auxiliary equipment in this test report.

## 2.9 Connected cables

| Short description*) | PMT Sample No. | Cable type | Connectors | Lenght |
|---------------------|----------------|------------|------------|--------|
| CAB 1               | --             | LAN Cable  | RJ 45      | 2.0 m  |
| CAB 2               | --             | LAN Cable  | RJ 45      | 2.0 m  |

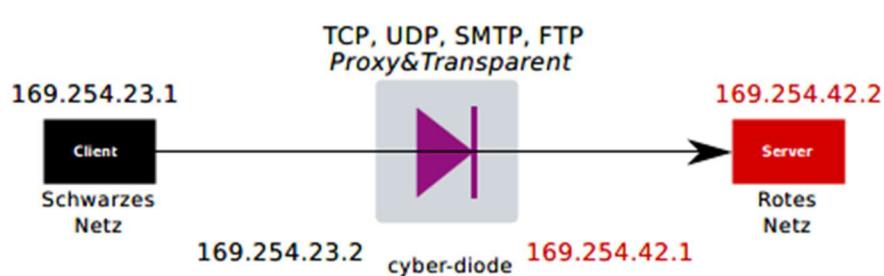
\*) CAB short description is used to simplify the identification of the connected cables in this test report.

## 2.10 Softwares

| Short description*) | PMT Sample No. | Software | Type | S/N | HW status | SW status |
|---------------------|----------------|----------|------|-----|-----------|-----------|
| --                  | --             | --       | --   | --  | --        | --        |

\*) SW short description is used to simplify the identification of the used softwares in this test report.

## 2.11 EUT set-ups


| set-up no.*) | Combination of EUT and AE            | Description |
|--------------|--------------------------------------|-------------|
| Set. 1       | EUT 01 + AE 1 + AE 2 + CAB 1 + CAB 2 | --          |

\*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

## 2.12 EUT operation modes

| EUT operating mode no.*) | Operating modes    | Additional information                                                            |
|--------------------------|--------------------|-----------------------------------------------------------------------------------|
| Operating mode 1         | Data Communication | Sending Data from Client to Server via cyber diode. Reading the data with iPerf3. |

\*) EUT operating mode no. is used to simplify the test report.



### 3 Equipment under test (EUT)

#### 3.1 General Data of Main EUT as Declared by Applicant

|                        |                                                    |                                |                                                             |
|------------------------|----------------------------------------------------|--------------------------------|-------------------------------------------------------------|
| Product name           | Cyber Diode                                        |                                |                                                             |
| Kind of product        | cyber-diode Revision 3.0                           |                                |                                                             |
| Firmware               | <input checked="" type="checkbox"/> for normal use |                                | <input type="checkbox"/> Special version for test execution |
| Power supply           | <input type="checkbox"/> AC Mains                  | single Line (L1/N) 120 V 60 Hz |                                                             |
|                        | <input checked="" type="checkbox"/> DC Mains       | 24 V                           |                                                             |
|                        | <input type="checkbox"/> Battery                   | --                             |                                                             |
| Operational conditions | T <sub>nom</sub> =-- °C                            | T <sub>min</sub> = -40 °C      | T <sub>max</sub> =+70 °C                                    |
| EUT sample type        | Pre-Production                                     |                                |                                                             |
| Weight                 | 0.79 kg                                            |                                |                                                             |
| Size                   | 42 x 132 x 144 mm                                  |                                |                                                             |
| Interfaces/Ports       | 2 x USB 3.0, 1 x RS232, 1 x Display Port 1.2       |                                |                                                             |

#### 3.2 Modifications on Test sample

|                                    |    |
|------------------------------------|----|
| Additions/deviations or exclusions | -- |
|------------------------------------|----|

