

FCC RF Test Report

APPLICANT : Evergreen Huckleberry LLC
EQUIPMENT : Digital Media Receiver
MODEL NAME : R85SD6
FCC ID : 2A8FC-8523
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DTS) Digital Transmission System
TEST DATE(S) : Mar. 11, 2023 ~ Aug. 31, 2023

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

Approved by: Jason Jia

Sportun International Inc. (ShenZhen)

1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055

People's Republic of China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Product Feature of Equipment Under Test.....	5
1.3 Product Specification of Equipment Under Test.....	5
1.4 Modification of EUT	5
1.5 Testing Location	6
1.6 Test Software.....	6
1.7 Applicable Standards.....	7
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	8
2.1 Carrier Frequency Channel	8
2.2 Test Mode	9
2.3 Connection Diagram of Test System.....	10
2.4 Support Unit used in test configuration and system.....	10
2.5 EUT Operation Test Setup	10
2.6 Measurement Results Explanation Example.....	11
3 TEST RESULT	12
3.1 6dB and 99% Bandwidth Measurement.....	12
3.2 Output Power Measurement.....	21
3.3 Power Spectral Density Measurement	22
3.4 Conducted Band Edges and Spurious Emission Measurement	31
3.5 Radiated Band Edges and Spurious Emission Measurement	40
3.6 AC Conducted Emission Measurement.....	44
3.7 Antenna Requirements	46
4 LIST OF MEASURING EQUIPMENT.....	47
5 UNCERTAINTY OF EVALUATION.....	48
APPENDIX A. CONDUCTED TEST RESULTS	
APPENDIX B. AC CONDUCTED EMISSION TEST RESULT	
APPENDIX C. RADIATED SPURIOUS EMISSION	
APPENDIX D. RADIATED SPURIOUS EMISSION PLOTS	
APPENDIX E. DUTY CYCLE PLOTS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	$\geq 0.5\text{MHz}$	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
3.2	15.247(b)(3)	Output Power	$\leq 30\text{dBm}$	Pass	-
3.3	15.247(e)	Power Spectral Density	$\leq 8\text{dBm/3kHz}$	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	$\leq 30\text{dBc}$	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.39 dB at 2483.52 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 17.56 dB at 0.373 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Evergreen Huckleberry LLC

100 S. Ashley Drive Suite 600 Tampa, FL 33602

1.2 Product Feature of Equipment Under Test

Product Feature	
Equipment	Digital Media Receiver
Model Name	R85SD6
FCC ID	2A8FC-8523
SN	Conducted: G0B2MM0330920044 Conduction: G0B2MM0330870012 Radiation: G0BMM033087000K

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz
Number of Channels	40
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)
Maximum AV Output Power to Antenna	Bluetooth LE 1Mbps : 8.80 dBm (0.0076 W) Bluetooth LE 2Mbps : 8.70 dBm (0.0074 W)
99% Occupied Bandwidth	Bluetooth LE 1Mbps : 1.033MHz Bluetooth LE 2Mbps : 2.062MHz
Antenna Type / Gain	IFA Antenna type with gain 3 dBi
Type of Modulation	Bluetooth LE : GFSK

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sportun International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sportun International Inc. (ShenZhen)		
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	CO01-SZ TH01-SZ	CN1256	421272
Test Firm	Sportun International Inc. (ShenZhen)		
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	03CH02-SZ	CN1256	421272

1.6 Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH02-SZ	AUDIX	E3	6.2009-8-24a
2.	CO01-SZ	AUDIX	E3	6.120613b

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

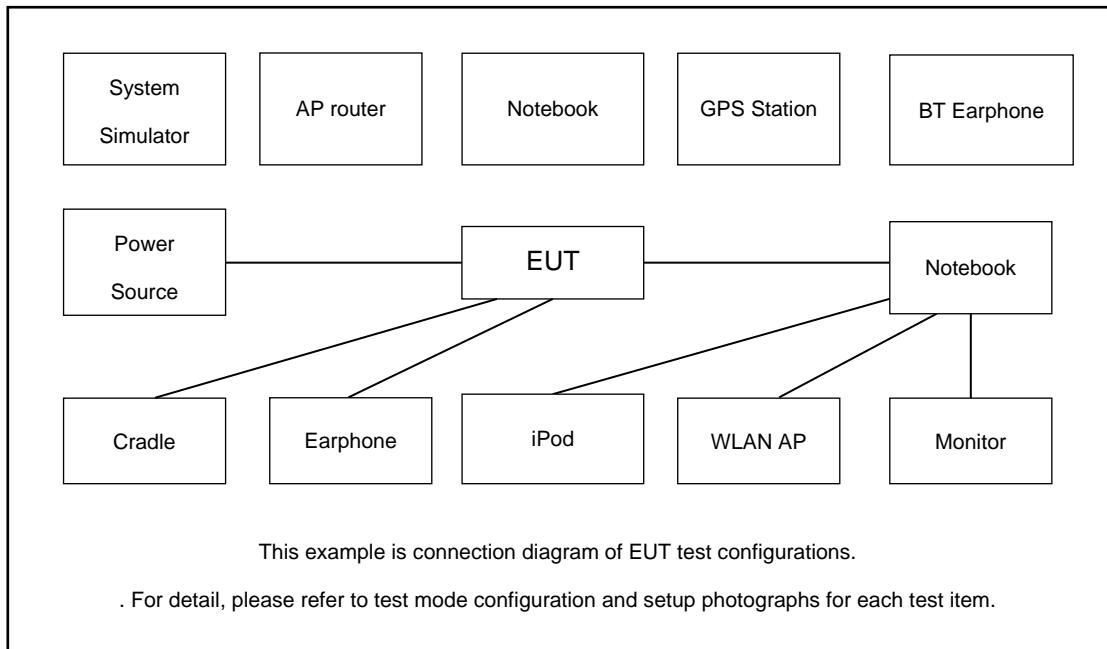
1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases	
Test Item	Data Rate / Modulation
	Bluetooth – LE / GFSK
Conducted TCs	Mode 1: Bluetooth Tx CH00_2402 MHz Mode 2: Bluetooth Tx CH19_2440 MHz Mode 3: Bluetooth Tx CH39_2480 MHz
Radiated TCs	Mode 1: Bluetooth Tx CH00_2402 MHz Mode 2: Bluetooth Tx CH19_2440 MHz Mode 3: Bluetooth Tx CH39_2480 MHz
AC Conducted Emission	Mode 1: Bluetooth Link + WLAN Link(2.4G) + With Charging Stand + AC adapter

Remark: For Radiated Test Cases, The tests were performance with Adapter

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	BT Speaker	JBL	Charge3	N/A	N/A	N/A
2.	WLAN AP	TP_Link	DBWRT01R	N/A	N/A	N/A
3.	Light bulb	philips	097	N/A	N/A	N/A
4.	Stand	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

$Offset = RF\ cable\ loss + attenuator\ factor.$

Following shows an offset computation example with cable loss 1.2 dB and 10dB attenuator.

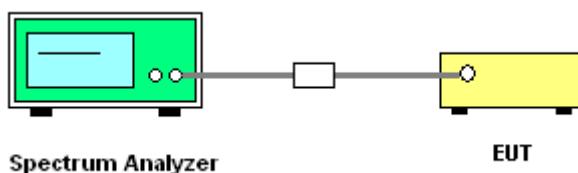
$$\begin{aligned}Offset(dB) &= RF\ cable\ loss(dB) + attenuator\ factor(dB). \\&= 1.2 + 10 = 11.2\ (dB)\end{aligned}$$

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

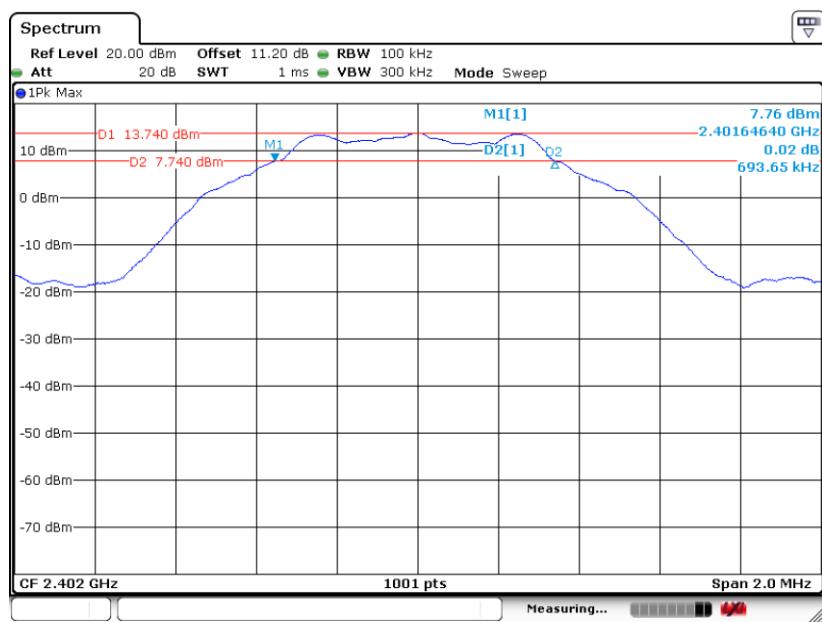

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

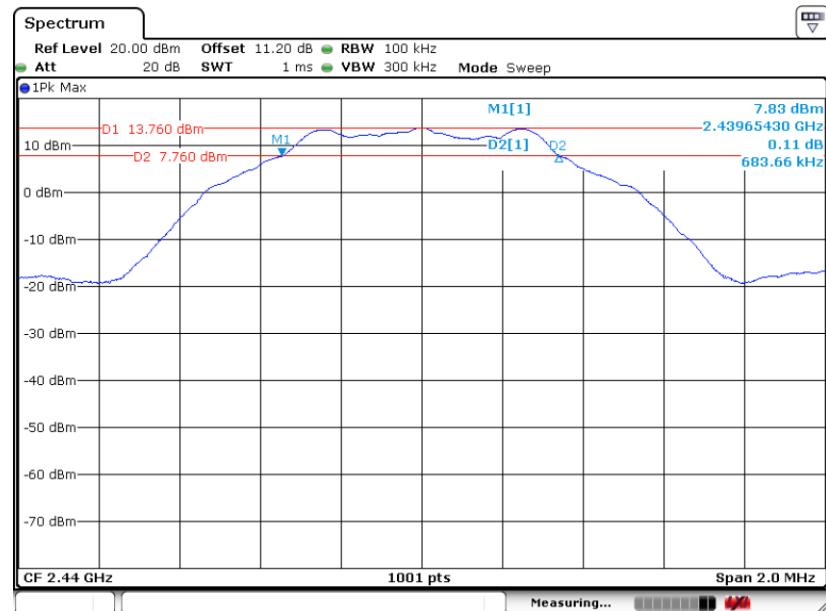
1. The testing follows ANSI C63.10-2013 clause 11.8
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
6. Measure and record the results in the test report.

3.1.4 Test Setup

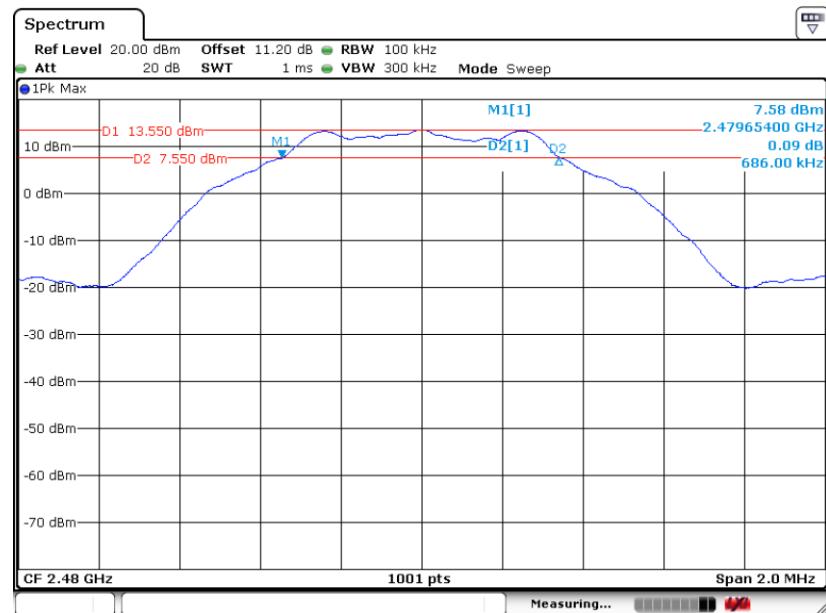


3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.


Bluetooth LE 1Mbps:

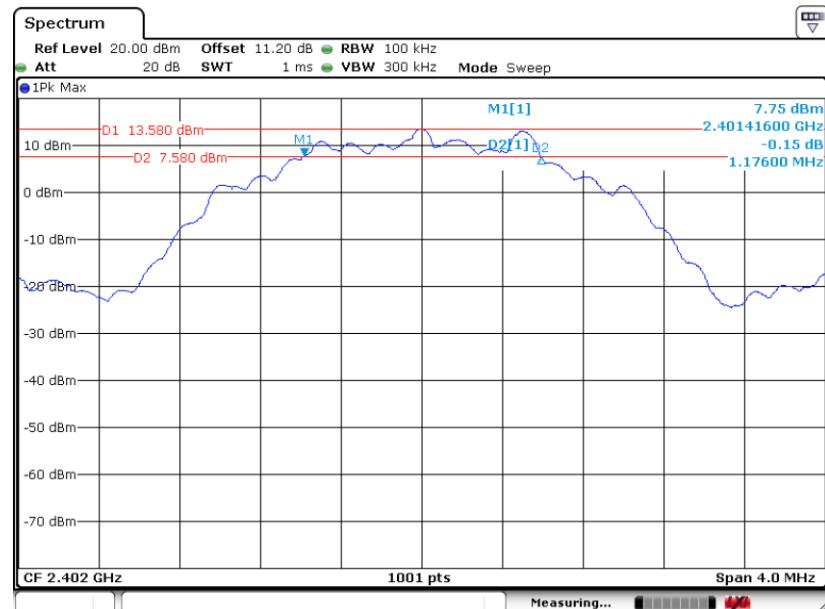
6 dB Bandwidth Plot on Channel 00



6 dB Bandwidth Plot on Channel 19

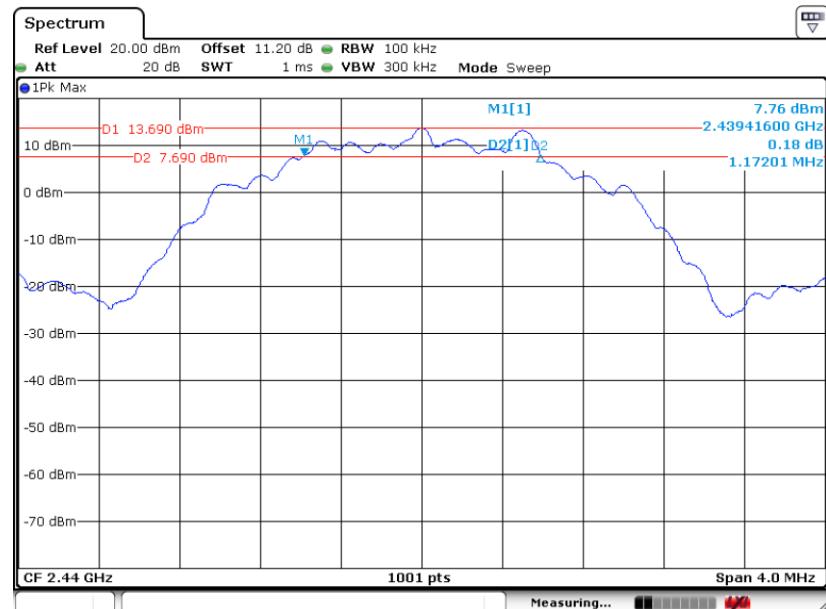
Date: 18.MAR.2023 17:18:36

6 dB Bandwidth Plot on Channel 39

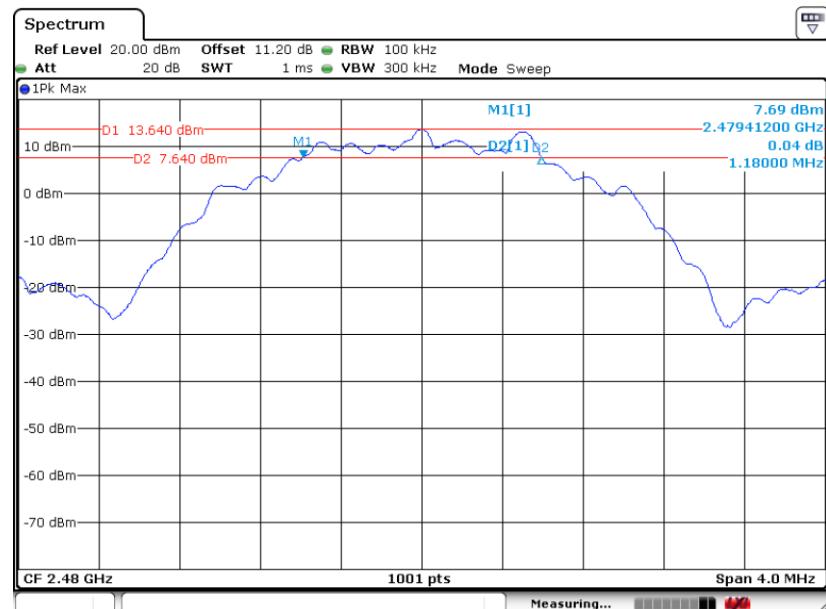


Date: 18.MAR.2023 17:21:22

Bluetooth LE 2Mbps:


6 dB Bandwidth Plot on Channel 00

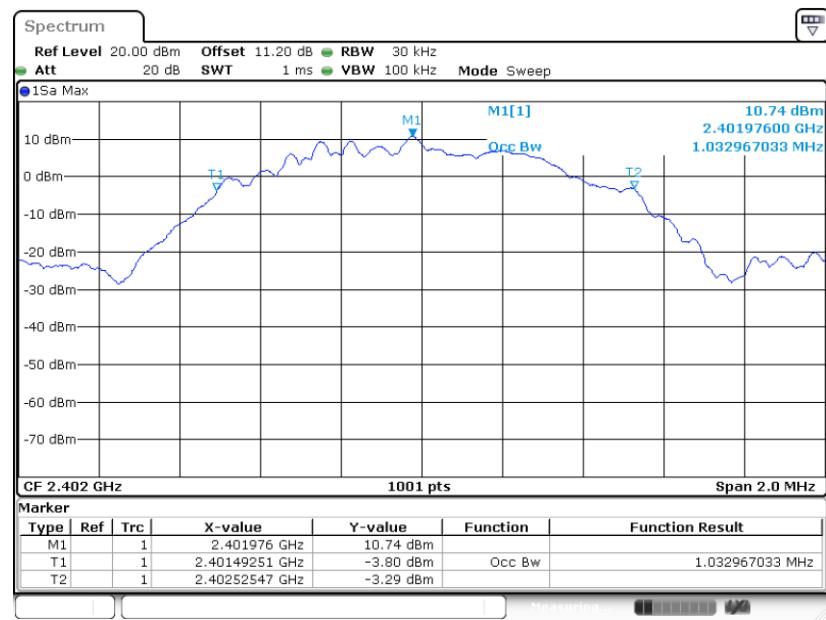
Date: 18.MAR.2023 17:25:48



6 dB Bandwidth Plot on Channel 19

Date: 18.MAR.2023 17:31:44

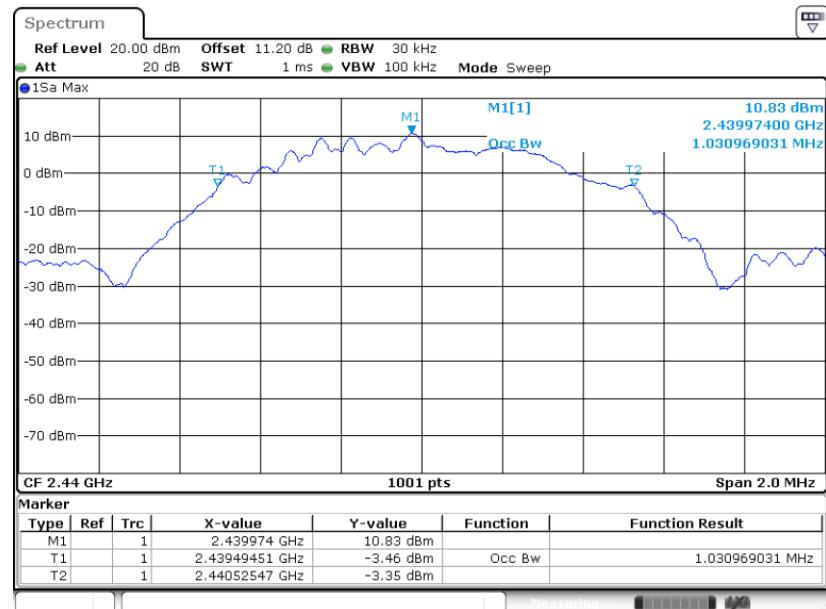
6 dB Bandwidth Plot on Channel 39


Date: 18.MAR.2023 17:35:07

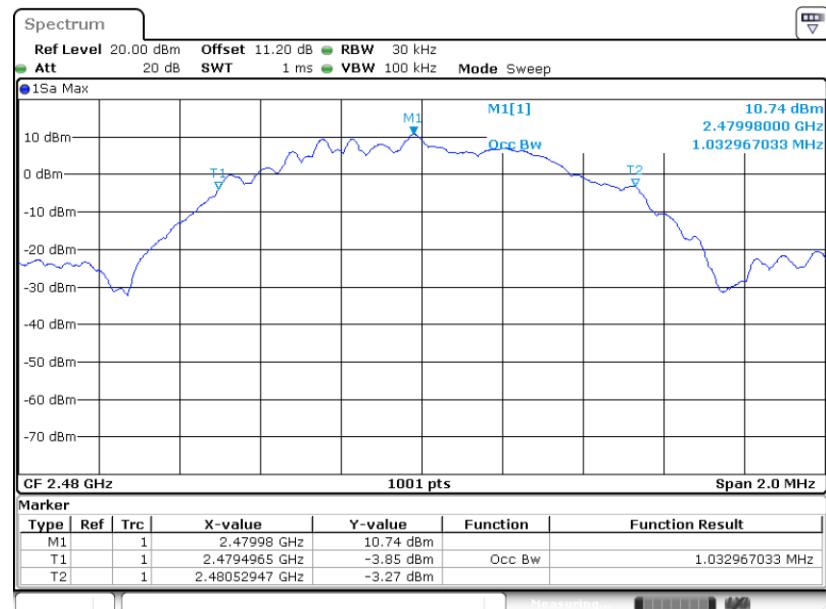
3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

Bluetooth LE 1Mbps:


99% Occupied Bandwidth Plot on Channel 00

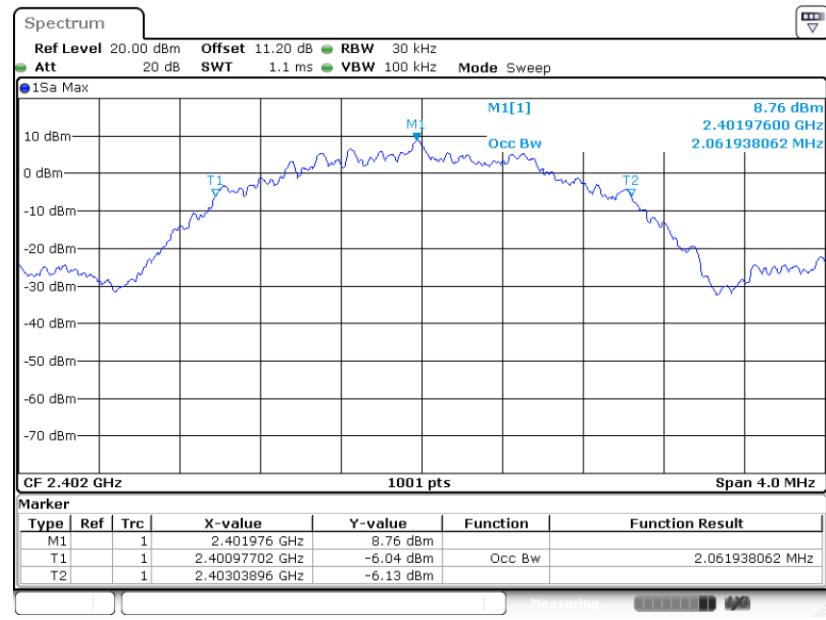
Date: 18.MAR.2023 17:14:13



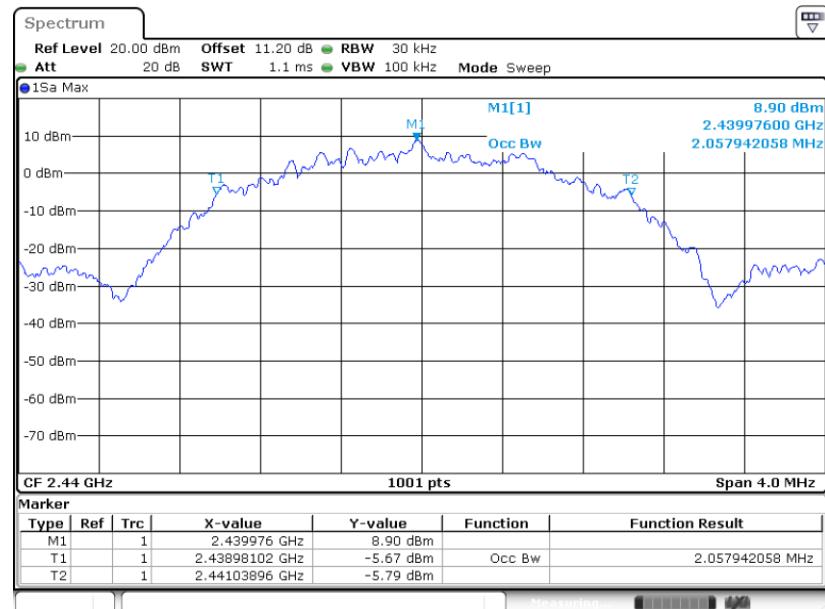
99% Occupied Bandwidth Plot on Channel 19

Date: 18.MAR.2023 17:20:15

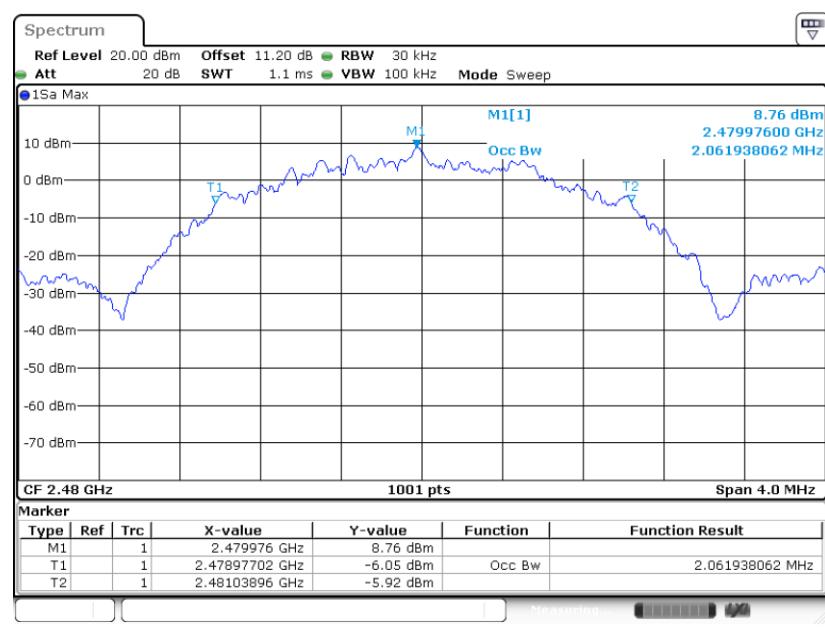
99% Occupied Bandwidth Plot on Channel 39



Date: 21.MAR.2023 04:51:21



Bluetooth LE 2Mbps:


99% Occupied Bandwidth Plot on Channel 00

99% Occupied Bandwidth Plot on Channel 19

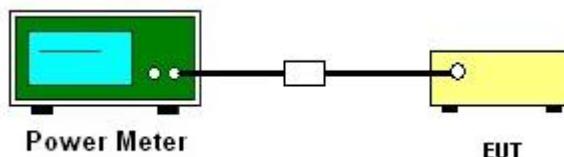
99% Occupied Bandwidth Plot on Channel 39

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

1. The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

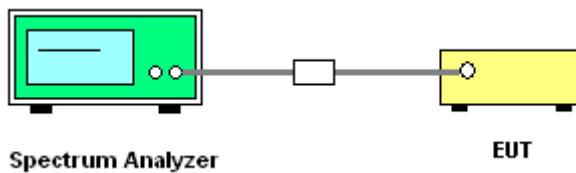
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

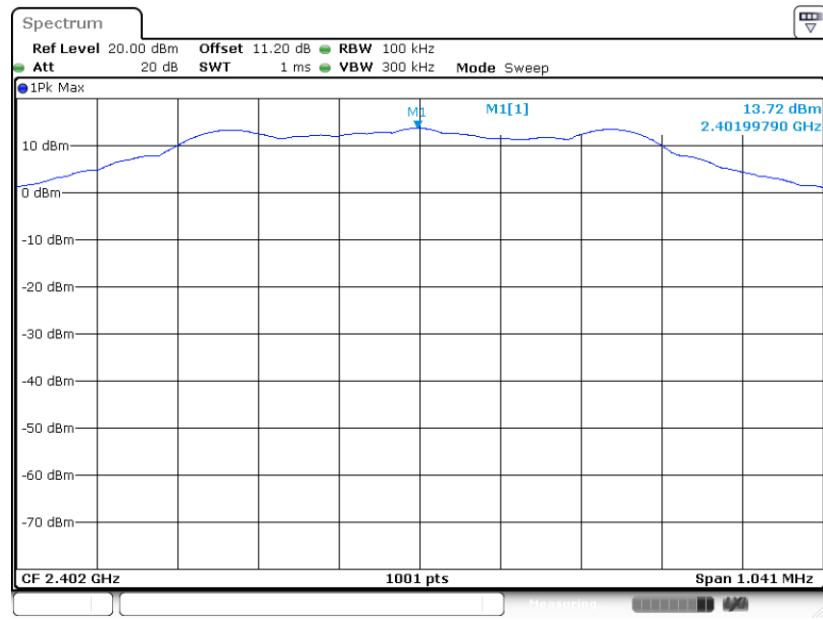
The section 4.0 of List of Measuring Equipment of this test report is used for test.

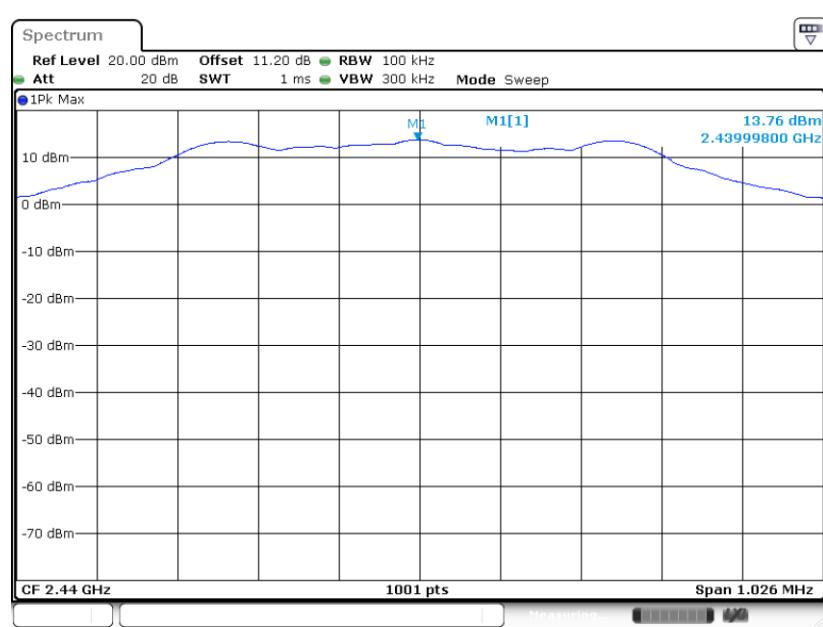
3.3.3 Test Procedures

1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
6. Measure and record the results in the test report.
7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

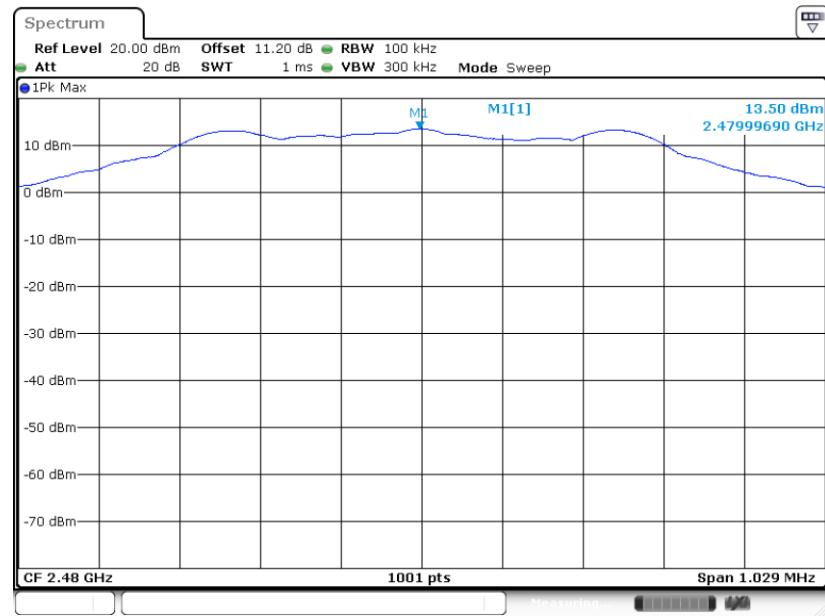
3.3.5 Test Result of Power Spectral Density


Please refer to Appendix A.

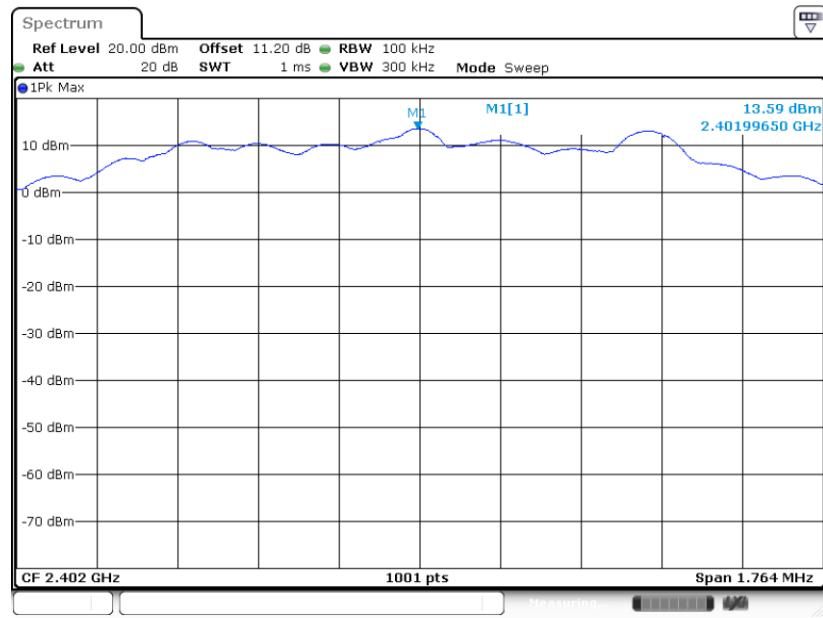

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

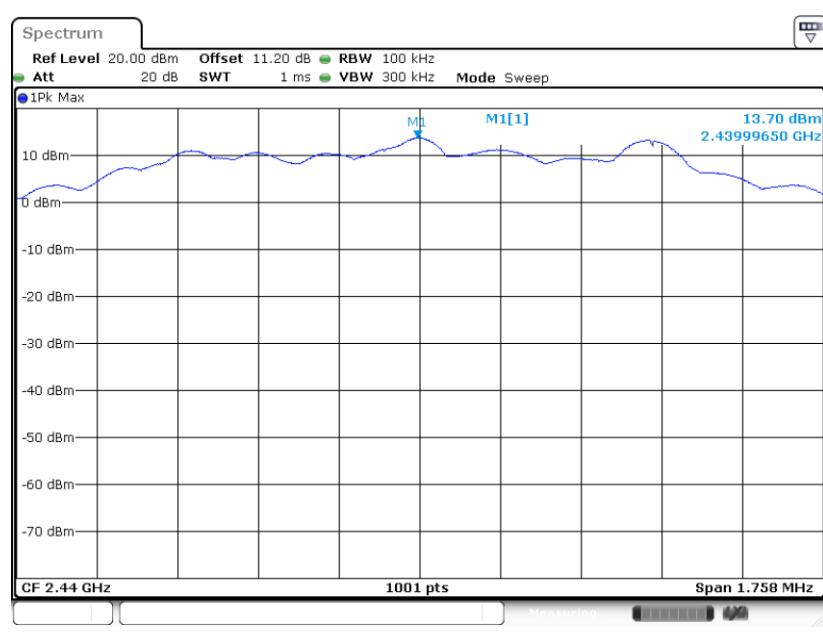
Bluetooth LE 1Mbps:

PSD 100kHz Plot on Channel 00



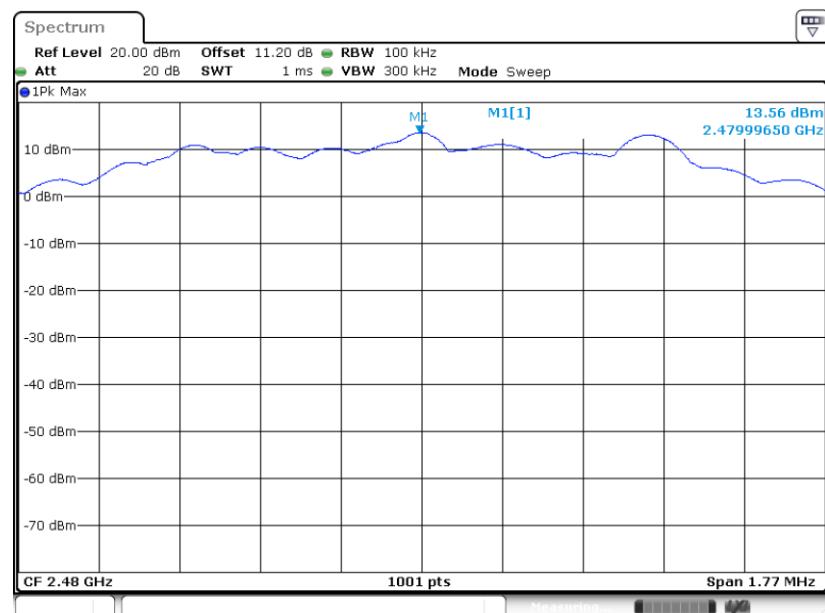
PSD 100kHz Plot on Channel 19


PSD 100kHz Plot on Channel 39



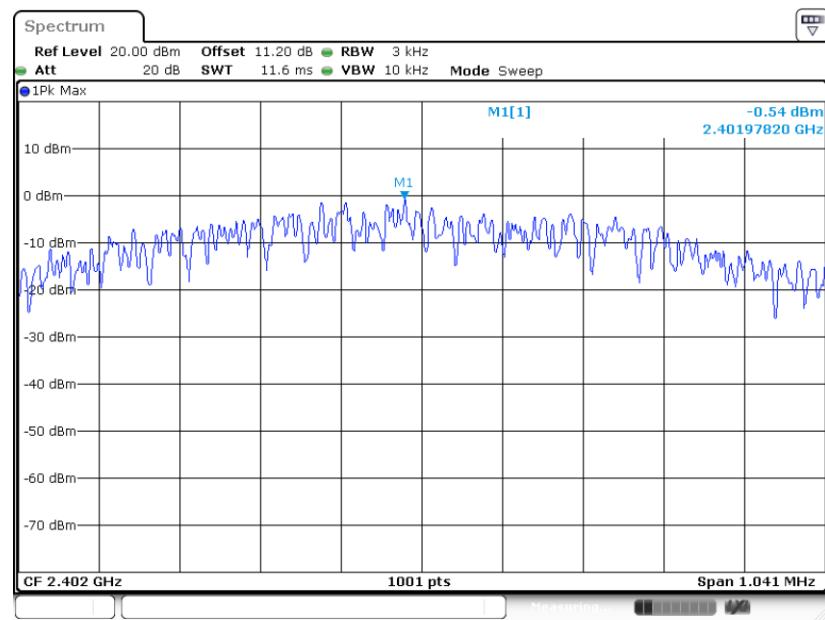
Bluetooth LE 2Mbps:

PSD 100kHz Plot on Channel 00

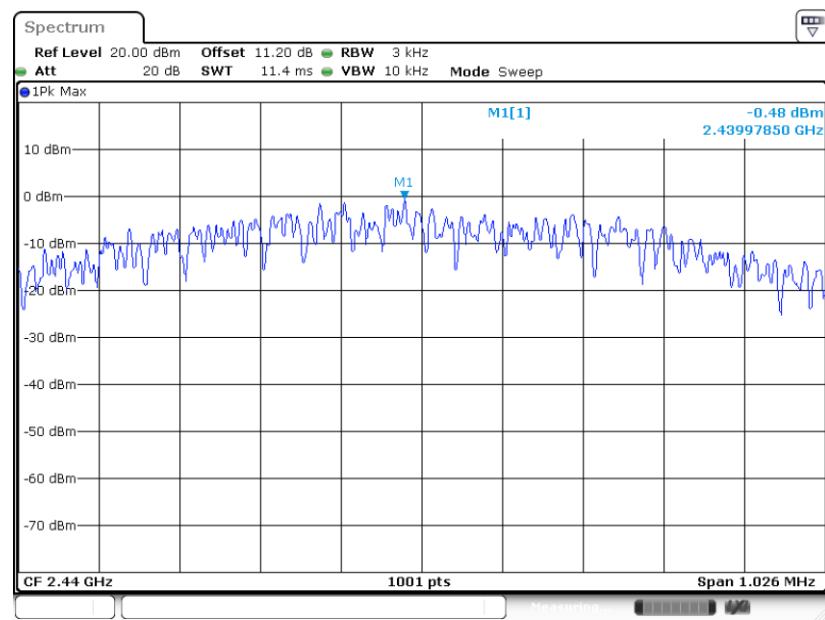


PSD 100kHz Plot on Channel 19

PSD 100kHz Plot on Channel 39

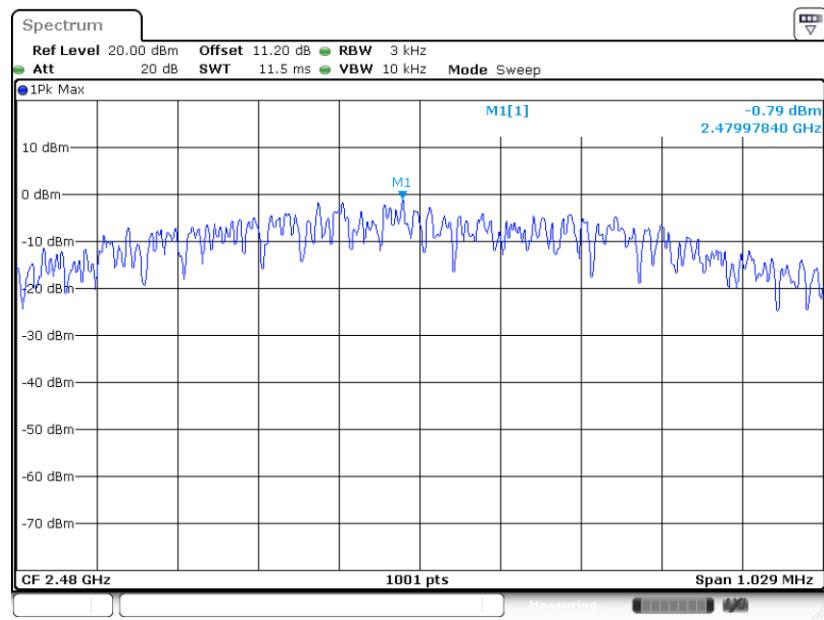

Date: 18.MAR.2023 17:36:45

3.3.7 Test Result of Power Spectral Density Plots (3kHz)


Bluetooth LE 1Mbps:

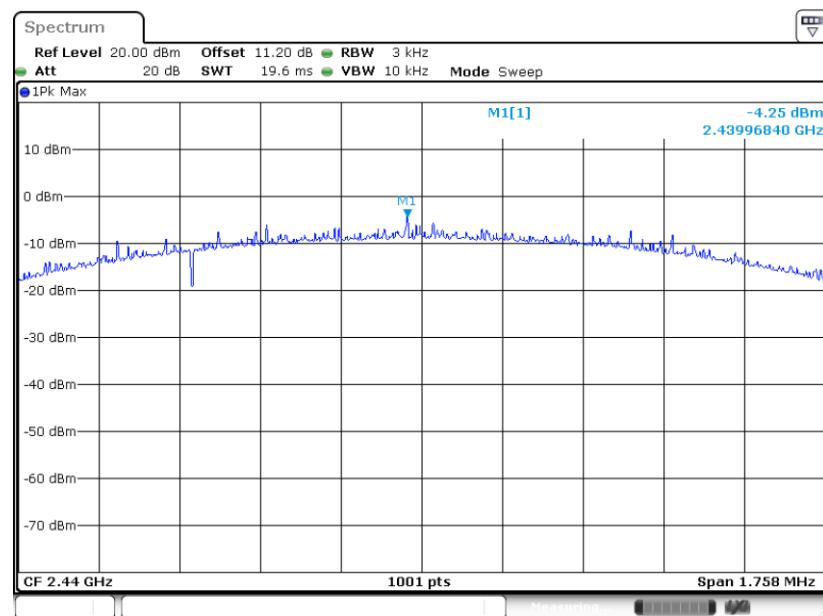
PSD 3kHz Plot on Channel 00

Date: 18.MAR.2023 17:09:54


PSD 3kHz Plot on Channel 19

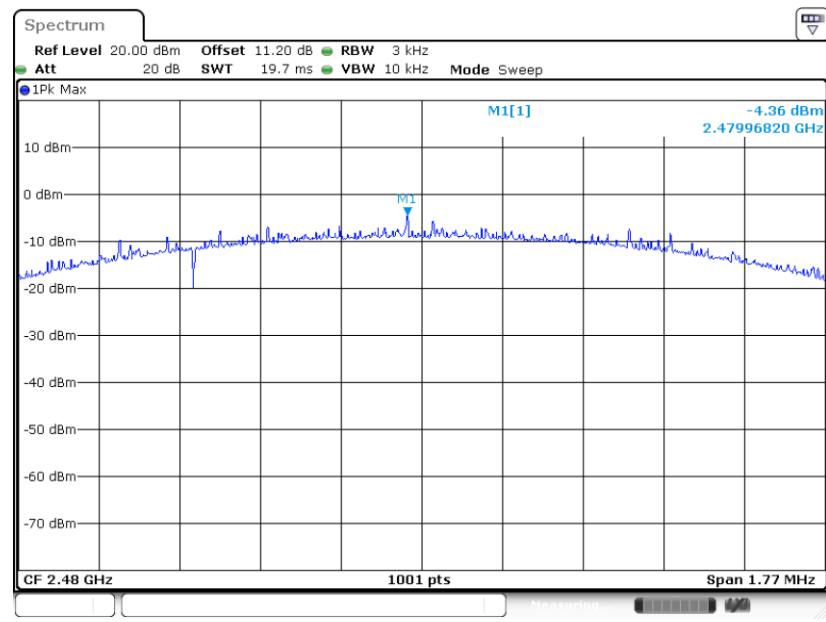
Date: 18.MAR.2023 17:18:53


PSD 3kHz Plot on Channel 39



Bluetooth LE 2Mbps:

PSD 3kHz Plot on Channel 00



PSD 3kHz Plot on Channel 19

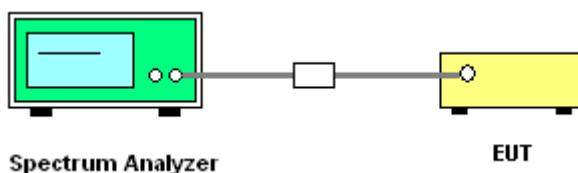
PSD 3kHz Plot on Channel 39

Date: 18.MAR.2023 17:36:32

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

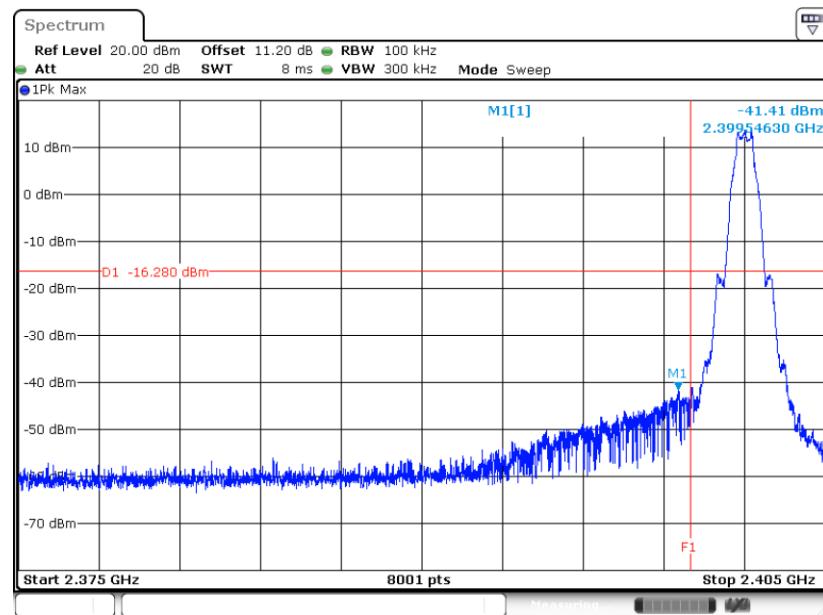
All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

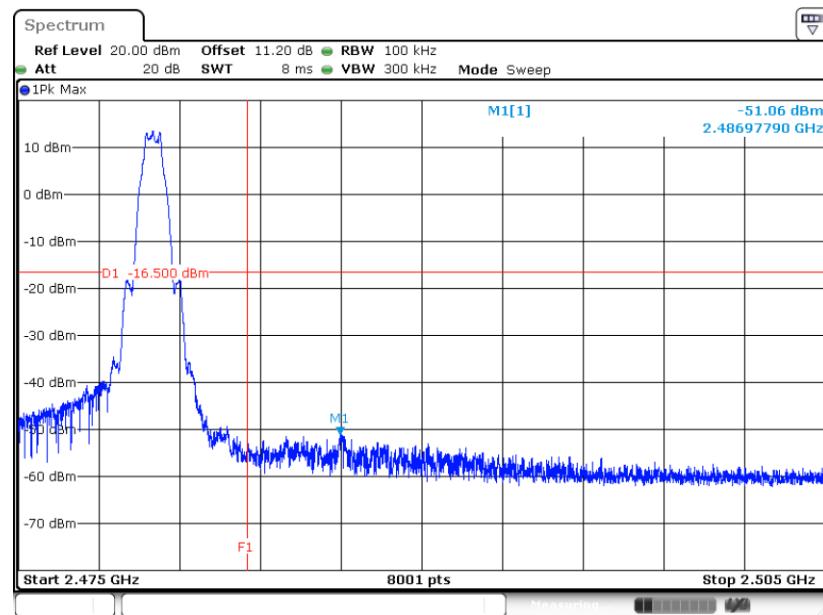
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

1. The testing follows ANSI C63.10-2013 clause 11.13
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
5. Measure and record the results in the test report.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

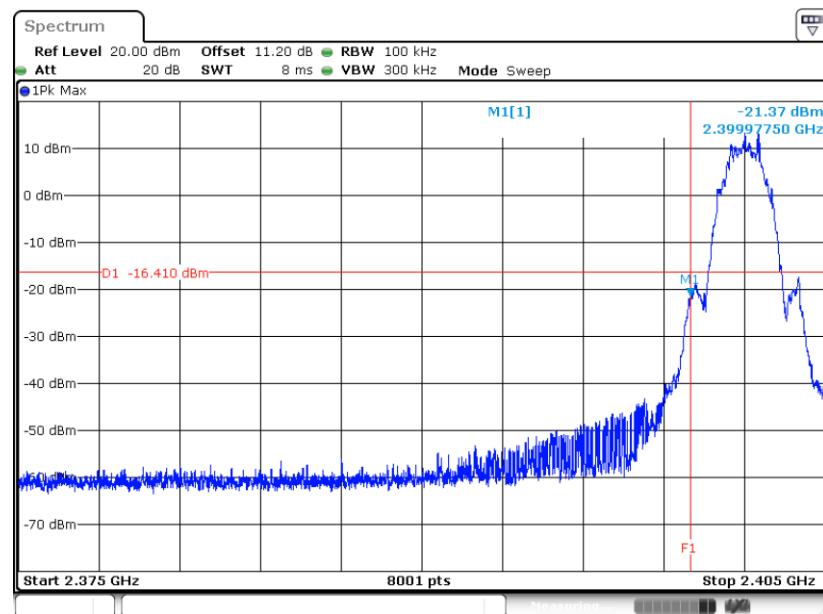
3.4.5 Test Result of Conducted Band Edges Plots


Bluetooth LE 1Mbps:

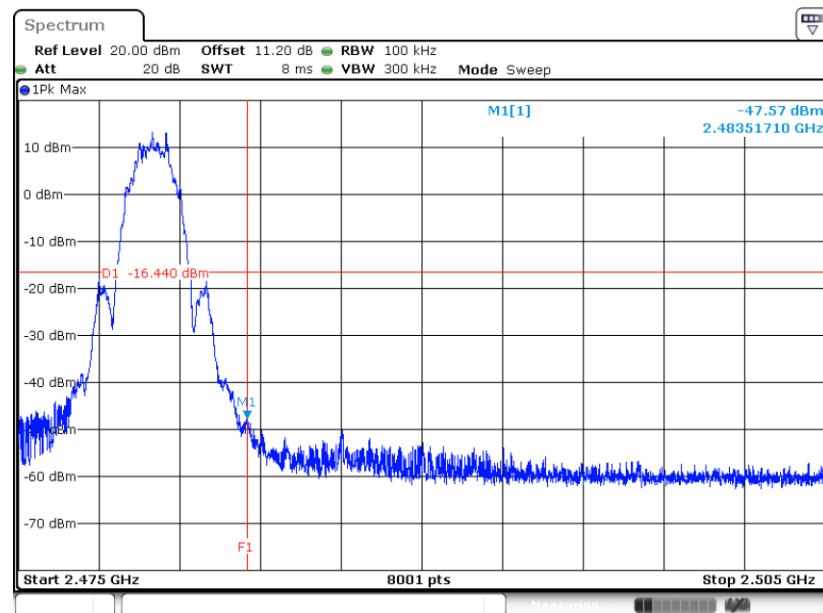
Low Band Edge Plot on Channel 00

Date: 18.MAR.2023 17:10:16

High Band Edge Plot on Channel 39



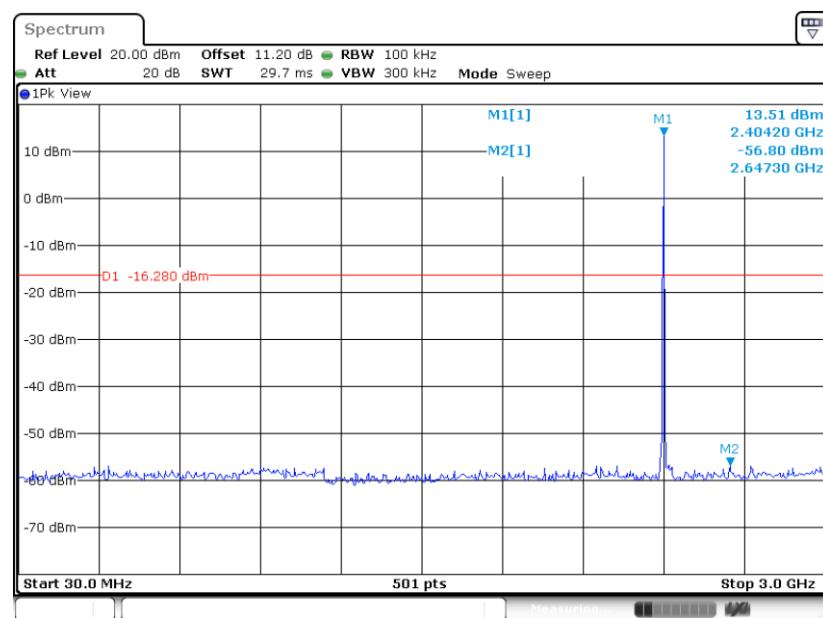
Date: 18.MAR.2023 17:22:44


Bluetooth LE 2Mbps:

Low Band Edge Plot on Channel 00

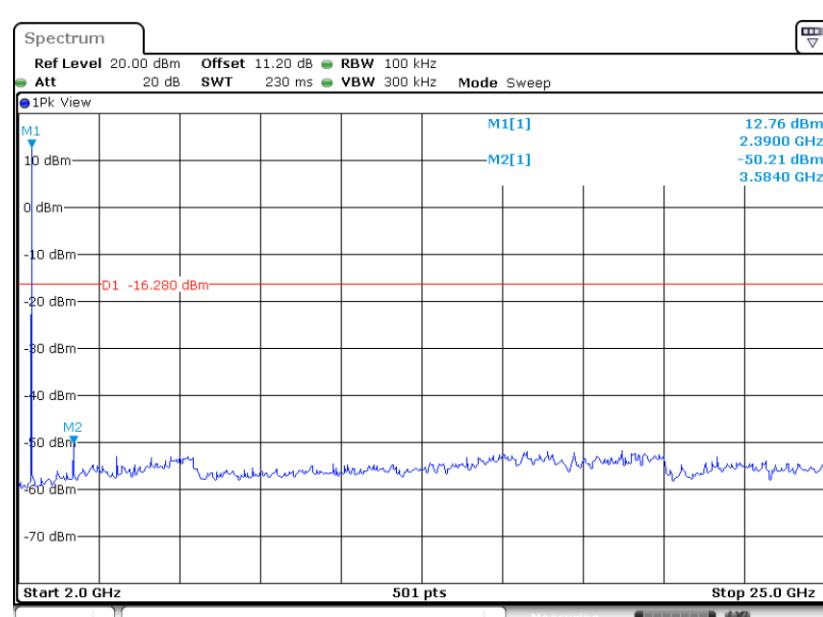
Date: 18.MAR.2023 17:27:49

High Band Edge Plot on Channel 39

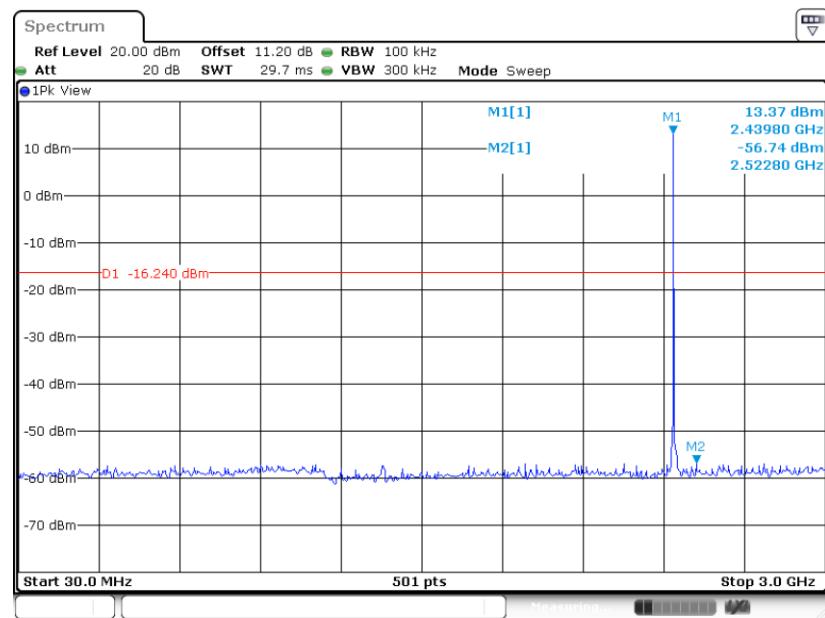

Date: 18.MAR.2023 17:37:06

3.4.6 Test Result of Conducted Spurious Emission Plots

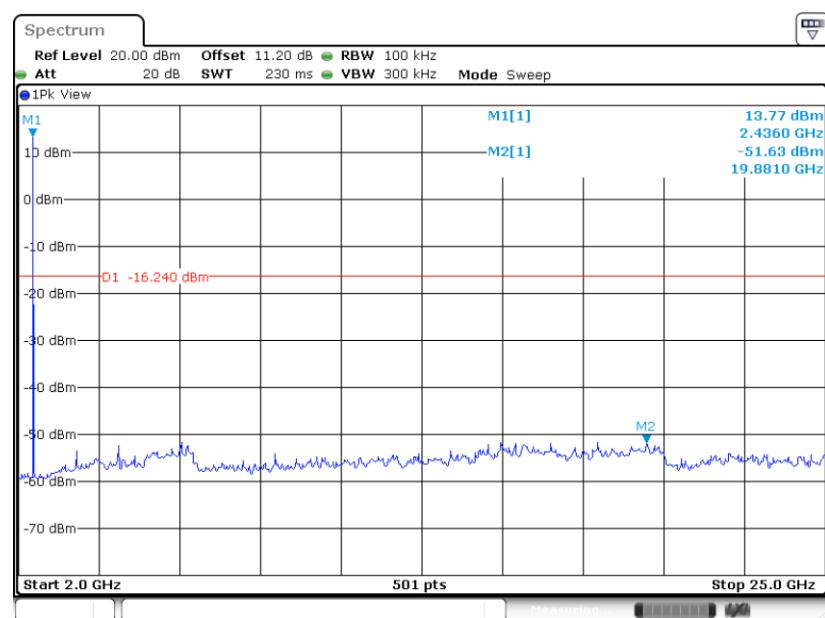
Bluetooth LE 1Mbps:


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 00

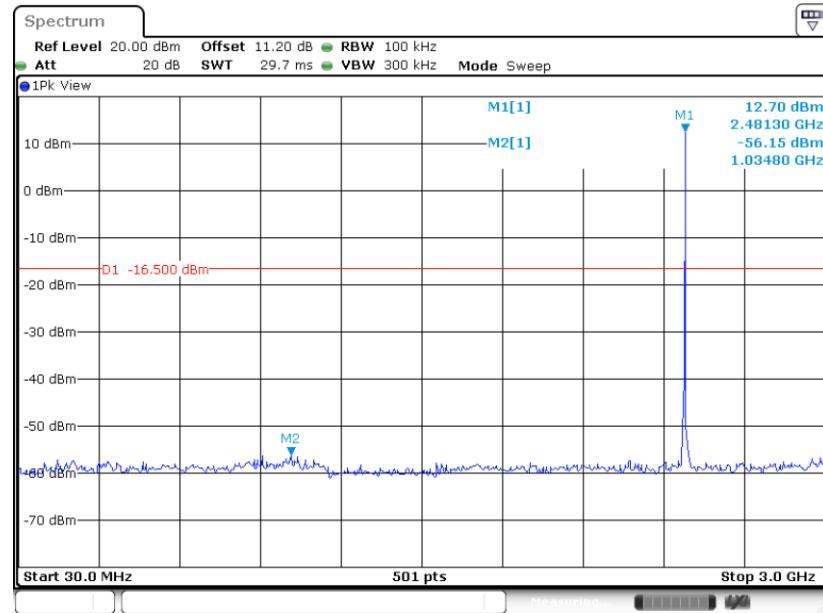

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

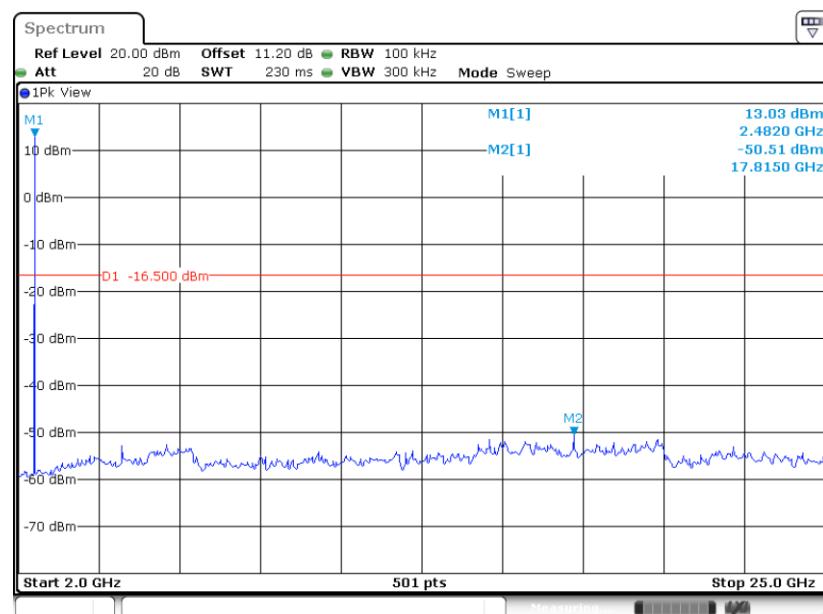
GFSK Channel 00


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 19

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

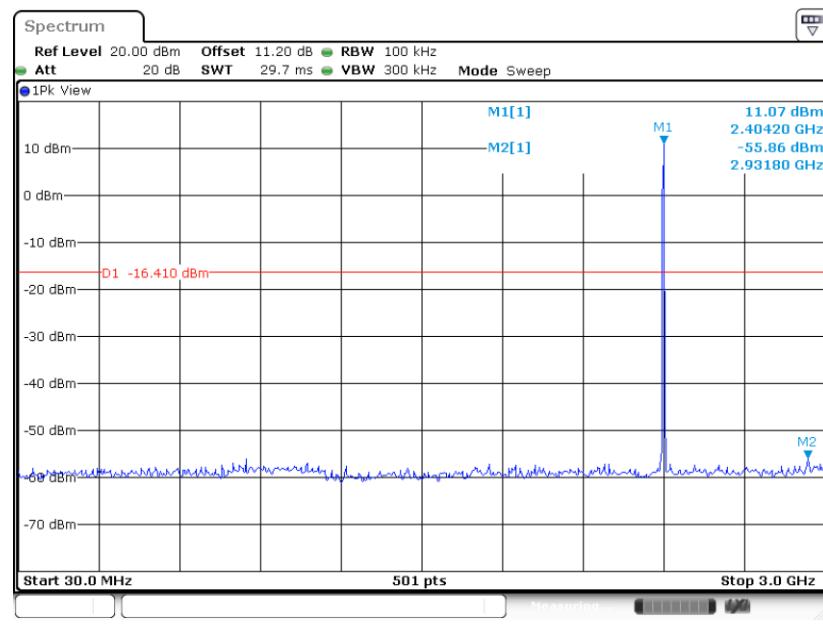

GFSK Channel 19


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

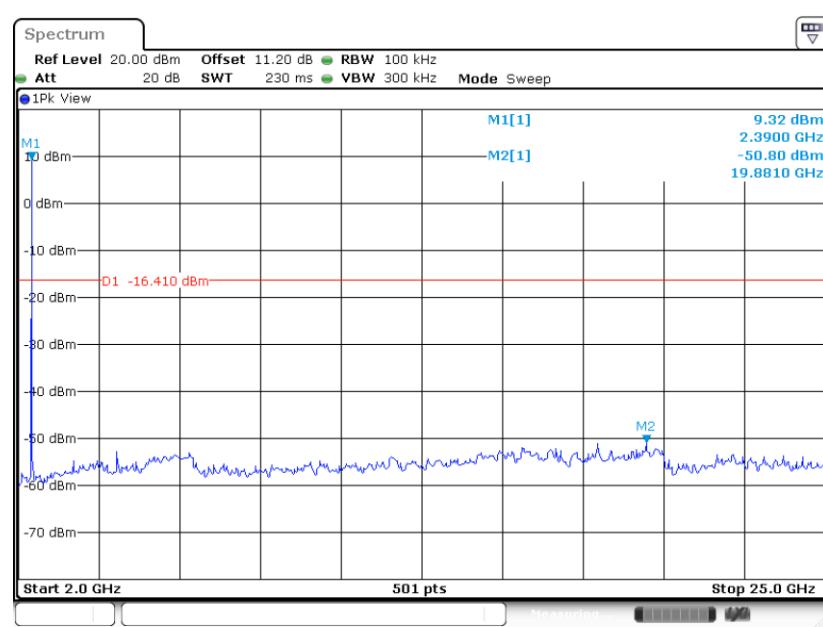
GFSK Channel 39

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 39

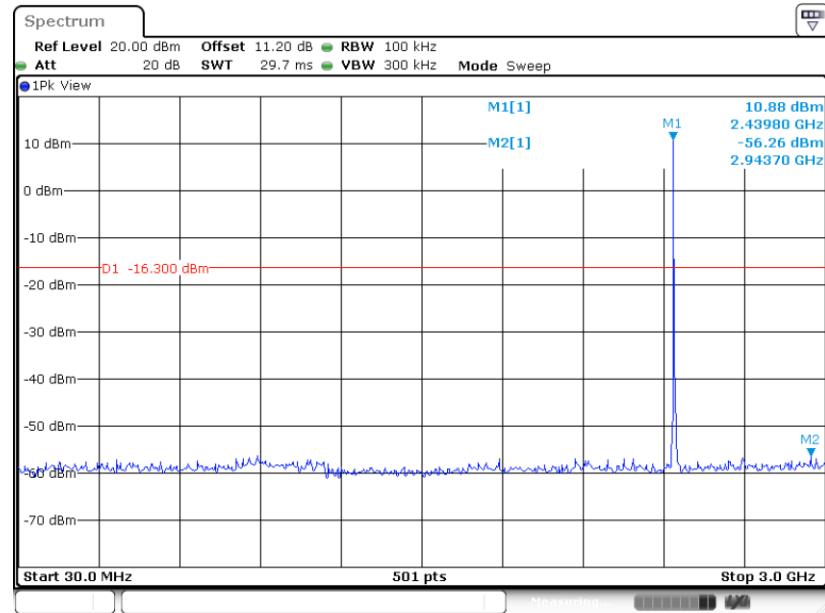


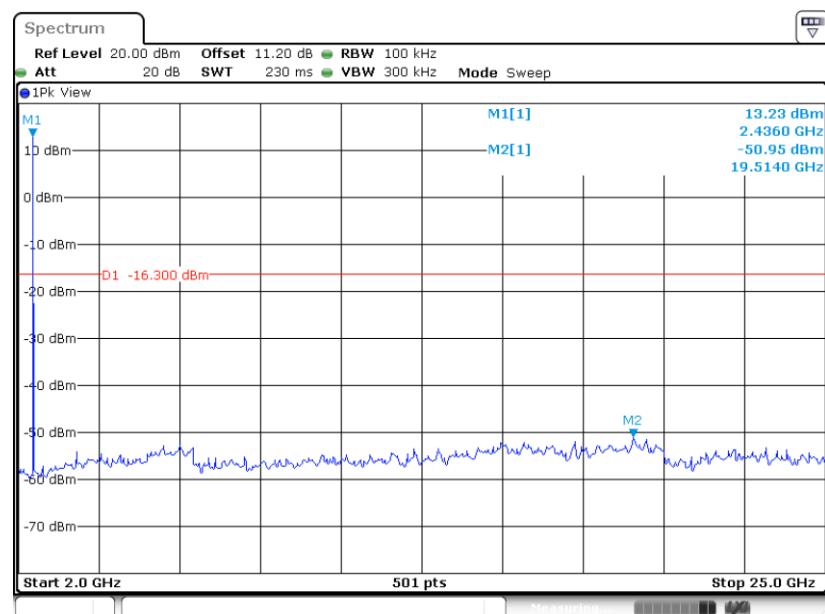
Bluetooth LE 2Mbps:


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

GFSK Channel 00

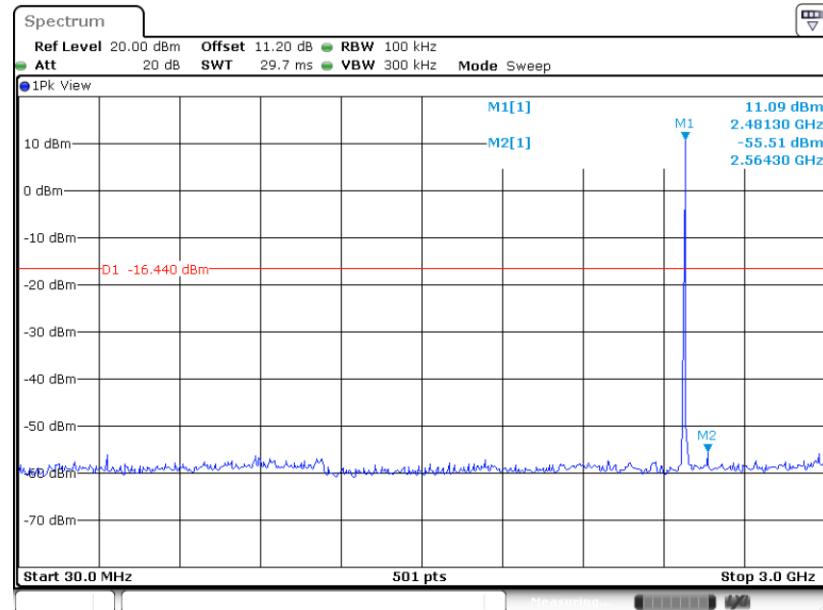
Conducted Spurious Emission Plot on Bluetooth LE 2Mbps


GFSK Channel 00

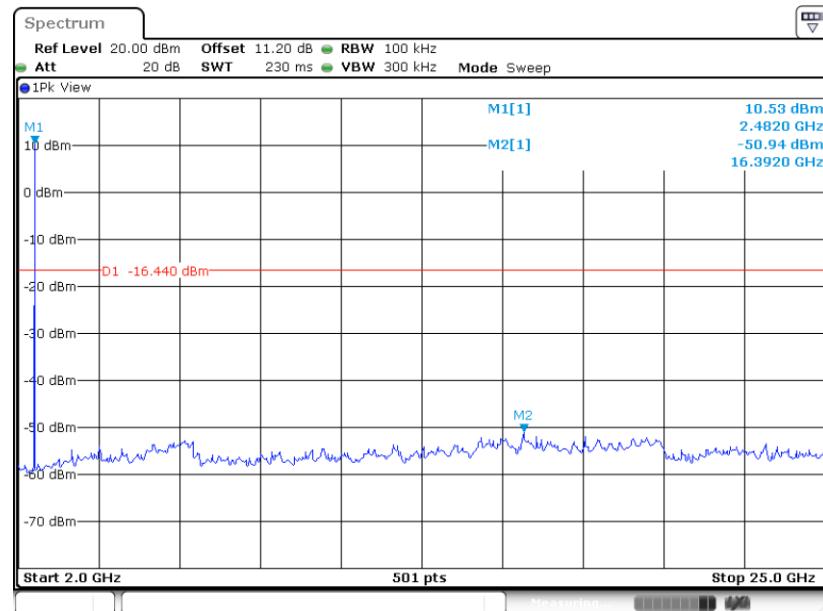

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

GFSK Channel 19

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps


GFSK Channel 19

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps


GFSK Channel 39

Date: 18.MAR.2023 17:37:44

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

GFSK Channel 39

Date: 18.MAR.2023 17:37:55

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

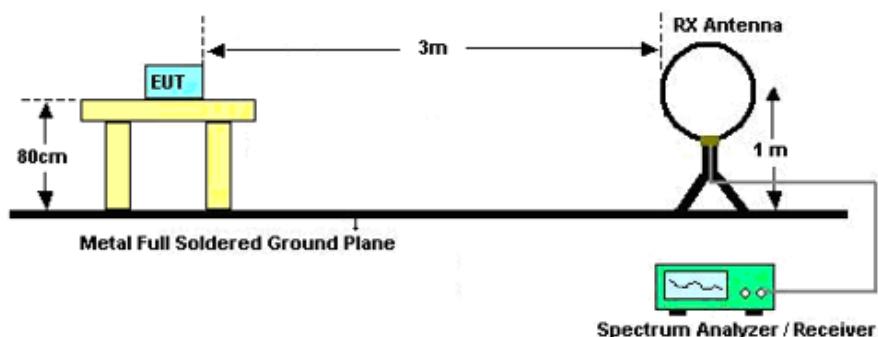
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

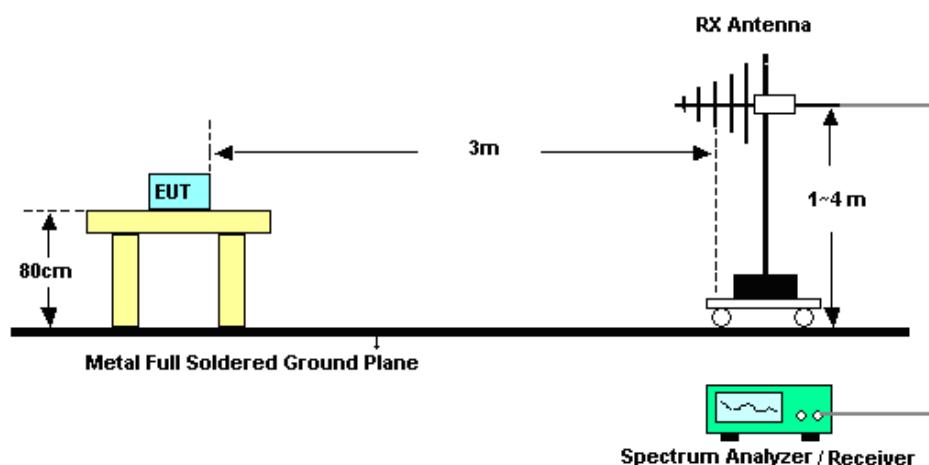
3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

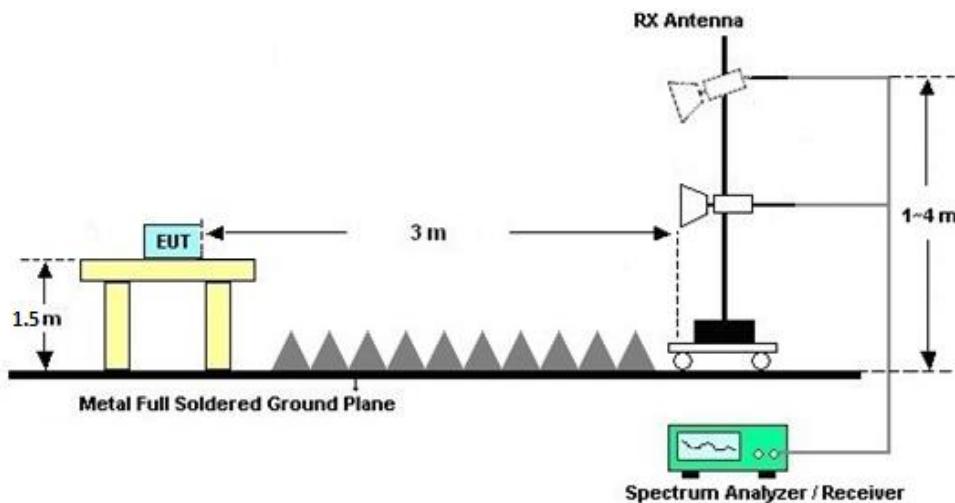
3.5.3 Test Procedures


1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for $f < 1$ GHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \geq 1$ GHz for peak measurement.

For average measurement:


 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C&D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C&D.

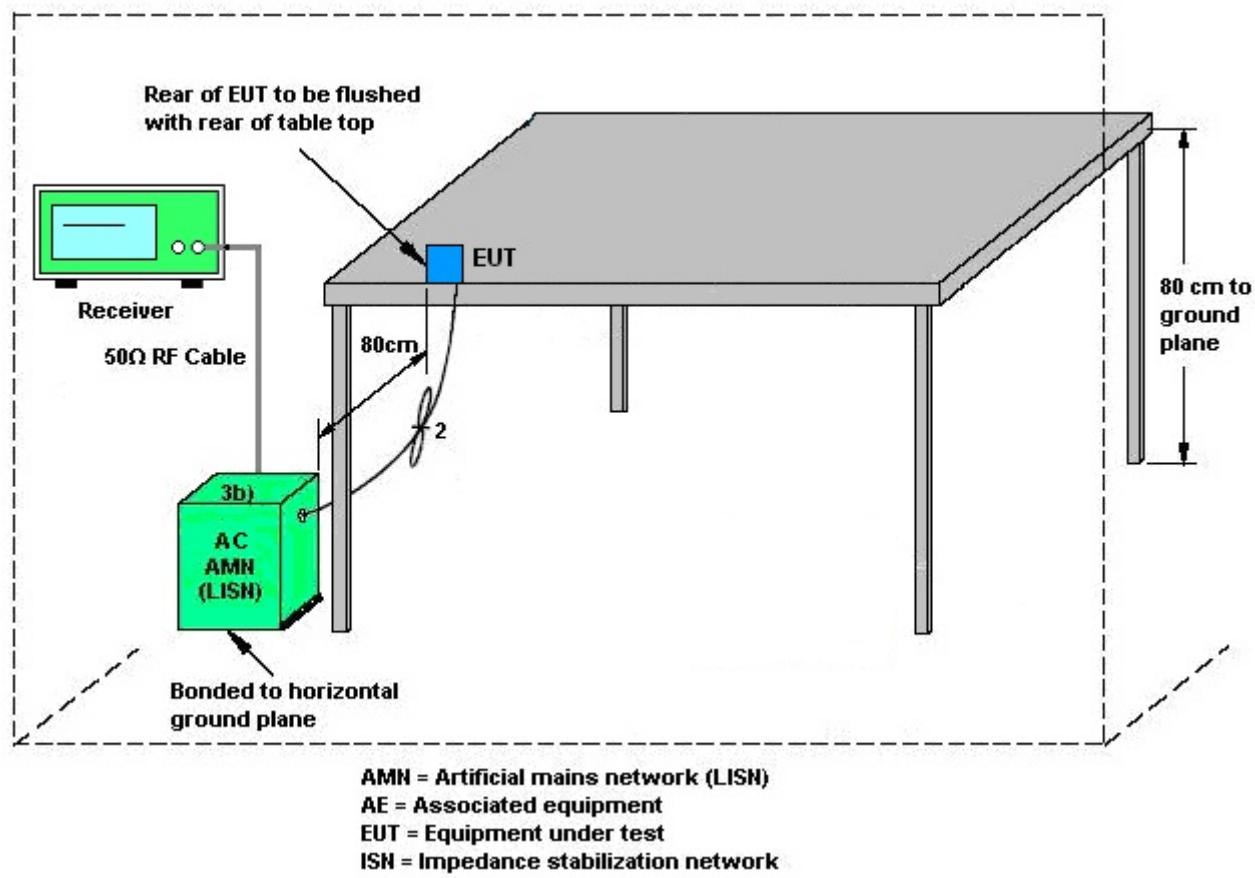
3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.


3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Mar. 18, 2023~Mar. 21, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Mar. 18, 2023~Mar. 21, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	Mar. 18, 2023~Mar. 21, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Attenuator	MICROWAV	EMVE2214-10	2	30MHz~26.5GHz	Feb. 22, 2023	Mar. 18, 2023~Mar. 21, 2023	Feb. 22, 2024	Conducted (TH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY55150213	10Hz~44GHz	Jul. 07, 2022	Mar. 11, 2023~Apr. 27, 2023	Jul. 06, 2023	Radiation (03CH02-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Mar. 11, 2023~Apr. 27, 2023	Jul. 27, 2024	Radiation (03CH02-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz~2GHz	Sep. 28, 2021	Mar. 11, 2023~Apr. 27, 2023	Sep. 27, 2023	Radiation (03CH02-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 07, 2022	Mar. 11, 2023~Apr. 27, 2023	Jul. 06, 2023	Radiation (03CH02-SZ)
HF Amplifier	MITEQ	TTA1840-35-HG	1871923	18GHz~40GHz	Jul. 07, 2022	Mar. 11, 2023~Apr. 27, 2023	Jul. 06, 2023	Radiation (03CH02-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz~40GHz	Apr. 09, 2022	Mar. 11, 2023~Apr. 27, 2023	Apr. 08, 2023	Radiation (03CH02-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz~40GHz	Apr. 08, 2023	Mar. 11, 2023~Apr. 27, 2023	Apr. 07, 2024	Radiation (03CH02-SZ)
LF Amplifier	Burgeon	BPA-530	102211	0.01~3000Mhz	Oct. 19, 2022	Mar. 11, 2023~Apr. 27, 2023	Oct.18, 2023	Radiation (03CH02-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P-R	1943528	1GHz~18GHz	Oct. 19, 2022	Mar. 11, 2023~Apr. 27, 2023	Oct. 18, 2023	Radiation (03CH02-SZ)
HF Amplifier	KEYSIGHT	83017A	MY53270105	0.5GHz~26.5GHz	Oct. 19, 2022	Mar. 11, 2023~Apr. 27, 2023	Oct. 18, 2023	Radiation (03CH02-SZ)
Attenuator	SolvangTech	STI02-3125-06	2	30MHz~26.5GHz	Jan. 27, 2023	Mar. 11, 2023~Apr. 27, 2023	Jan. 26, 2024	Radiation (03CH02-SZ)
AC Power Source	Chroma	61601	616010003043	N/A	Nov. 10, 2022	Mar. 11, 2023~Apr. 27, 2023	Nov. 10, 2023	Radiation (03CH02-SZ)
Turn Table	Chaintek	T-200	N/A	0~360 degree	NCR	Mar. 11, 2023~Apr. 27, 2023	NCR	Radiation (03CH02-SZ)
Antenna Mast	Chaintek	MBS-400	N/A	1 m~4 m	NCR	Mar. 11, 2023~Apr. 27, 2023	NCR	Radiation (03CH02-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Aug. 31, 2023	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 15, 2022	Aug. 31, 2023	Sep. 14, 2023	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2022	Aug. 31, 2023	Oct. 16, 2023	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891	100Vac~250Vac	Jul. 07, 2023	Aug. 31, 2023	Jul. 06, 2024	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Power	± 1.34 dB
Conducted Emissions	± 1.34 dB
Occupied Channel Bandwidth	± 0.13 %
Conducted Power Spectral Density	± 1.32 dB

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	2.7dB
--	-------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	5.0dB
--	-------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	5.1dB
--	-------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_c(y)$)	5.1dB
--	-------

----- THE END -----

Appendix A. Conducted Test Results

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Chen Ran				Temperature:	21~25	°C
Test Date:	2023/3/18~2023/3/21				Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> <u>6dB and 99% Occupied Bandwidth</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.033	0.694	0.50	Pass
BLE	1Mbps	1	19	2440	1.031	0.684	0.50	Pass
BLE	1Mbps	1	39	2480	1.033	0.686	0.50	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	2.14	8.80	30.00	3.00	11.80	36.00	Pass
BLE	1Mbps	1	19	2440	2.14	8.80	30.00	3.00	11.80	36.00	Pass
BLE	1Mbps	1	39	2480	2.14	8.60	30.00	3.00	11.60	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	13.72	-0.54	3.00	8.00	Pass
BLE	1Mbps	1	19	2440	13.76	-0.48	3.00	8.00	Pass
BLE	1Mbps	1	39	2480	13.50	-0.79	3.00	8.00	Pass

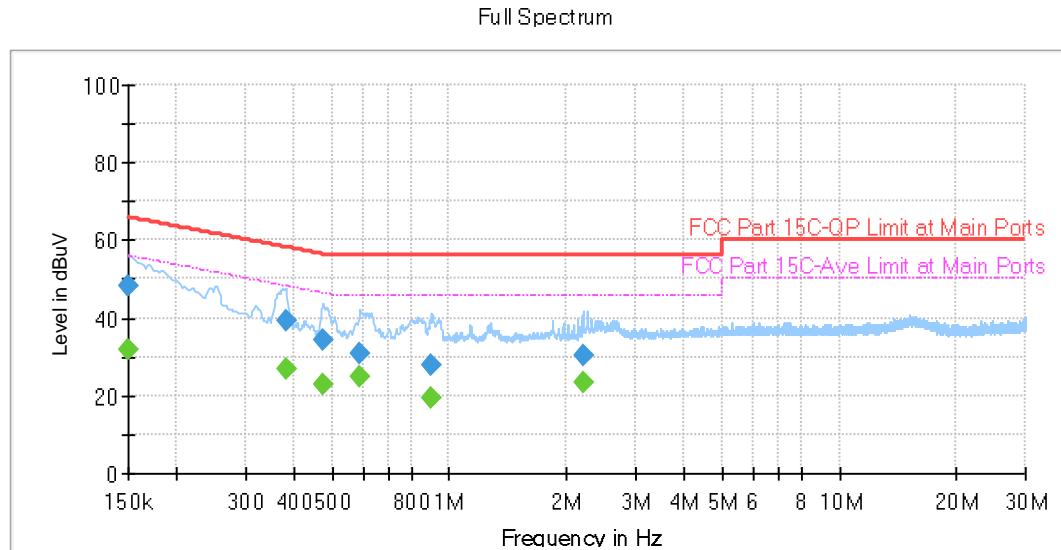
Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Chen Ran				Temperature:	21~25		°C
Test Date:	2023/3/18~2023/3/21				Relative Humidity:	51~54		%

<u>TEST RESULTS DATA</u> <u>6dB and 99% Occupied Bandwidth</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.062	1.176	0.50	Pass
BLE	2Mbps	1	19	2440	2.058	1.172	0.50	Pass
BLE	2Mbps	1	39	2480	2.062	1.180	0.50	Pass

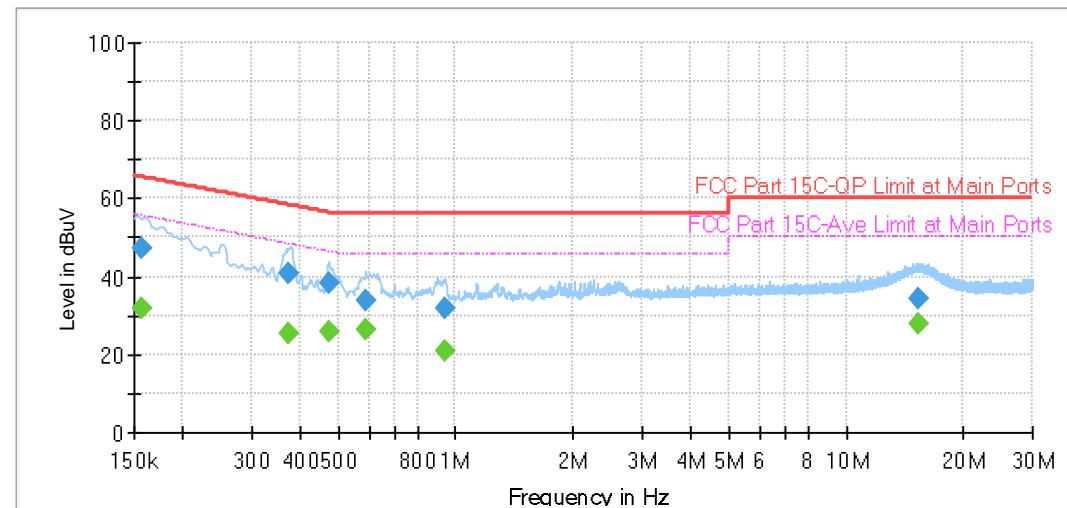
<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	2.43	8.70	30.00	3.00	11.70	36.00	Pass
BLE	2Mbps	1	19	2440	2.43	8.70	30.00	3.00	11.70	36.00	Pass
BLE	2Mbps	1	39	2480	2.43	8.50	30.00	3.00	11.50	36.00	Pass


<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	13.59	-4.33	3.00	8.00	Pass
BLE	2Mbps	1	19	2440	13.70	-4.25	3.00	8.00	Pass
BLE	2Mbps	1	39	2480	13.56	-4.36	3.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Appendix B. AC Conducted Emission Test Results

Test Engineer :	TaoZhang	Temperature :	24~25°C
		Relative Humidity :	48~49%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Remark :	All emissions not reported here are more than 10 dB below the prescribed limit.		



Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000	48.07	---	66.00	17.93	L1	OFF	19.7
0.150000	---	31.65	56.00	24.35	L1	OFF	19.7
0.381750	39.07	---	58.24	19.17	L1	OFF	19.7
0.381750	---	27.06	48.24	21.18	L1	OFF	19.7
0.473640	34.08	---	56.45	22.37	L1	OFF	19.7
0.473640	---	22.72	46.45	23.73	L1	OFF	19.7
0.586500	31.09	---	56.00	24.91	L1	OFF	19.8
0.586500	---	24.89	46.00	21.11	L1	OFF	19.8
0.899880	27.94	---	56.00	28.06	L1	OFF	19.8
0.899880	---	19.23	46.00	26.77	L1	OFF	19.8
2.197590	30.37	---	56.00	25.63	L1	OFF	19.8
2.197590	---	23.16	46.00	22.84	L1	OFF	19.8

Test Engineer :	TaoZhang	Temperature :	24~25°C
Test Voltage :	120Vac / 60Hz	Relative Humidity :	48~49%
Remark :	All emissions not reported here are more than 10 dB below the prescribed limit.		

Full Spectrum

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Line	Filter	Corr. (dB)
0.156750	47.11	---	65.63	18.52	N	OFF	19.7
0.156750	---	31.69	55.63	23.95	N	OFF	19.7
0.372750	40.88	---	58.44	17.56	N	OFF	19.7
0.372750	---	25.30	48.44	23.14	N	OFF	19.7
0.473280	38.07	---	56.46	18.39	N	OFF	19.7
0.473280	---	25.99	46.46	20.46	N	OFF	19.7
0.587940	33.73	---	56.00	22.27	N	OFF	19.7
0.587940	---	26.51	46.00	19.49	N	OFF	19.7
0.939030	31.99	---	56.00	24.01	N	OFF	19.7
0.939030	---	20.77	46.00	25.23	N	OFF	19.7
15.398250	34.35	---	60.00	25.65	N	OFF	20.2
15.398250	---	27.67	50.00	22.33	N	OFF	20.2

Appendix C. Radiated Spurious Emission

Test Engineer :	Shun ping You	Temperature :		24~25°C	
		Relative Humidity :		48~49%	

<BLE1M>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 00 2402MHz		2388.33	53.52	-20.48	74	46.45	32.36	6.44	31.73	184	171	P	H
		2389.69	42.64	-11.36	54	35.57	32.36	6.44	31.73	184	171	A	H
	*	2402	111.63	-	-	104.56	32.36	6.44	31.73	184	171	P	H
	*	2402	110.56	-	-	103.49	32.36	6.44	31.73	184	171	A	H
		2368.27	53.64	-20.36	74	46.72	32.34	6.37	31.79	345	80	P	V
		2388.01	42.47	-11.53	54	35.4	32.36	6.44	31.73	345	80	A	V
	*	2402	107.15	-	-	100.08	32.36	6.44	31.73	345	80	P	V
	*	2402	106.29	-	-	99.22	32.36	6.44	31.73	345	80	A	V
BLE CH 19 2440MHz		2364.6	52.64	-21.36	74	45.72	32.34	6.37	31.79	180	170	P	H
		2370.48	42.5	-11.5	54	35.57	32.35	6.37	31.79	180	170	A	H
	*	2440	110.46	-	-	103.22	32.38	6.48	31.62	180	170	P	H
	*	2440	109.63	-	-	102.39	32.38	6.48	31.62	180	170	A	H
		2494.96	53.92	-20.08	74	46.49	32.4	6.53	31.5	180	170	P	H
		2489.85	42.95	-11.05	54	35.52	32.4	6.53	31.5	180	170	A	H
		2358.44	52.91	-21.09	74	46.05	32.34	6.37	31.85	330	72	P	V
		2381.54	42.36	-11.64	54	35.43	32.35	6.37	31.79	330	72	A	V
	*	2440	108.21	-	-	100.97	32.38	6.48	31.62	330	72	P	V
	*	2440	107.36	-	-	100.12	32.38	6.48	31.62	330	72	A	V
BLE CH 39 2480MHz		2493	52.98	-21.02	74	45.55	32.4	6.53	31.5	330	72	P	V
		2487.89	42.73	-11.27	54	35.36	32.4	6.53	31.56	330	72	A	V
	*	2480	110.42	-	-	103.06	32.39	6.53	31.56	173	172	P	H
	*	2480	109.51	-	-	102.15	32.39	6.53	31.56	173	172	A	H
		2487.56	58.86	-15.14	74	51.49	32.4	6.53	31.56	173	172	P	H
		2483.52	44.16	-9.84	54	36.8	32.39	6.53	31.56	173	172	A	H

	*	2480	106.17	-	-	98.81	32.39	6.53	31.56	334	70	P	V
	*	2480	105.34	-	-	97.98	32.39	6.53	31.56	334	70	A	V
		2487.68	57.02	-16.98	74	49.65	32.4	6.53	31.56	334	70	P	V
		2483.52	43.28	-10.72	54	35.92	32.39	6.53	31.56	334	70	A	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency (MHz)	Level (dB μ V/m)	Margin (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	Pol. (H/V)
BLE CH 00 2402MHz		4804	46.84	-27.16	74	60.86	34.41	9.47	57.9	100	180	P	H
		4804	40.75	-13.25	54	54.77	34.41	9.47	57.9	100	180	A	H
		4804	46.21	-27.79	74	60.23	34.41	9.47	57.9	124	299	P	V
		4804	39.83	-14.17	54	53.85	34.41	9.47	57.9	124	299	A	V
BLE CH 19 2440MHz		4880	41.4	-32.6	74	55.43	34.37	9.5	57.9	125	158	P	H
		4880	35.47	-18.53	54	49.5	34.37	9.5	57.9	125	158	A	H
		7320	45.62	-28.38	74	57.86	36.04	11.24	59.52	100	269	P	H
		7320	38.36	-15.64	54	50.6	36.04	11.24	59.52	100	269	A	H
		4880	42.86	-31.14	74	56.89	34.37	9.5	57.9	100	281	P	V
		4880	35.96	-18.04	54	49.99	34.37	9.5	57.9	100	281	A	V
		7320	45.64	-28.36	74	57.88	36.04	11.24	59.52	100	300	P	V
		7320	37.92	-16.08	54	50.16	36.04	11.24	59.52	100	300	A	V
BLE CH 39 2480MHz		4960	45.87	-28.13	74	59.86	34.32	9.59	57.9	286	263	P	H
		4960	38.97	-15.03	54	52.96	34.32	9.59	57.9	286	263	A	H
		7440	46.64	-27.36	74	59.27	35.94	11.29	59.86	100	254	P	H
		7440	39.24	-14.76	54	51.87	35.94	11.29	59.86	100	254	A	H
		4960	46.89	-27.11	74	60.88	34.32	9.59	57.9	100	275	P	V
		4960	39.26	-14.74	54	53.25	34.32	9.59	57.9	100	275	A	V
		7440	48.1	-25.9	74	60.73	35.94	11.29	59.86	100	236	P	V
		7440	43.24	-10.76	54	55.87	35.94	11.29	59.86	100	137	A	V

Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												
--------	---	--	--	--	--	--	--	--	--	--	--	--	--

<BLE2M>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency (MHz)	Level (dB μ V/m)	Margin (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB/m)	Path Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Peak Avg. (P/A)	Pol. (H/V)
BLE CH 00 2402MHz		2359.03	52.77	-21.23	74	45.85	32.34	6.37	31.79	249	182	P	H
		2389.48	42.68	-11.32	54	35.61	32.36	6.44	31.73	249	182	A	H
	*	2402	111.02	-	-	103.95	32.36	6.44	31.73	249	182	P	H
	*	2402	109.23	-	-	102.16	32.36	6.44	31.73	249	182	A	H
		2362.5	53.22	-20.78	74	46.3	32.34	6.37	31.79	100	260	P	V
		2385.49	42.62	-11.38	54	35.56	32.35	6.44	31.73	100	260	A	V
	*	2402	106.99	-	-	99.92	32.36	6.44	31.73	100	260	P	V
	*	2402	105.45	-	-	98.38	32.36	6.44	31.73	100	260	P	V
BLE CH 19 2440MHz		2349.48	53.09	-20.91	74	46.23	32.34	6.37	31.85	175	170	P	H
		2362.08	42.26	-11.74	54	35.34	32.34	6.37	31.79	175	170	A	H
	*	2440	110.63	-	-	103.39	32.38	6.48	31.62	175	170	P	H
	*	2440	109.12	-	-	101.88	32.38	6.48	31.62	175	170	A	H
		2486.77	53.02	-20.98	74	45.66	32.39	6.53	31.56	175	170	P	H
		2488.17	42.8	-11.2	54	35.43	32.4	6.53	31.56	175	170	A	H
		2347.52	52.85	-21.15	74	45.99	32.34	6.37	31.85	330	74	P	V
		2383.5	42.32	-11.68	54	35.39	32.35	6.37	31.79	330	74	A	V
	*	2440	107.91	-	-	100.67	32.38	6.48	31.62	330	74	P	V
	*	2440	106.44	-	-	99.2	32.38	6.48	31.62	330	74	A	V
		2495.59	53.18	-20.82	74	45.75	32.4	6.53	31.5	330	74	P	V
		2487.4	42.74	-11.26	54	35.38	32.39	6.53	31.56	330	74	A	V

BLE CH 39 2480MHz	*	2480	111.25	-	-	103.89	32.39	6.53	31.56	189	184	P	H
	*	2480	109.68	-	-	102.32	32.39	6.53	31.56	189	184	A	H
		2483.52	58.71	-15.29	74	51.35	32.39	6.53	31.56	189	184	P	H
		2483.52	50.61	-3.39	54	43.25	32.39	6.53	31.56	189	184	A	H
	*	2480	107.07	-	-	99.71	32.39	6.53	31.56	101	265	P	V
	*	2480	105.46	-	-	98.1	32.39	6.53	31.56	101	265	A	V
		2483.52	56.61	-17.39	74	49.25	32.39	6.53	31.56	101	265	P	V
		2483.52	47.57	-6.43	54	40.21	32.39	6.53	31.56	101	265	A	V
	Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.											

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak	Avg.	Pol.
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)	
BLE CH 00 2402MHz		4804	46.23	-27.77	74	60.25	34.41	9.47	57.9	100	106	P	H	
		4804	40.21	-13.79	54	54.23	34.41	9.47	57.9	100	106	A	H	
		4804	46.2	-27.8	74	60.22	34.41	9.47	57.9	100	211	P	V	
		4804	38.94	-15.06	54	52.96	34.41	9.47	57.9	100	211	A	V	
BLE CH 19 2440MHz		4880	45.3	-28.7	74	59.33	34.37	9.5	57.9	136	299	P	H	
		4880	38.63	-15.37	54	52.66	34.37	9.5	57.9	136	299	A	H	
		7320	48.64	-25.36	74	60.88	36.04	11.24	59.52	100	315	P	H	
		7320	41.22	-12.78	54	53.46	36.04	11.24	59.52	100	315	A	H	
		4880	45.23	-28.77	74	59.26	34.37	9.5	57.9	100	263	P	V	
		4880	39.41	-14.59	54	53.44	34.37	9.5	57.9	100	263	A	V	
		7320	51.28	-22.72	74	63.52	36.04	11.24	59.52	100	189	P	V	
		7320	44.57	-9.43	54	56.81	36.04	11.24	59.52	100	189	A	V	
BLE CH 39 2480MHz		4960	47.12	-26.88	74	61.11	34.32	9.59	57.9	100	169	P	H	
		4960	39.27	-14.73	54	53.26	34.32	9.59	57.9	100	169	A	H	
		7440	48.26	-25.74	74	60.89	35.94	11.29	59.86	100	200	P	H	
		7440	39.84	-14.16	54	52.47	35.94	11.29	59.86	100	200	A	H	
		4960	44.87	-29.13	74	58.86	34.32	9.59	57.9	103	205	P	V	
		4960	37.26	-16.74	54	51.25	34.32	9.59	57.9	103	205	A	V	

		7440	49.18	-24.82	74	61.81	35.94	11.29	59.86	126	322	P	V
		7440	42.18	-11.82	54	54.81	35.94	11.29	59.86	126	322	A	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

Emission below 1GHz**2.4GHz BLE (LF)**

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.	
												Line	Level	Factor
												(MHz)	(dB μ V/m)	(dB)
2.4GHz BLE LF		89.17	20.04	-23.46	43.5	40.2	14.04	0.98	35.18	-	-	P	H	
		196.84	23.73	-19.77	43.5	40.87	16.51	1.45	35.1	-	-	P	H	
		317.12	27.19	-18.81	46	40.06	20.15	1.88	34.9	-	-	P	H	
		581.93	24.92	-21.08	46	31.4	25.43	2.63	34.54	-	-	P	H	
		828.31	27.97	-18.03	46	30.69	28.42	3.16	34.3	-	-	P	H	
		974.78	29.48	-24.52	54	30.21	29.99	3.43	34.15	-	-	P	H	
		196.84	29.01	-14.49	43.5	46.15	16.51	1.45	35.1	-	-	P	V	
		332.64	23.29	-22.71	46	35.64	20.63	1.92	34.9	-	-	P	V	
		512.09	24.04	-21.96	46	32.19	24.1	2.43	34.68	-	-	P	V	
		709	26.69	-19.31	46	34.13	27.04	0	34.48	-	-	P	V	
		842.86	28.45	-17.55	46	30.99	28.57	3.19	34.3	-	-	P	V	
		988.36	29.84	-24.16	54	30.37	30.13	3.46	34.12	-	-	P	V	
Remark	1. No other spurious found. 2. All results are PASS against limit line.													

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 00 2402MHz		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	P	H
		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	H

1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)

2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

1. Level(dB μ V/m)

= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 54.51(dB μ V) – 35.86 (dB)

= 55.45 (dB μ V/m)

2. Margin (dB)

= Level(dB μ V/m) – Limit Line(dB μ V/m)

= 55.45(dB μ V/m) – 74(dB μ V/m)

= -18.55(dB)

For Average Limit @ 2390MHz:

1. Level(dB μ V/m)

= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 42.6(dB μ V) – 35.86 (dB)

= 43.54 (dB μ V/m)

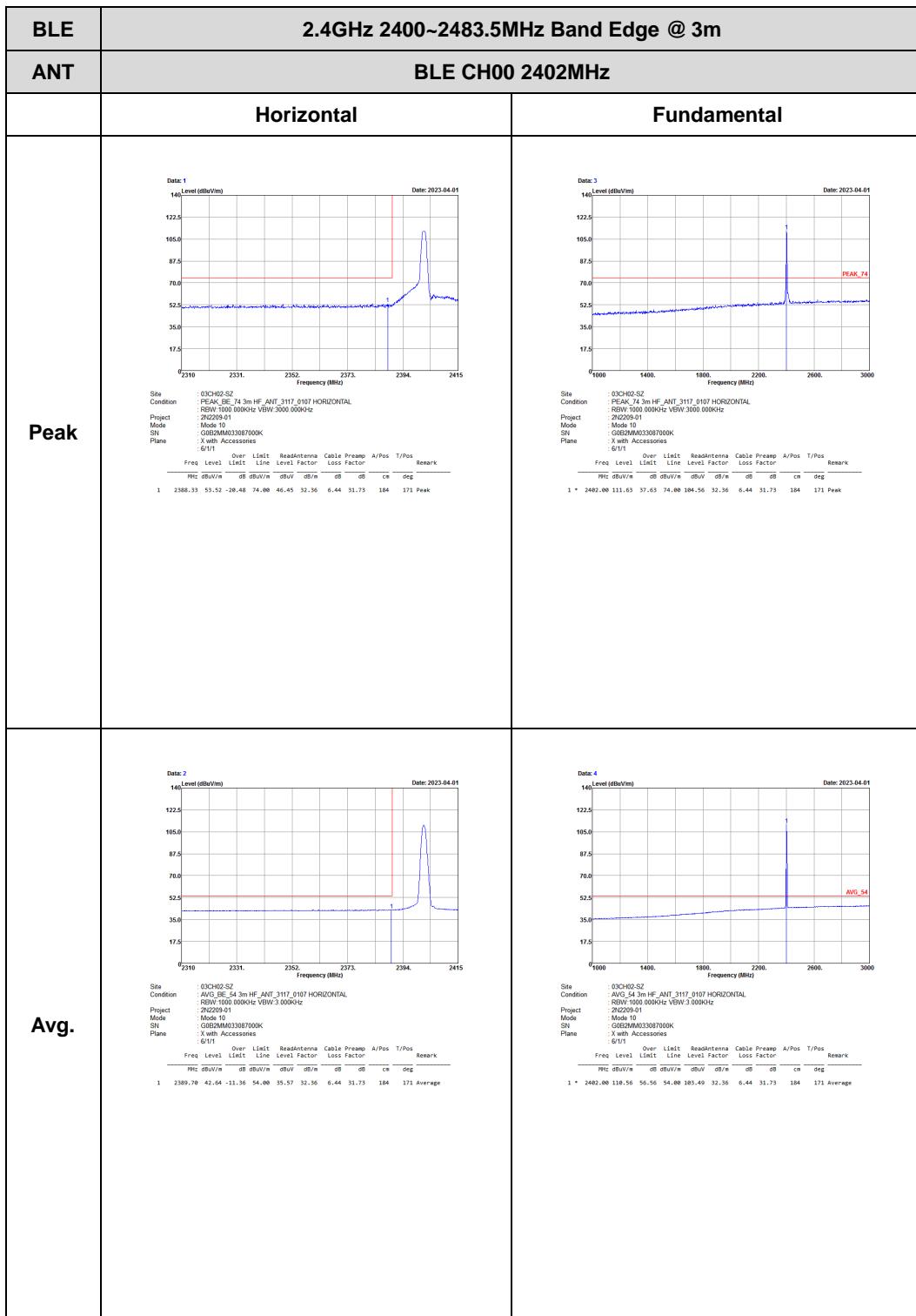
2. Margin (dB)

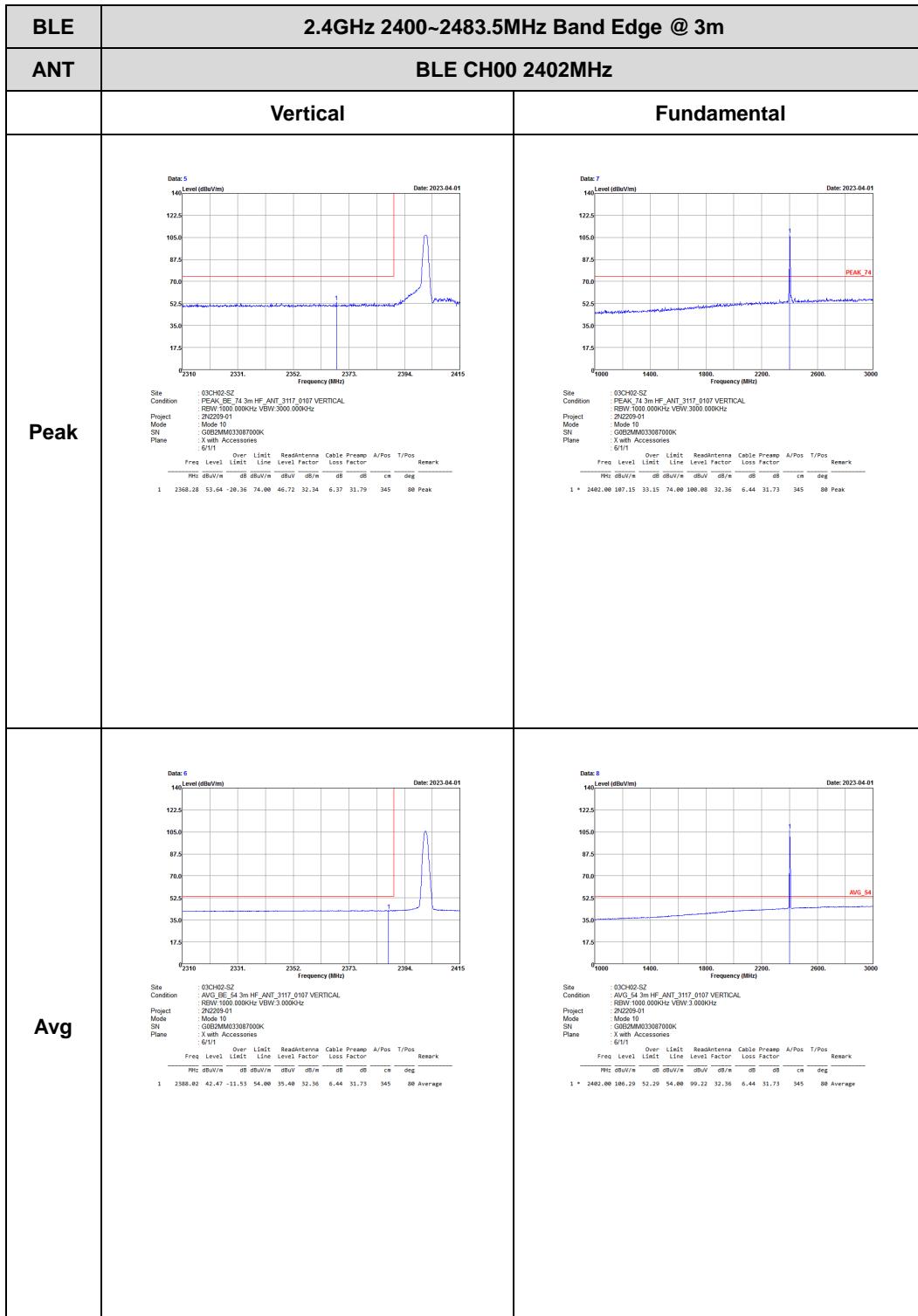
= Level(dB μ V/m) – Limit Line(dB μ V/m)