## 4 Measurements

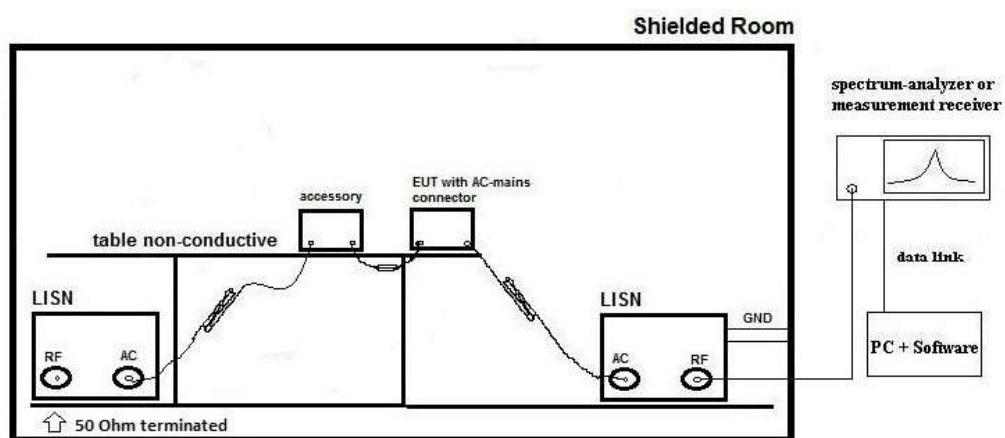
### 4.1 AC-Power Lines Conducted Emissions

#### 4.1.1 Description of the general test setup and methodology, see below example:

The radio frequency voltage conducted back into the AC power line in the frequency range 150 kHz to 30 MHz has to be investigated.

Compliance should be tested by measuring the radio frequency voltage between each power line and ground at the power terminals in the stated frequency range.

A 50 Ohm / 50  $\mu$ H line impedance stabilization network (LISN) is used coupling the interface to the measurement equipment.


The EUT power input leads are connected through the LISN to the AC-power source. The LISN enclosure is electrically connected to the ground plane. The measuring instrument is connected to the coaxial output of the LISN.

Tabletop devices were set-up on an 80 cm height above reference ground plane, floor standing equipment 10 cm raised above ground plane.

Measurements have been performed on each phase line and neutral line of the devices AC-power lines.

The EUT was power supplied with 120 V/60 Hz. The EUT was tested in the defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

#### Schematic:



#### Testing method:

The measurement is made according to relevant reference clauses:

(See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

##### Exploratory, preliminary measurements

As a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

##### Final measurement on critical frequencies

For power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

**Formula:**

$$V_C = V_R + C_L \quad (1)$$

$$M = L_T - V_C \quad (2)$$

$V_C$  = measured Voltage –corrected value

$V_R$  = Receiver reading

$C_L$  = Cable loss

$M$  = Margin

$L_T$  = Limit

All units are dB-units, positive margin means value is below limit.

**4.1.2 Measurement Location**

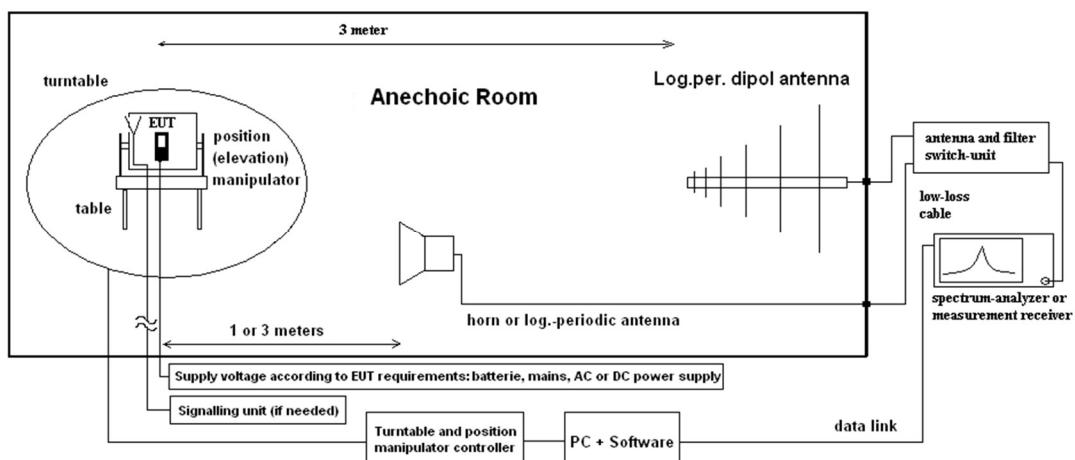
|                             |
|-----------------------------|
| 12919 – Conducted Emissions |
|-----------------------------|