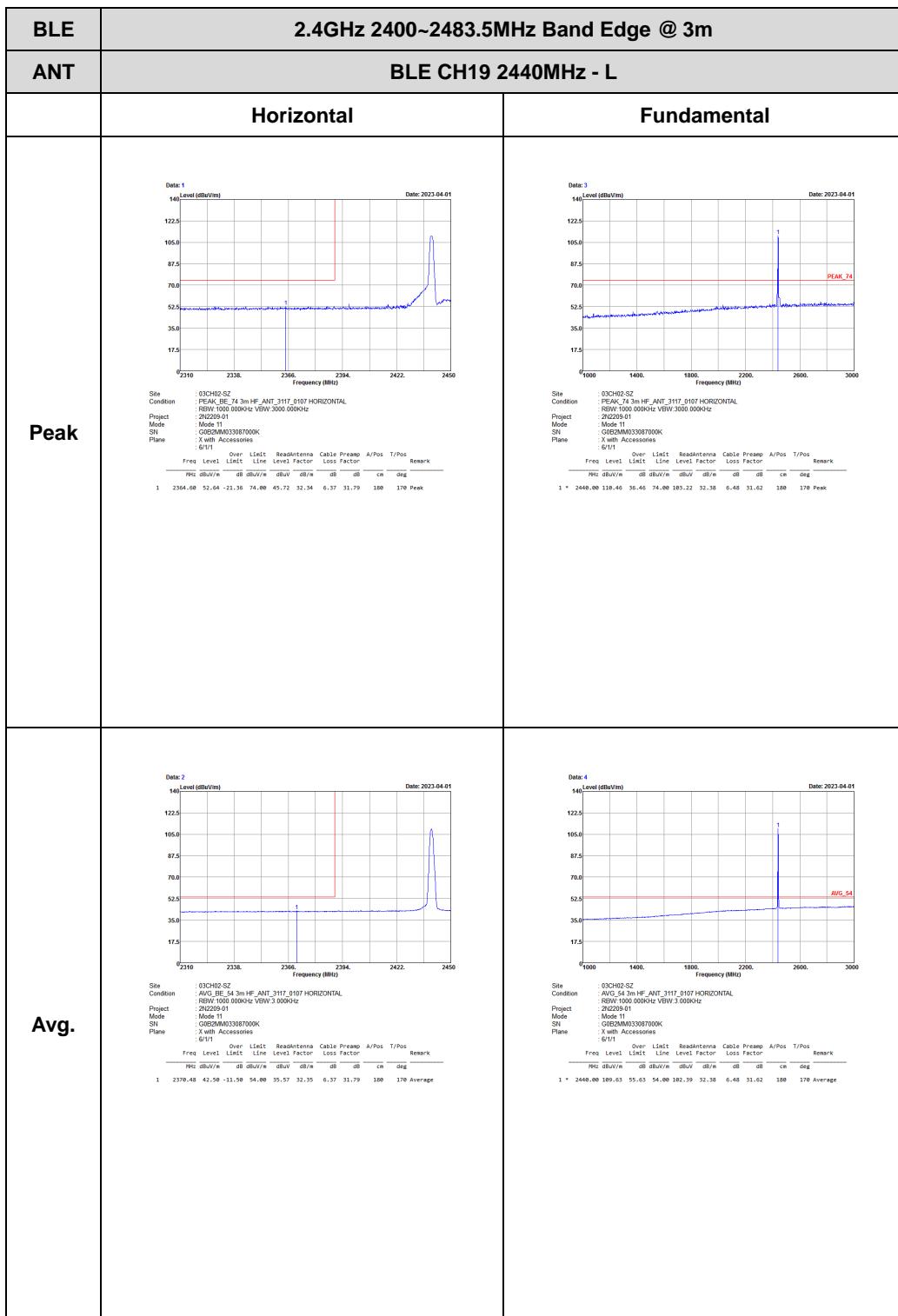
= 43.54(dB μ V/m) – 54(dB μ V/m)

= -10.46(dB)

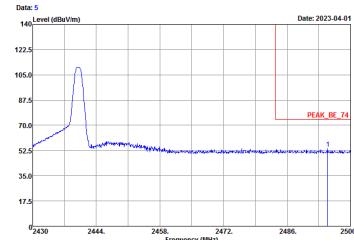
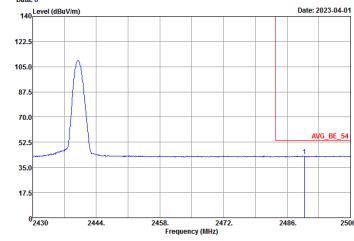
Both peak and average measured complies with the limit line, so test result is “PASS”.

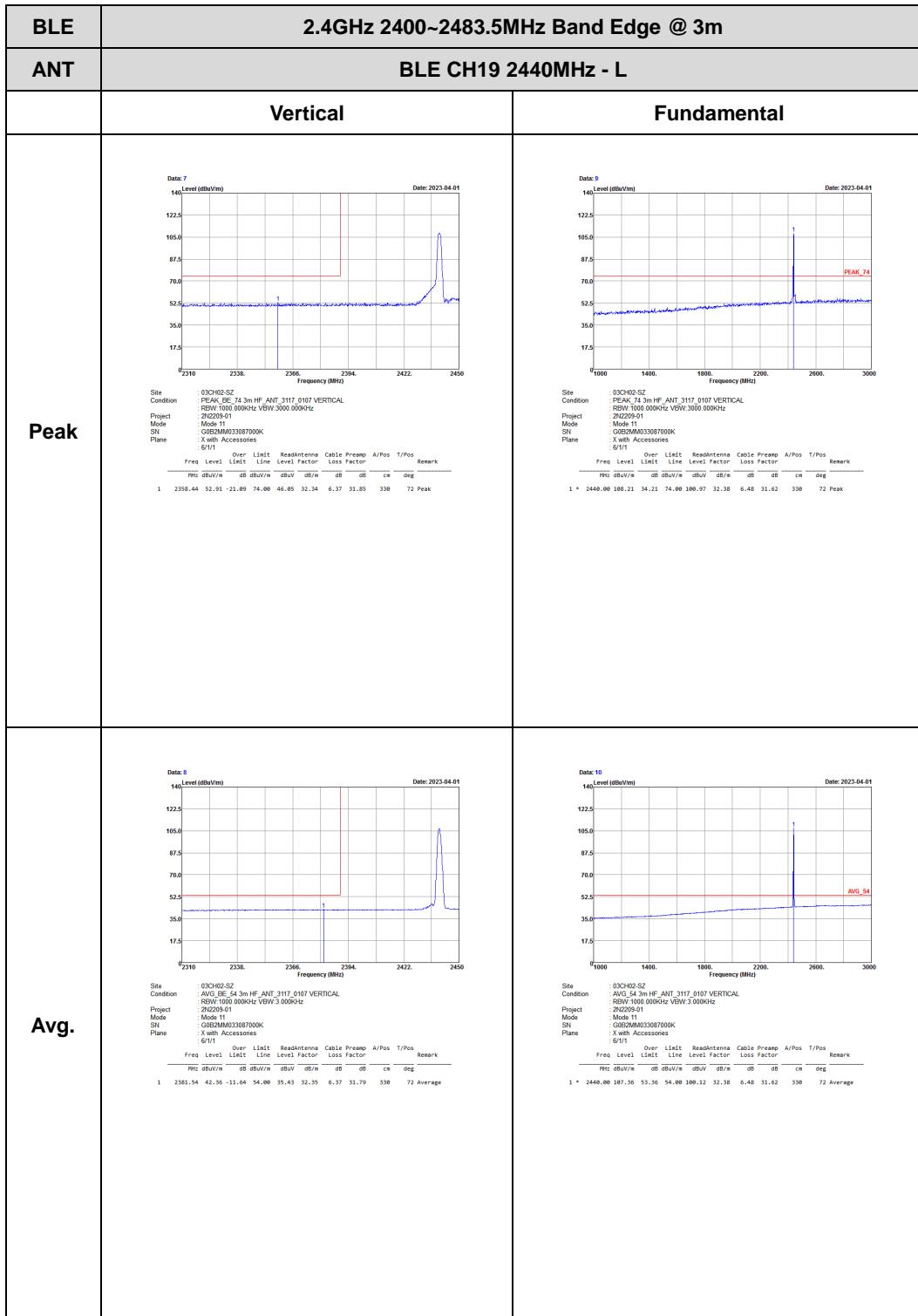


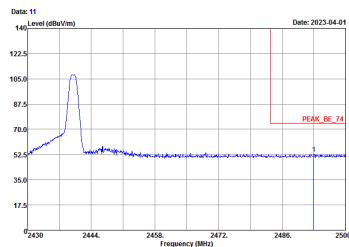
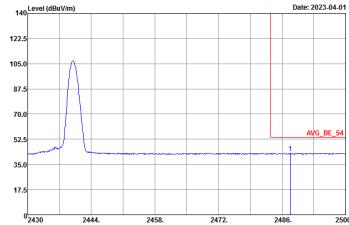

Appendix D. Radiated Spurious Emission Plots

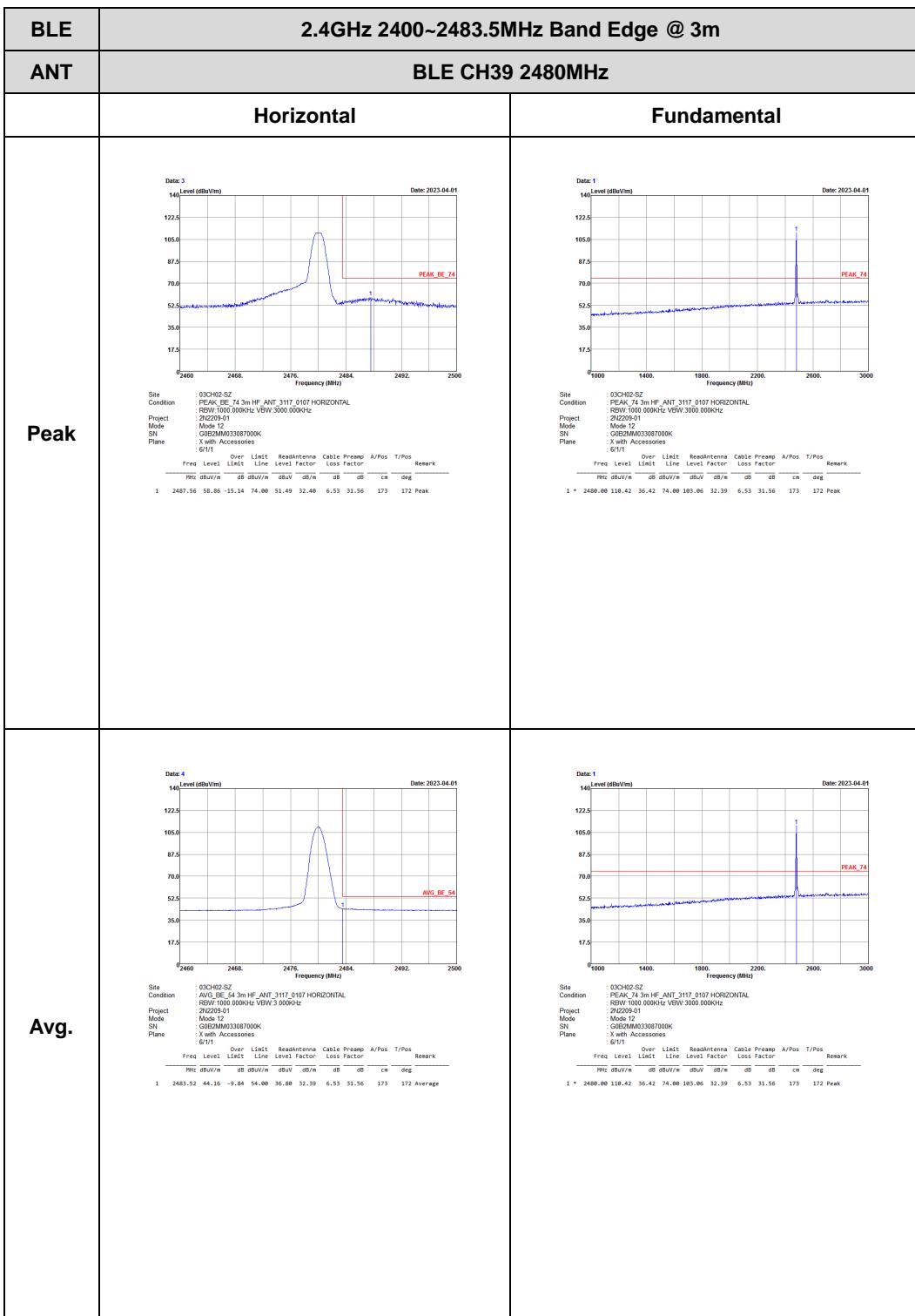

<BLE1M>

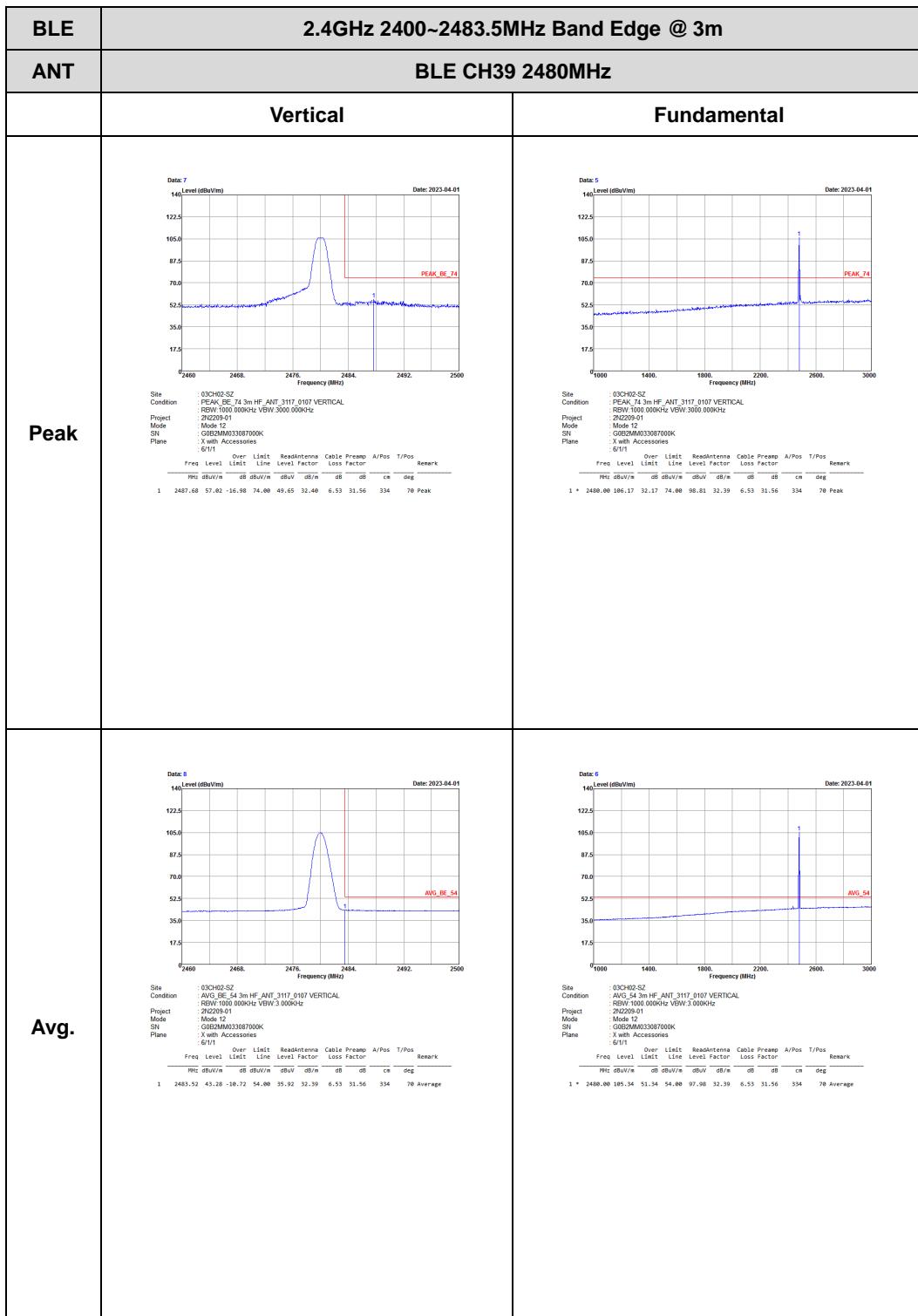
Note symbol



-L	Low channel location
-R	High channel location

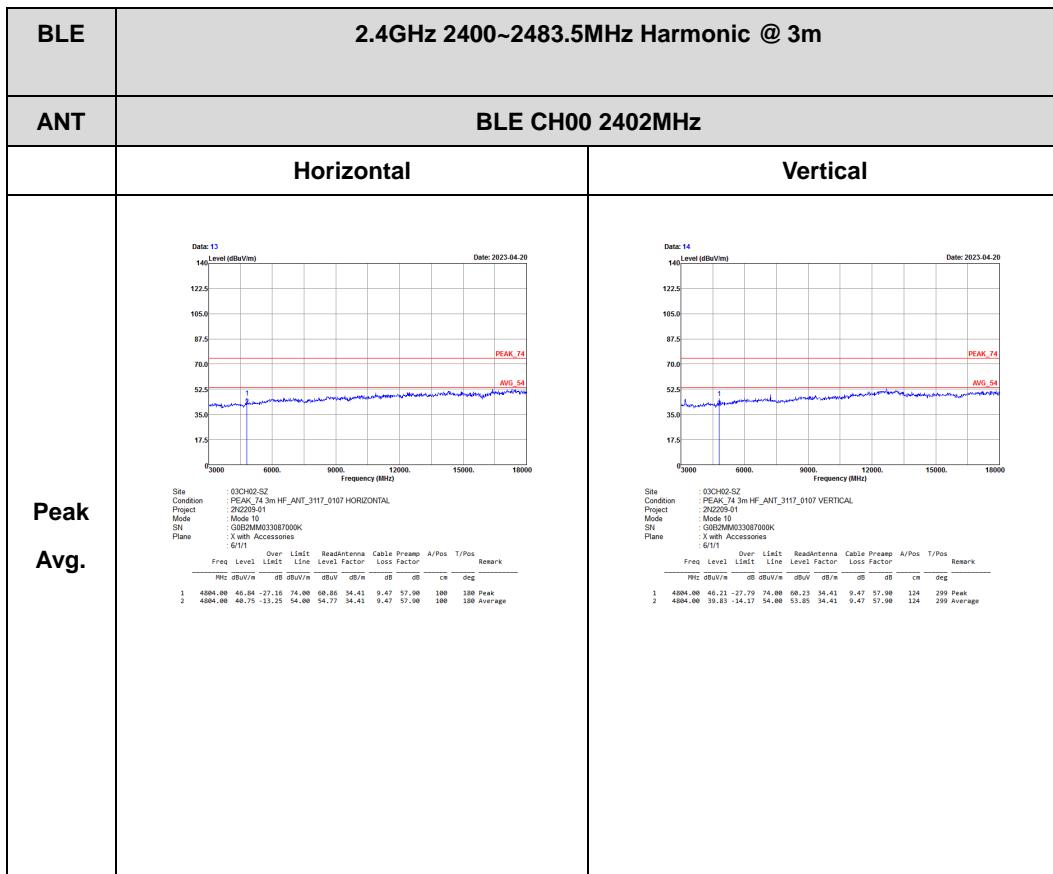

2.4GHz 2400~2483.5MHz
BLE (Band Edge @ 3m)

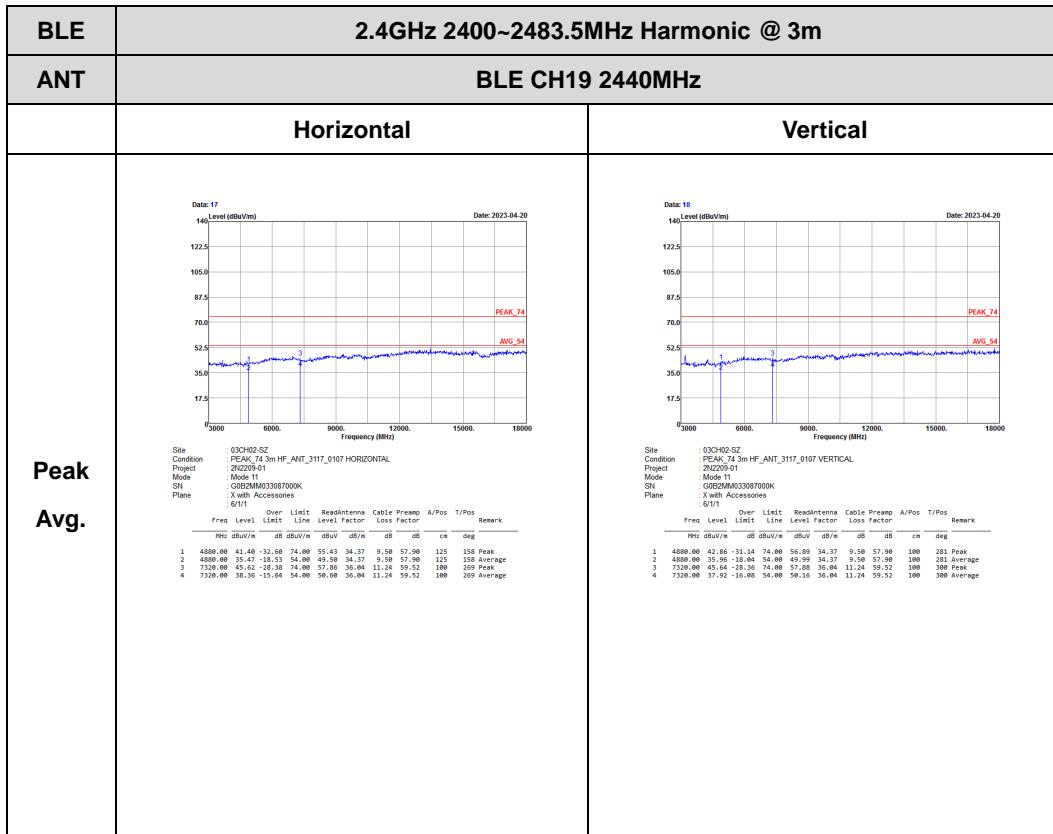



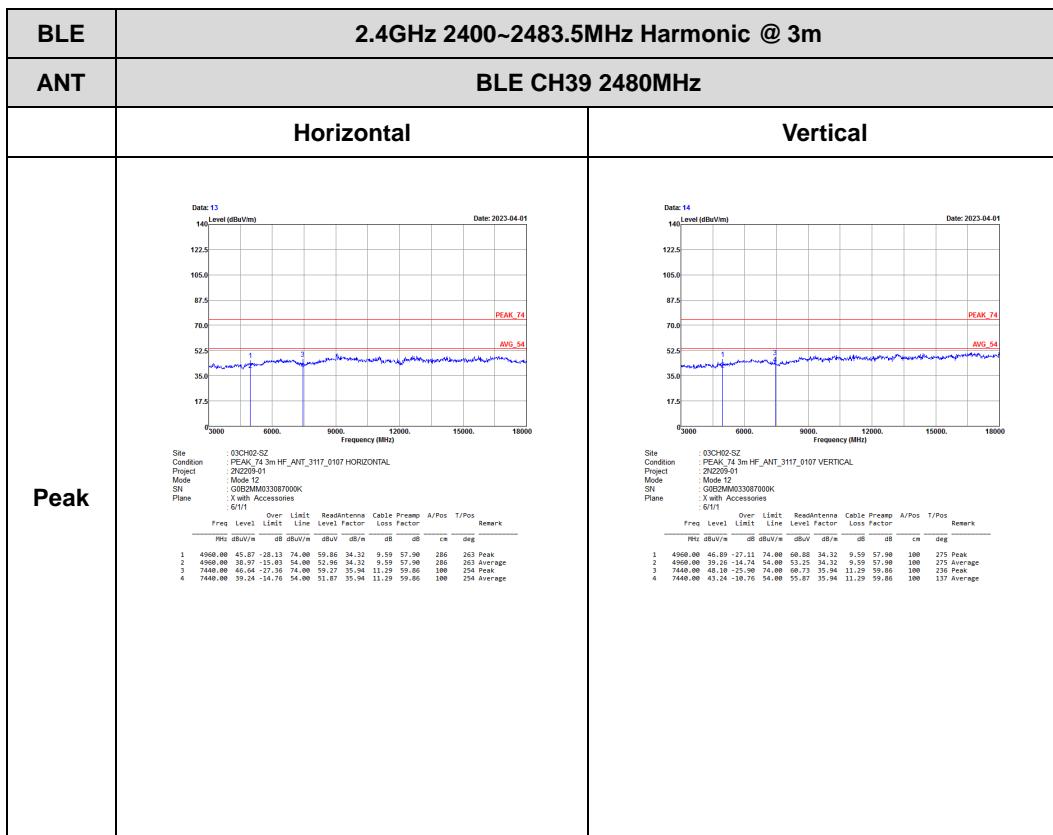


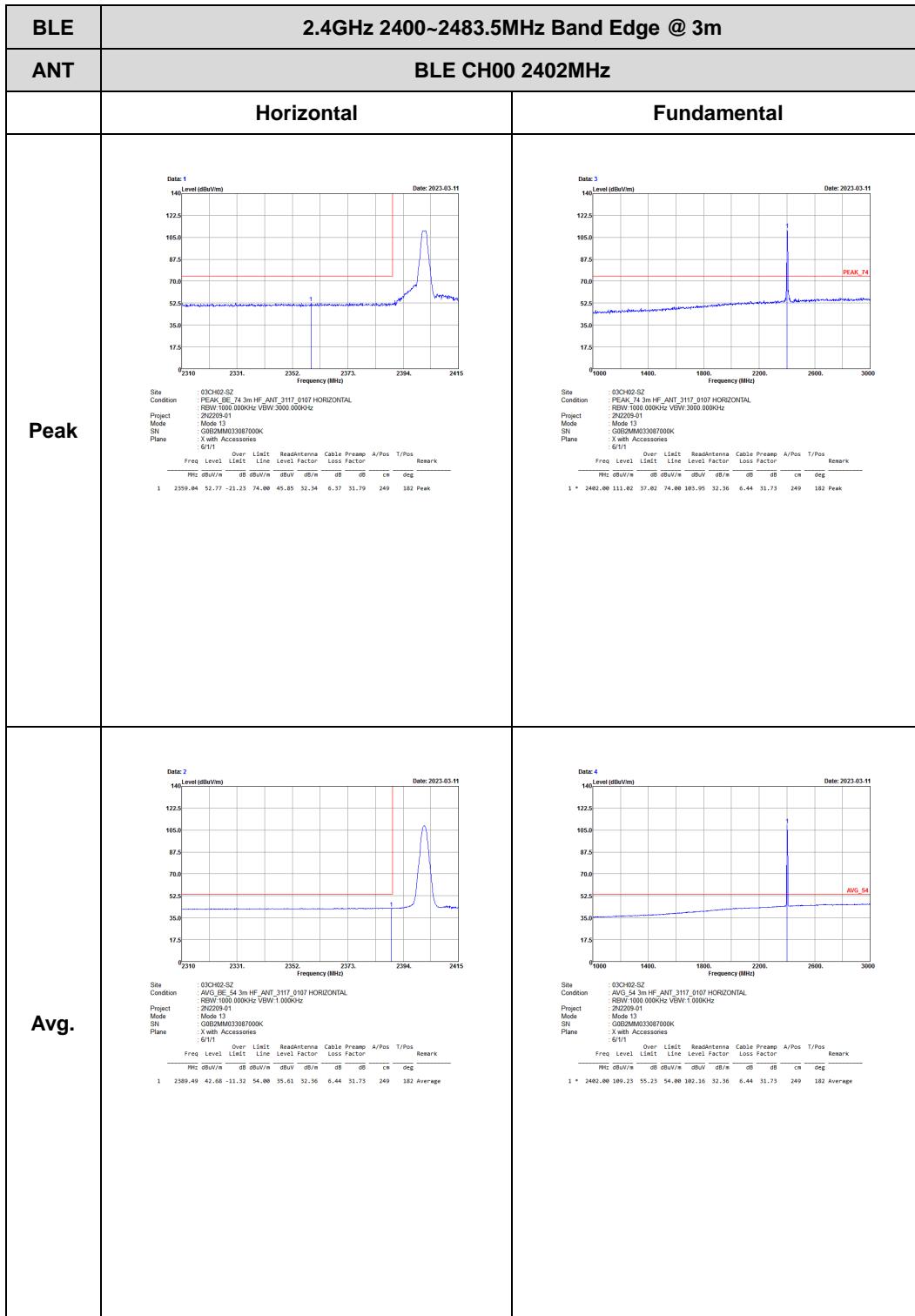

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
ANT	BLE CH19 2440MHz - R	
	Horizontal	Fundamental
Peak	<p>Data: 5 Level (dBmV/m) Date: 2023-04-01 2430 2440 2450 2460 2470 2480 2490 2500 160 122.5 87.5 70.0 52.5 35.0 17.5 0 PEAK_BE_74 1 Site: 03CH02-SZ Condition: PEAK_BE_74 3m HF ANT_3117_0107 HORIZONTAL RFW:1000_0000Hz VBW:3000_000Hz Project: 210229-01 Model: Model 19 SN: G9B2MM033087000K Plan: X with Accessories 6/1/1 Freq Level Over Limit Read Antenna Cable Preamp A/Pos T/Pos Remark MHz dBmV/m dBmV/m dBmV dB/m dB cm deg 1 2454.96 53.92 -26.88 74.00 46.49 32.40 6.53 31.58 188 170 Peak</p>	Left blank
Avg.	<p>Data: 6 Level (dBmV/m) Date: 2023-04-01 2430 2440 2450 2460 2470 2480 2490 2500 160 122.5 87.5 70.0 52.5 35.0 17.5 0 AVG_BE_54 1 Site: 03CH02-SZ Condition: AVG_BE_54 3m HF ANT_3117_0107 HORIZONTAL RFW:1000_0000Hz VBW:3.000Hz Project: 210229-01 Model: Model 19 SN: G9B2MM033087000K Plan: X with Accessories 6/1/1 Freq Level Over Limit Read Antenna Cable Preamp A/Pos T/Pos Remark MHz dBmV/m dBmV/m dBmV dB/m dB cm deg 1 2489.85 42.95 -11.85 54.00 35.52 32.40 6.53 31.58 188 170 Average</p>	Left blank

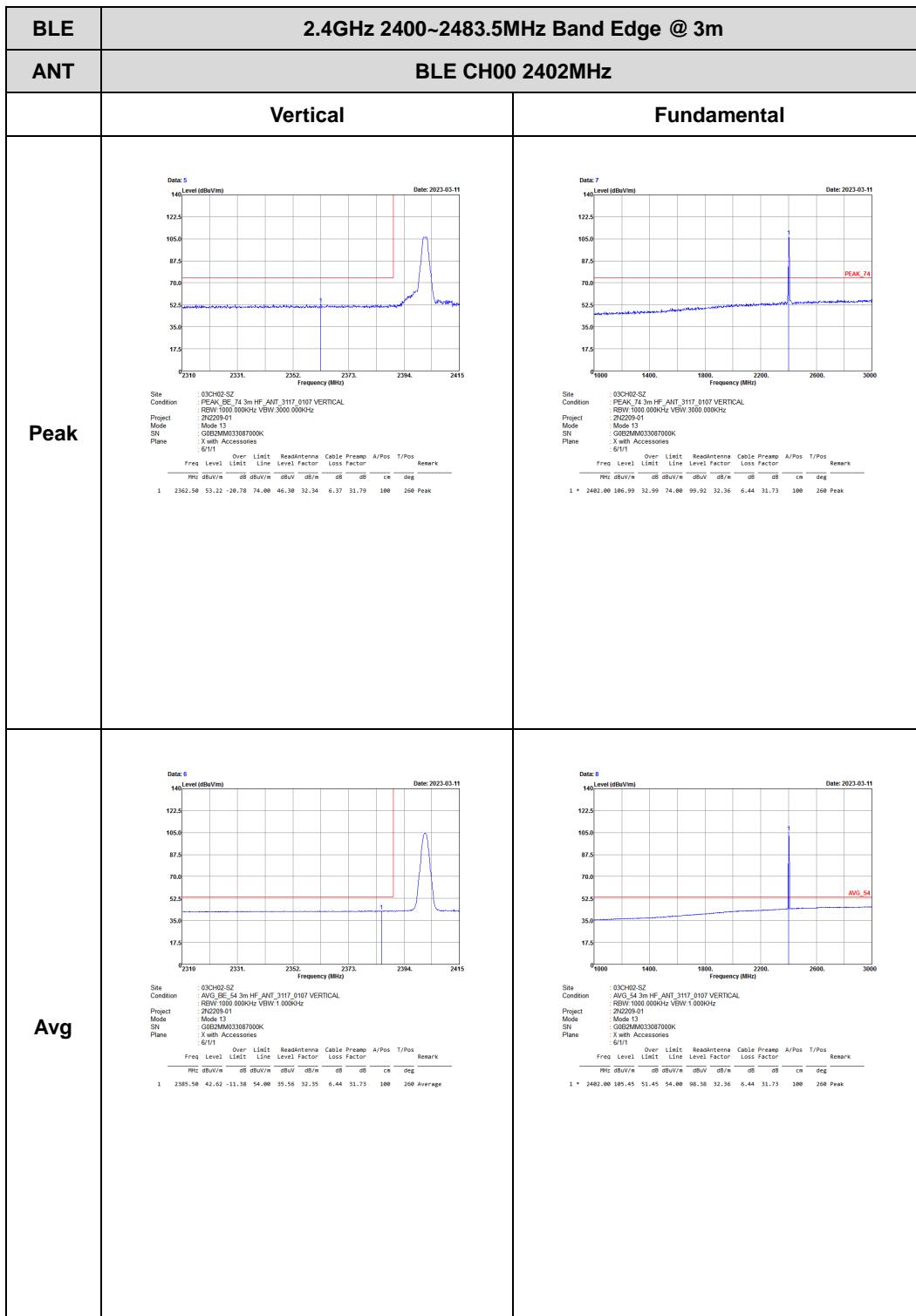
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
ANT	BLE CH19 2440MHz - R	
	Vertical	Fundamental
Peak	<p>Data: 11 Date: 2023-04-01 Site: 03CH02-SZ Condition: AVG_3m_HF_ANT_3117_0107 VERTICAL RF/RW: 1000_00000Hz VBVW: 3.0000Hz Project: 212209-01 Model: Mode 11 SN: G0202AM033087000K Plane: X with Accessories G/F: 1/1 Freq Level Limit Line ReadAntenna Cable Preamp A/Pos T/Pos Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB cm deg 1 2443.74 52.98 -21.02 74.00 45.55 32.40 6.53 31.50 338 72 Peak</p>	Left blank
Avg.	<p>Data: 12 Date: 2023-04-01 Site: 03CH02-SZ Condition: AVG_3m_HF_ANT_3117_0107 VERTICAL RF/RW: 1000_00000Hz VBVW: 3.0000Hz Project: 212209-01 Model: Mode 11 SN: G0202AM033087000K Plane: X with Accessories G/F: 1/1 Freq Level Limit Line ReadAntenna Cable Preamp A/Pos T/Pos Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB cm deg 1 2443.84 42.75 -11.27 54.00 35.36 32.40 6.53 31.50 338 72 Average</p>	Left blank

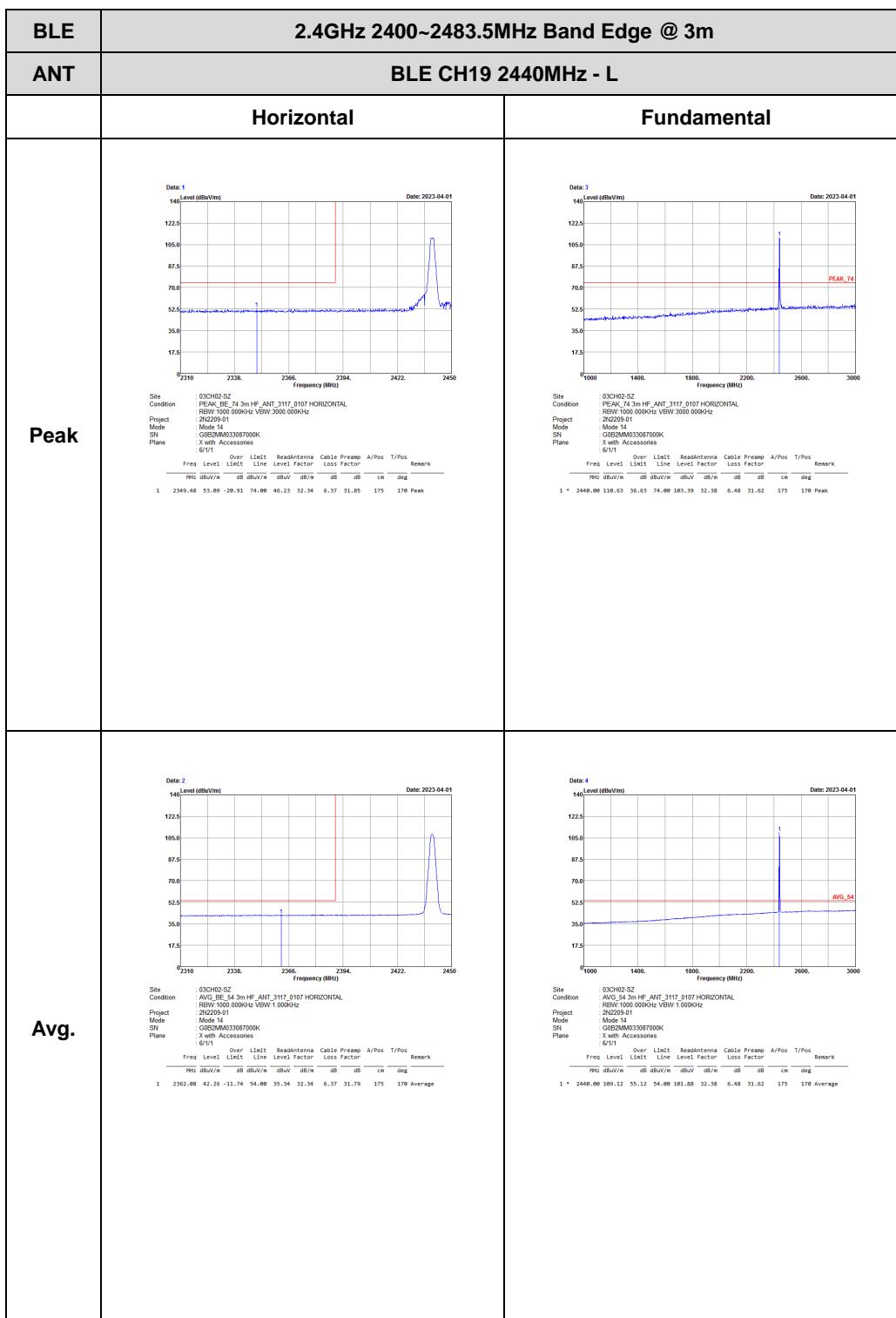


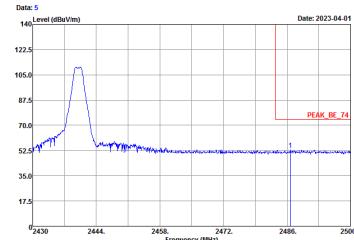
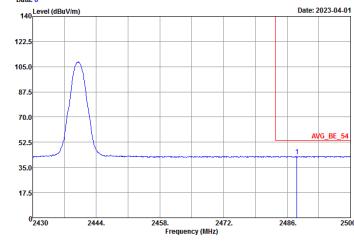


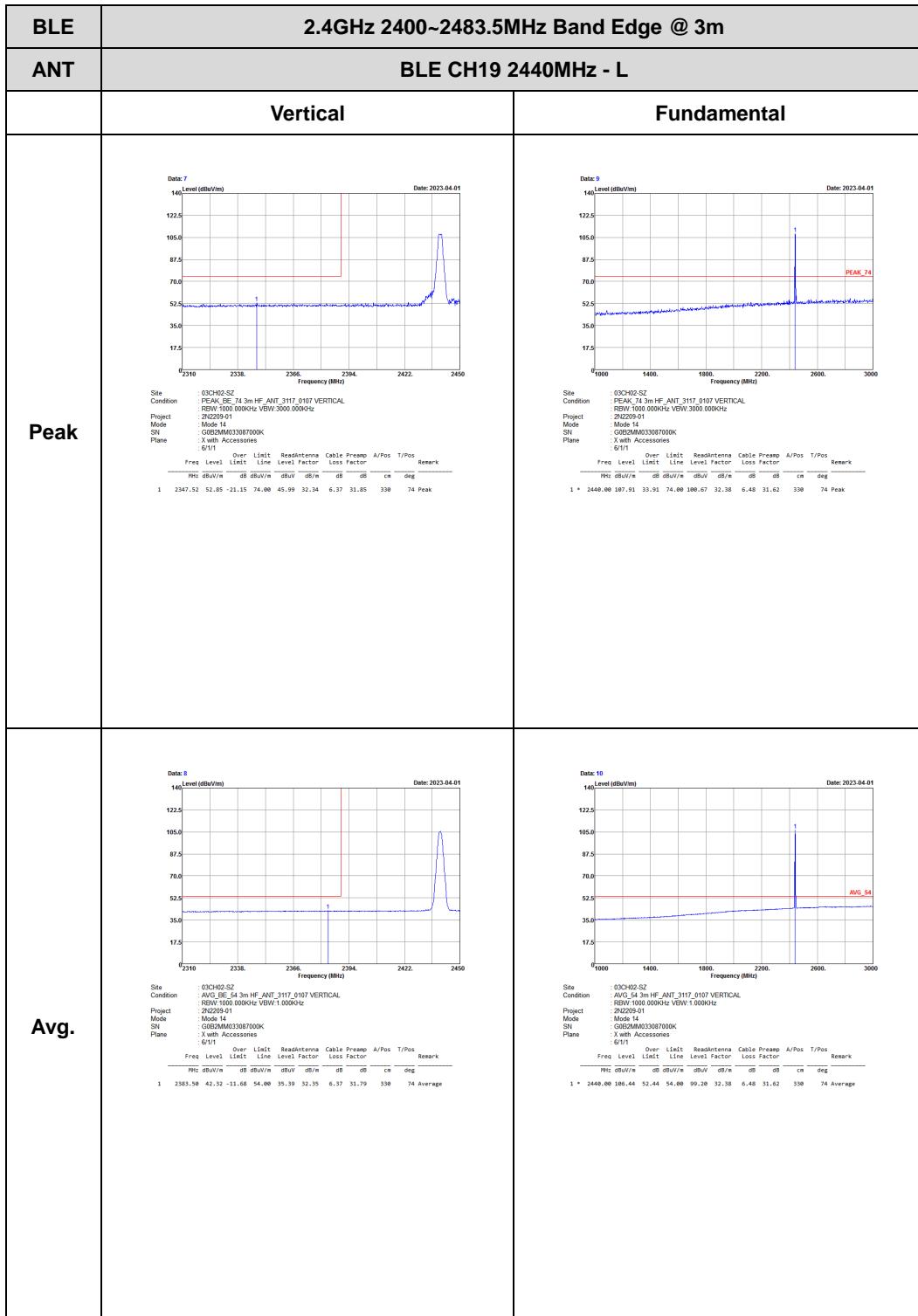


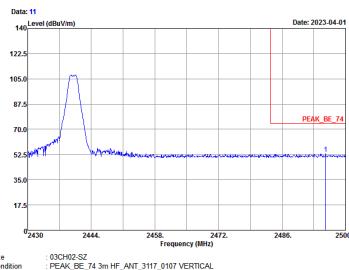
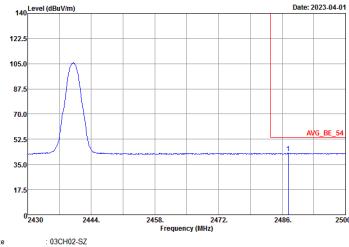