**4.1.3 Limit**

| Frequency Range [MHz] | Class B <input checked="" type="checkbox"/> |                      | Class A <input type="checkbox"/> |                      |
|-----------------------|---------------------------------------------|----------------------|----------------------------------|----------------------|
|                       | QUASI-Peak [dB $\mu$ V]                     | AVERAGE [dB $\mu$ V] | QUASI-Peak [dB $\mu$ V]          | AVERAGE [dB $\mu$ V] |
| 0.15 – 0.5            | 66 to 56*                                   | 56 to 46*            | 79                               | 66                   |
| 0.5 – 5               | 56                                          | 46                   | 73                               | 60                   |
| 5 – 30                | 60                                          | 50                   | 73                               | 60                   |

**4.1.4 Result**

| Diagram | Mode            | Power Line | Max [dB $\mu$ V] | Detector | Result |
|---------|-----------------|------------|------------------|----------|--------|
| 1.01    | Data connection | +/-        | 21.66            | CAverage | Passed |


Remark: for more informations and graphical plot see annex A1 [CETECOM\\_TR21\\_1\\_0156601T01a\\_A1](#)

## 4.2 Radiated field strength emissions 30 MHz – 1 GHz

### 4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the regulatory commissions.

#### Schematic:



#### Testing method:

The measurement is made according to relevant reference clauses:

(See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

##### Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

##### Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

### Formula:

$$E_C = E_R + AF + C_L + D_F - G_A \quad (1)$$

$$M = L_T - E_C \quad (2)$$

AF = Antenna factor

C<sub>L</sub> = Cable loss

D<sub>F</sub> = Distance correction factor (if used)

E<sub>C</sub> = Electrical field – corrected value

E<sub>R</sub> = Receiver reading

G<sub>A</sub> = Gain of pre-amplifier (if used)

L<sub>T</sub> = Limit

M = Margin

All units are dB-units, positive margin means value is below limit.

### 4.2.2 Measurement Location

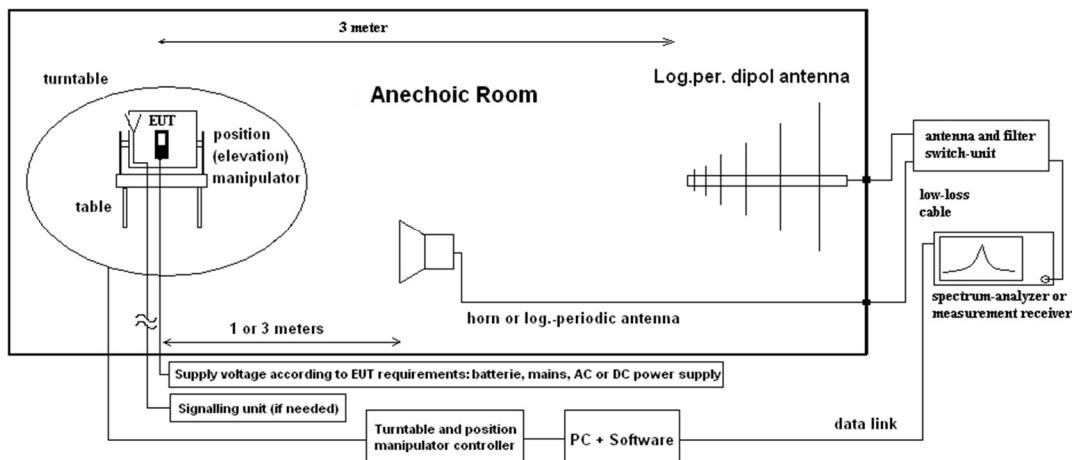
|           |                                        |
|-----------|----------------------------------------|
| Test site | 120901 - SAC - Radiated Emission <1GHz |
|-----------|----------------------------------------|

### 4.2.3 Limit

| Frequency Range<br>[MHz] | Class B <input checked="" type="checkbox"/> (3 meters) |                   | Class A <input type="checkbox"/> (10 meters) |                | Detector   | RBW / VBW<br>[kHz] |
|--------------------------|--------------------------------------------------------|-------------------|----------------------------------------------|----------------|------------|--------------------|
|                          | Limit [μV/m]                                           | Limit<br>[dBμV/m] | Limit [μV/m]                                 | Limit [dBμV/m] |            |                    |
| 30 - 88                  | 100                                                    | 40.0              | 90                                           | 39.0           | Quasi peak | 100 / 300          |
| 88 - 216                 | 150                                                    | 43.5              | 150                                          | 43.5           | Quasi peak | 100 / 300          |
| 216 - 960                | 200                                                    | 46.0              | 210                                          | 46.4           | Quasi peak | 100 / 300          |
| 960 - 1000               | 500                                                    | 54.0              | 300                                          | 49.5           | Quasi peak | 100 / 300          |

### 4.2.4 Result

| Diagram              | Mode            | Maximum Level [dBμV/m]<br>Frequency Range 30 – 1000 MHz | Result |
|----------------------|-----------------|---------------------------------------------------------|--------|
| <a href="#">3.01</a> | Data connection | 26.02                                                   | Passed |


Remark: for more informations and graphical plot see annex A1 [CETECOM\\_TR21\\_1\\_0156601T01a\\_A1](#)

## 4.3 Radiated field strength emissions above 1 GHz

### 4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

#### Schematic:



#### Testing method:

The measurement is made according to relevant reference clauses:

(See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

##### Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

##### Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

### Formula:

$$E_C = E_R + A_F + C_L + D_F - G_A \quad (1)$$

$E_C$  = Electrical field – corrected value

$$M = L_T - E_C \quad (2)$$

$E_R$  = Receiver reading

$M$  = Margin

$L_T$  = Limit

$A_F$  = Antenna factor

$C_L$  = Cable loss

$D_F$  = Distance correction factor (if used)

$G_A$  = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

### 4.3.2 Measurement Location

|           |                                    |
|-----------|------------------------------------|
| Test site | 120904 - FAC1 - Radiated Emissions |
|-----------|------------------------------------|

### 4.3.3 Limit

| Radiated emissions limits (3 meters) |              |                |          |                 |
|--------------------------------------|--------------|----------------|----------|-----------------|
| Frequency Range [MHz]                | Limit [μV/m] | Limit [dBμV/m] | Detector | RBW / VBW [kHz] |
| Above 1000                           | 500          | 54             | Average  | 1000 / 3000     |
| Above 1000                           | 5000         | 74             | Peak     | 1000 / 3000     |

### 4.3.4 Result

| Diagram              | Mode            | Frequency Range 1 – 10 GHz Maximum Level [dBμV/m] | Detector | Result |
|----------------------|-----------------|---------------------------------------------------|----------|--------|
| <a href="#">4.01</a> | Data connection | 51.86                                             | Peak     | Passed |

Remark: for more informations and graphical plot see annex A1 [CETECOM\\_TR21\\_1\\_0156601T01a\\_A1](#)

## 4.4 Results from external laboratory

|      |   |
|------|---|
| None | - |
|------|---|

## 4.5 Opinions and interpretations

|      |   |
|------|---|
| None | - |
|------|---|

## 4.6 List of abbreviations

|      |   |
|------|---|
| None | - |
|------|---|

## 5 Equipment lists

| ID    | Description                                               | Manufacturer                          | SerNo       | Cal due date       |
|-------|-----------------------------------------------------------|---------------------------------------|-------------|--------------------|
|       | <b>120919 – Conducted emission</b>                        |                                       |             |                    |
| 20005 | AC - LISN 50 Ohm/50µH ESH2-Z5                             | Rohde & Schwarz Messgerätebau GmbH    | 861741/005  | 2022-May-05        |
| 20007 | Single-Line V-Network (50 Ohm/5µH) ESH3-Z6                | Rohde & Schwarz Messgerätebau GmbH    | 892563/002  | 2022-May-05        |
| 20468 | Digital Multimeter Fluke 112                              | Fluke Deutschland GmbH                | 90090455    | 2024-Jun-01        |
| 20556 | Thermo-/Hygrometer WS-9400                                | Conrad Electronic GmbH                | --          | 2023-Jul-15        |
| 20033 | RF-current probe (100kHz-30MHz) ESH2-Z1                   | Rohde & Schwarz Messgerätebau GmbH    | 879581/18   | 2023-Jun-01        |
| 20377 | EMI Test Receiver ESCS30                                  | Rohde & Schwarz Messgerätebau GmbH    | 100160      | 2022-May-18        |
|       | <b>120901 - SAC - Radiated Emission &lt;1GHz</b>          |                                       |             | <b>2022-May-21</b> |
| 20574 | Biconilog Hybrid Antenna BTA-L                            | Frankonia GmbH                        | 980026L     | 2022-May-03        |
| 20487 | CETECOM Semi Anechoic Chamber < 1GHz                      | ETS-Lindgren GmbH                     | -           | 2025-Jul-15        |
| 20341 | Digital Multimeter Fluke 112                              | Fluke Deutschland GmbH                | 81650455    | 2022-May-25        |
| 20620 | EMI Test Receiver ESU26                                   | Rohde & Schwarz Messgerätebau GmbH    | 100362      | 2022-Jun-20        |
| 20482 | filter matrix Filter matrix SAR 1                         | CETECOM GmbH                          | -           | --                 |
| 25038 | Loop Antenna HFH2-Z2                                      | Rohde & Schwarz Messgerätebau GmbH    | 879824/13   | 2022-Apr-07        |
| 20885 | Power Supply EA3632A                                      | Agilent Technologies Deutschland GmbH | 75305850    | --                 |
|       | <b>120904 - FAC1 - Radiated Emissions</b>                 |                                       |             |                    |
| 20720 | EMC32 [FAC]                                               | Rohde & Schwarz Messgerätebau GmbH    | V10.xx      | 2022-Jun-11        |
| 20489 | EMI Test Receiver ESU40                                   | Rohde & Schwarz Messgerätebau GmbH    | 1000-30     | 2022-Jun-22        |
| 20254 | High Pass Filter 5HC 2600/12750-1.5KK (GSM1800/1900/DECT) | Trilithic                             | 23042       | 2022-Jun-11        |
| 20868 | High Pass Filter AFH-07000                                | AtlanTecRF                            | 16071300004 | 2022-Jun-11        |
| 20291 | High Pass Filter WHJ 2200-4EE (GSM 850/900)               | Wainwright Instruments GmbH           | 14          | 2022-Jun-11        |
| 20020 | Horn Antenna 3115 (Subst 1)                               | EMCO Elektronik GmbH                  | 9107-3699   | 2024-Aug-24        |

|       |                                                           |                                       |             |             |
|-------|-----------------------------------------------------------|---------------------------------------|-------------|-------------|
| 20302 | Horn Antenna BBHA9170 (Meas 1)                            | Schwarzbeck Mess-Elektronik OHG       | 155         | 2023-Apr-15 |
| 20549 | Log.Per-Antenna HL025                                     | Rohde & Schwarz Messgerätebau GmbH    | 1000060     | 2024-Aug-24 |
| 20512 | Notch Filter WRCA 800/960-02/40-6EEK (GSM 850)            | Wainwright Instruments GmbH           | 24          | 2022-Jun-11 |
| 20290 | Notch Filter WRCA 901,9/903,15S (GSM 900)                 | Wainwright Instruments GmbH           | 3RR         | 2022-Jun-11 |
| 20122 | Notch Filter WRCB 1747/1748 (GSM 1800)                    | Wainwright Instruments GmbH           | 12          | 2022-Jun-11 |
| 20121 | Notch Filter WRCB 1879,5/1880,5EE (GSM 1900)              | Wainwright Instruments GmbH           | 15          | 2022-Jun-11 |
| 20448 | Notch Filter WRCT 1850.0/2170.0-5/40-10SSK (WCDMA-FDD II) | Wainwright Instruments GmbH           | 5           | 2022-Jun-11 |
| 20066 | Notch Filter WRCT 1900/2200-5/40-10EEK (WCDMA - FDDI)     | Wainwright Instruments GmbH           | 5           | 2022-Jun-11 |
| 20449 | Notch Filter WRCT 824.0/894.0-5/40-8SSK (WCDMA FDD V)     | Wainwright Instruments GmbH           | 1           | 2022-Jun-11 |
| 20611 | Power Supply E3632A                                       | Agilent Technologies Deutschland GmbH | KR 75305854 | --          |
| 20338 | Pre-Amplifier 100MHz - 26GHz JS4-00102600-38-5P           | Miteq Inc.                            | 838697      | 2022-Jun-11 |
| 20484 | Pre-Amplifier 2,5GHz - 18GHz AMF-5D-02501800-25-10P       | Miteq Inc.                            | 1244554     | 2022-Jun-11 |
| 20287 | Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G-35-10P           | Miteq Inc.                            | 379418      | 2022-Jun-11 |
| 20670 | Radio Communication Tester CMU200                         | Rohde & Schwarz Messgerätebau GmbH    | 106833      | 2022-Jun-16 |
| 20690 | Spectrum Analyzer FSU                                     | Rohde & Schwarz Messgerätebau GmbH    | 100302/026  | 2023-May-21 |
| 20439 | UltraLog-Antenna HL 562                                   | Rohde & Schwarz Messgerätebau GmbH    | 100248      | 2023-Mar-10 |

## 6 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor  $k$ , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and its contribution to the overall uncertainty according its statistical distribution calculated.

| RF-Measurement                 | Reference | Frequency range                     | Calculated uncertainty based on a confidence level of 95% |        |      |      |      |    |                         |  |
|--------------------------------|-----------|-------------------------------------|-----------------------------------------------------------|--------|------|------|------|----|-------------------------|--|
| Conducted emissions (U CISPR)  | -         | 9 kHz - 150 kHz<br>150 kHz - 30 MHz | 4.0 dB<br>3.6 dB                                          |        |      |      |      |    | -                       |  |
| Power Output radiated          | -         | 30 MHz - 4 GHz                      | 3.17 dB                                                   |        |      |      |      |    | Substitution method     |  |
| Power Output conducted         | -         | Set-up No.                          | Cel-C1                                                    | Cel-C2 | BT1  | W1   | W2   | -- |                         |  |
|                                |           | 9 kHz - 12.75 GHz                   | N/A                                                       | 0.60   | 0.7  | 0.25 | N/A  | -- |                         |  |
|                                |           | 12.75 - 26.5 GHz                    | N/A                                                       | 0.82   | --   | N/A  | N/A  | -- | -                       |  |
| Conducted emissions on RF-port | -         | 9 kHz - 2.8 GHz                     | 0.70                                                      | N/A    | 0.70 | N/A  | 0.69 | -- |                         |  |
|                                |           | 2.8 GHz - 12.75 GHz                 | 1.48                                                      | N/A    | 1.51 | N/A  | 1.43 | -- |                         |  |
|                                |           | 12.75 GHz - 18 GHz                  | 1.81                                                      | N/A    | 1.83 | N/A  | 1.77 | -- |                         |  |
|                                |           | 18 GHz - 26.5 GHz                   | 1.83                                                      | N/A    | 1.85 | N/A  | 1.79 | -- |                         |  |
| Occupied bandwidth             | -         | 9 kHz - 4 GHz                       | 0.1272 ppm (Delta Marker)                                 |        |      |      |      |    | Frequency error         |  |
|                                |           |                                     | 1.0 dB                                                    |        |      |      |      |    | Power                   |  |
| Emission bandwidth             | -         | 9 kHz - 4 GHz                       | 0.1272 ppm (Delta Marker)                                 |        |      |      |      |    | Frequency error         |  |
|                                |           |                                     | See above: 0.70 dB                                        |        |      |      |      |    | Power                   |  |
| Frequency stability            | -         | 9 kHz - 20 GHz                      | 0.0636 ppm                                                |        |      |      |      |    | -                       |  |
| Radiated emissions Enclosure   | -         | 150 kHz - 30 MHz                    | 5.01dB                                                    |        |      |      |      |    | Magnetic field strength |  |
|                                |           | 30 MHz - 1 GHz                      | 5.83 dB                                                   |        |      |      |      |    |                         |  |
|                                |           | 1 GHz - 18 GHz                      | 4.91 dB                                                   |        |      |      |      |    |                         |  |
|                                |           | 18-26.5 GHz                         | 5.06 dB                                                   |        |      |      |      |    |                         |  |

## 7 Versions of test reports (change history)

| Version | Applied changes                | Date of release |
|---------|--------------------------------|-----------------|
| --      | Initial release                | 2022-Mar-07     |
| C1      | Update of FCC ID on cover page | 2023-Nov-14     |

**End Of Test Report**