2.4GHz 2400~2483.5MHz

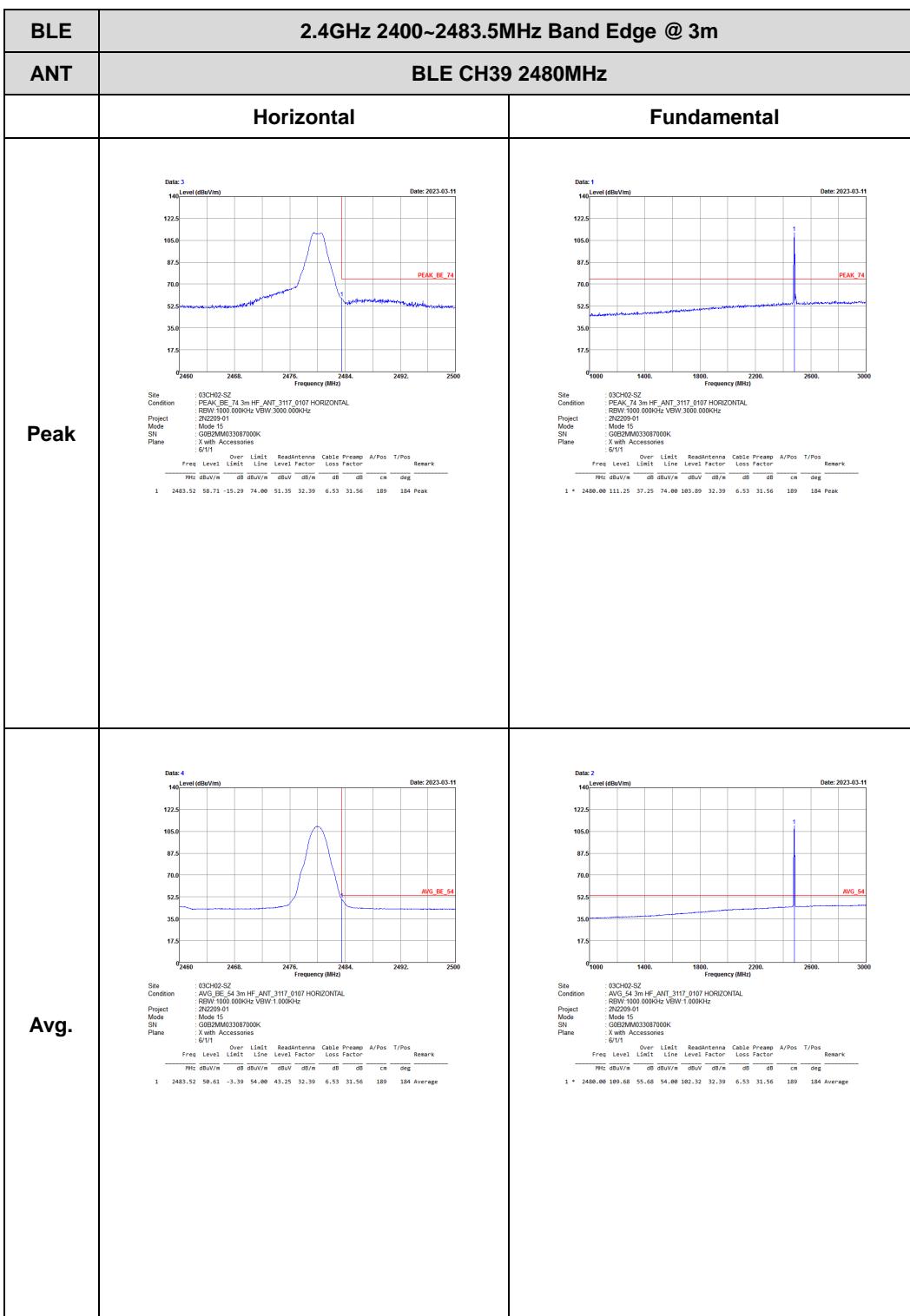

BLE (Harmonic @ 3m)

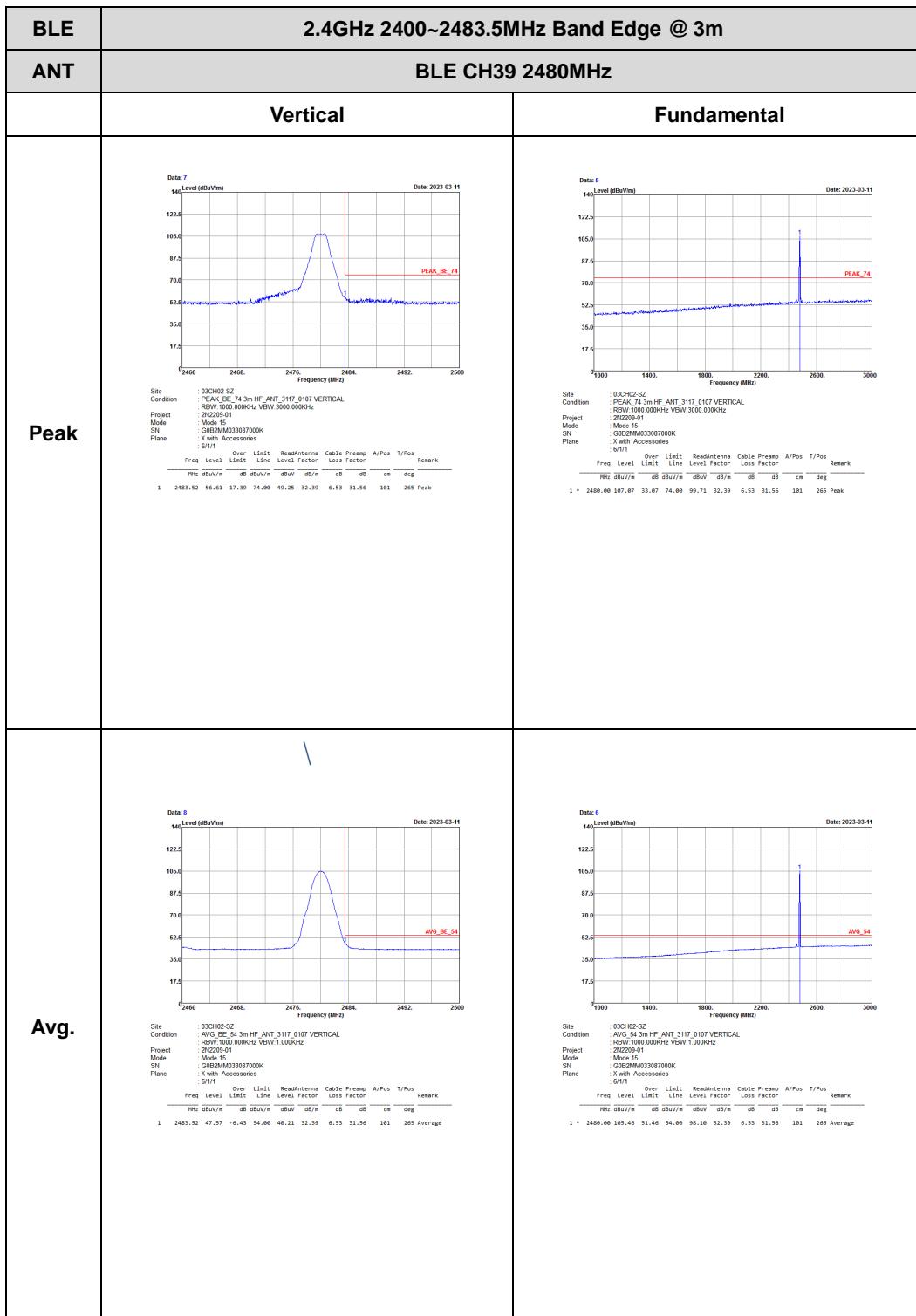


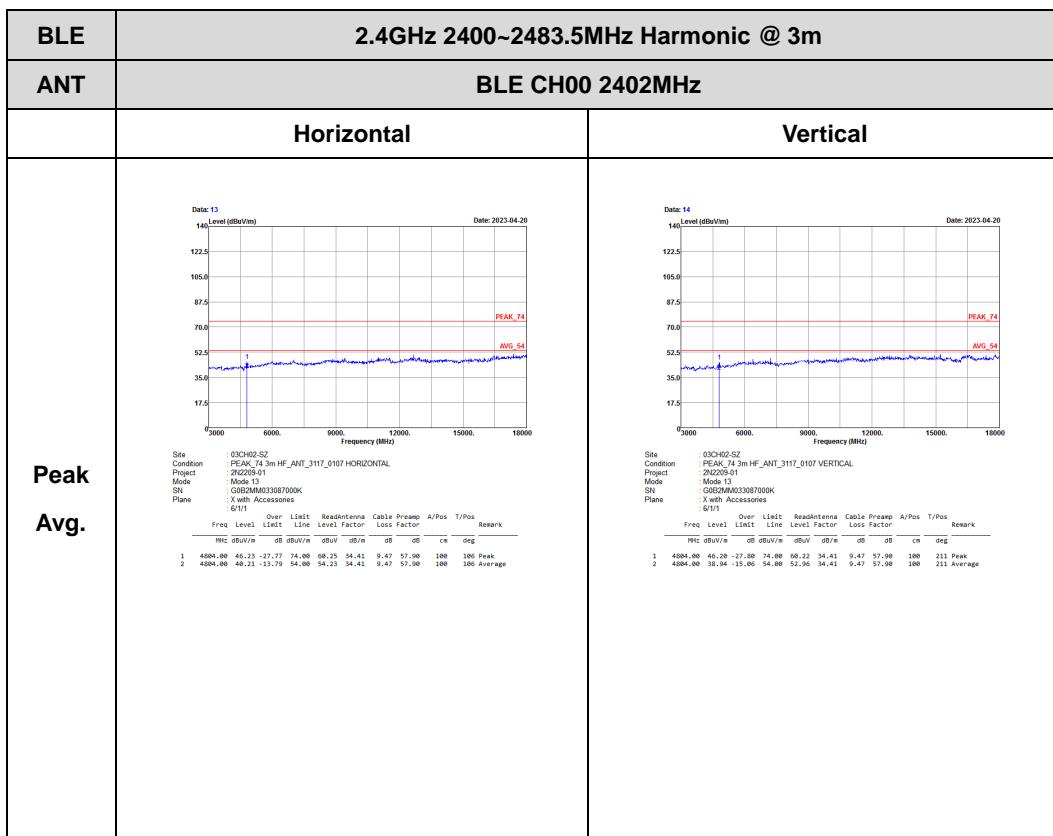

<BLE2M>
2.4GHz 2400~2483.5MHz
BLE (Band Edge @ 3m)

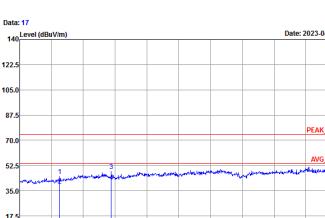
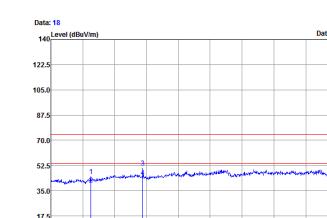



BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
ANT	BLE CH19 2440MHz - R	
	Horizontal	Fundamental
Peak	<p>Data: 5 Level (dBmV/m) Date: 2023-04-01 2430 2440 2450 2460 2470 2480 2490 2500 160 122.5 87.5 70 52.5 35.0 17.5 0 PEAK_BE_74 1 2430 2444 2458 2472 2486 2500 Site: 03CH02-SZ Condition: PEAK_BE_74 3m HF ANT_3117_0107 HORIZONTAL RFW:1000.000KHz VBW:3000.000KHz Project: 210229-01 Model: 10 SN: G9B2MM033087000K Plan: X with Accessories 6/1/1 Freq Level Over Limit Read Antenna Cable Preamp A/Pos T/Pos Remark MHz dBmV/m dBmV/m dBmV dB/m dB cm deg 1 2486.77 53.02 -26.98 74.00 45.66 32.39 6.53 31.56 175 170 Peak</p>	Left blank
Avg.	<p>Data: 6 Level (dBmV/m) Date: 2023-04-01 2430 2440 2450 2460 2470 2480 2490 2500 160 122.5 87.5 70 52.5 35.0 17.5 0 AVG_BE_54 1 2430 2444 2458 2472 2486 2500 Site: 03CH02-SZ Condition: AVG_BE_54 3m HF ANT_3117_0107 HORIZONTAL RFW:1000.000KHz VBW:1.000KHz Project: 210229-01 Model: 10 SN: G9B2MM033087000K Plan: X with Accessories 6/1/1 Freq Level Over Limit Read Antenna Cable Preamp A/Pos T/Pos Remark MHz dBmV/m dBmV/m dBmV dB/m dB cm deg 1 2488.17 42.88 -11.28 54.00 35.43 32.40 6.53 31.56 175 170 Average</p>	Left blank

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
ANT	BLE CH19 2440MHz - R	
	Vertical	Fundamental
Peak	<p>Data: 11 Date: 2023-04-01 Site: 03CH02-SZ Condition: PEAK_BE_74.3m_HF_ANT_3117_0107 VERTICAL Project: 212209-01 Mode: 14 SN: G002AM033087000K Plane: X with Accessories G/F: 1/1 Freq Level (dBuV/m) Over Limit Line ReadAntenna Cable Preamp A/Pos T/Pos Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB cm deg 1 2495.59 53.18 -20.82 74.00 45.75 32.40 6.53 31.50 338 74 Peak</p>	eft blank
Avg.	<p>Data: 12 Date: 2023-04-01 Site: 03CH02-SZ Condition: AVG_2440MHz_3m_HF_ANT_3117_0107 VERTICAL Project: 212209-01 Mode: 14 SN: G002AM033087000K Plane: X with Accessories G/F: 1/1 Freq Level (dBuV/m) Over Limit Line ReadAntenna Cable Preamp A/Pos T/Pos Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB cm deg 1 2487.48 42.74 -11.26 54.00 35.38 32.39 6.53 31.56 338 74 Average</p>	Left blank

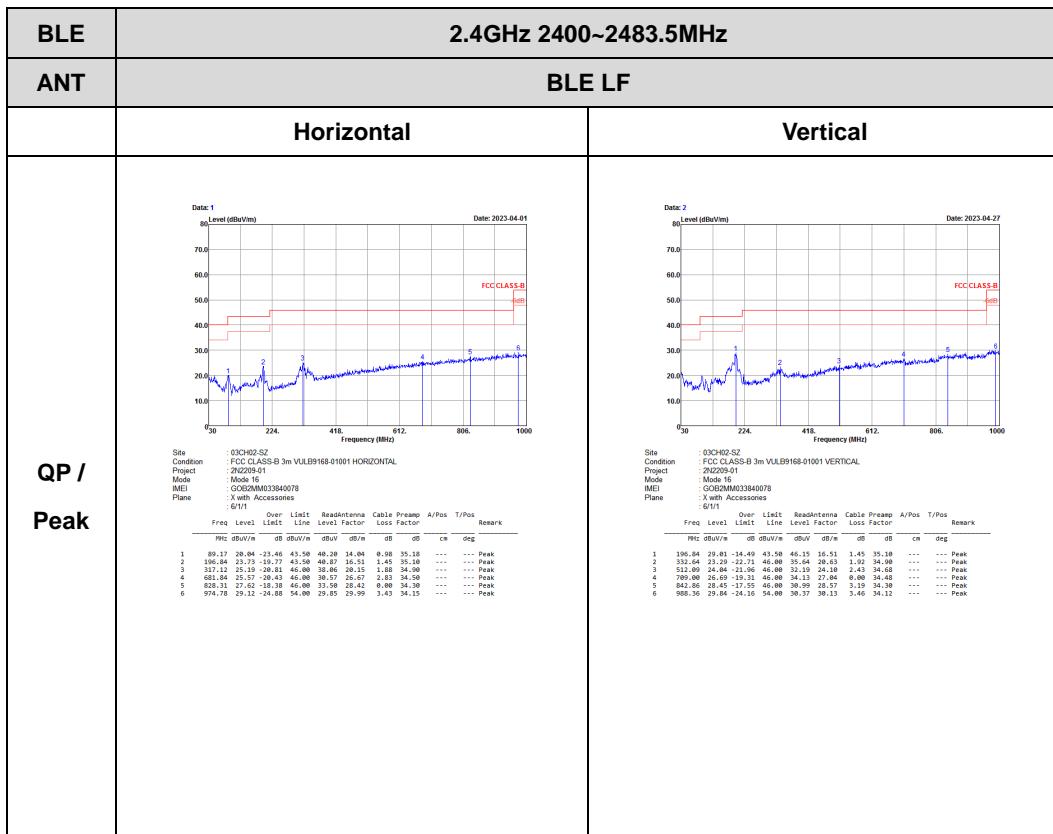


2.4GHz 2400~2483.5MHz



BLE (Harmonic @ 3m)

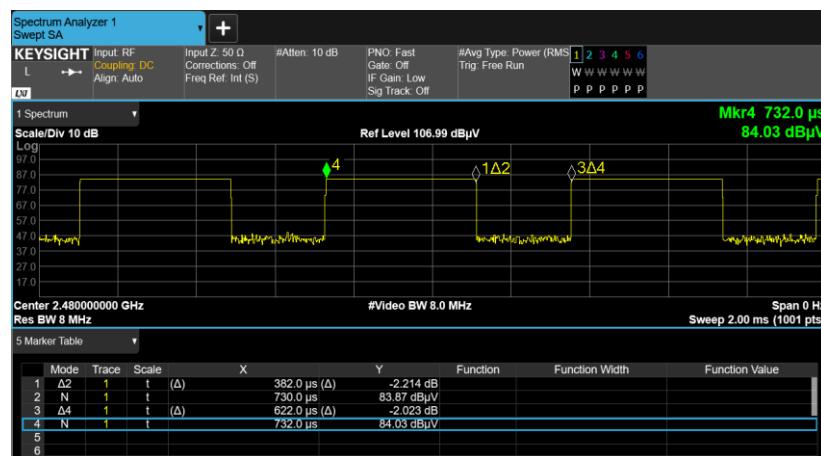
Data: 13
Level (dBuV/m)
Date: 2023-04-20
140
122.5
105.0
87.5
70.0
52.5
35.0
17.5
0 3000 6000 9000 12000 15000 18000 Frequency (MHz)
Site: 000405-S2
Condition: PEAK_74 3m HF_ANT_0117_0107 HORIZONTAL
Project: 2ND209-01
Mode: Mode 13
SN: G300AM03087000K
Plane: X with Accessories
6/1/1
Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
Freq Level Line Level Factor Loss Factor Remark
MHz dBuV/m dB dBuV/m dBV dB cm deg
1 4884.00 46.23 -27.77 74.00 68.25 34.41 9.47 57.90 100 100 Peak
2 4884.00 40.21 -13.79 54.00 54.23 34.41 9.47 57.90 100 100 Average

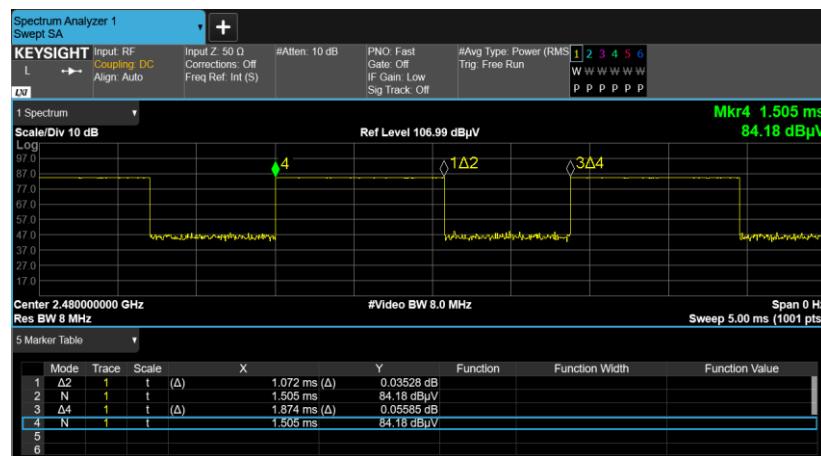
Data: 14
Level (dBuV/m)
Date: 2023-04-20
140
122.5
105.0
87.5
70.0
52.5
35.0
17.5
0 3000 6000 9000 12000 15000 18000 Frequency (MHz)
Site: 000405-S2
Condition: PEAK_74 3m HF_ANT_0117_0107 VERTICAL
Project: 2ND209-01
Mode: Mode 13
SN: G300AM03087000K
Plane: X with Accessories
6/1/1
Over Limit ReadAntenna Cable Preamp A/Pos T/Pos
Freq Level Line Level Factor Loss Factor Remark
MHz dBuV/m dB dBuV/m dBV dB cm deg
1 4884.00 46.20 -27.00 74.00 68.22 34.41 9.47 57.90 100 100 Peak
2 4884.00 38.94 -15.00 54.00 52.96 34.41 9.47 57.90 100 100 Average


BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m																																																																																															
ANT	BLE CH19 2440MHz																																																																																															
	Horizontal						Vertical																																																																																									
Peak																																																																																																
Avg.																																																																																																
<div style="display: flex; justify-content: space-between;"> <div style="width: 45%;"> <p>Data: 17</p> <p>Site: 03CH025_S Condition: F24, 3m HF_ANT_3117_0107 HORIZONTAL Project: 2H2209-01 Mode: Model SN: 03CH025MM03087000K Plane: X with Accessories 6/11</p> <table border="1"> <thead> <tr> <th>Freq</th> <th>Level</th> <th>Over Limit</th> <th>ReadAntenna</th> <th>Cable Preamp</th> <th>A/Pos</th> <th>T/Pos</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>MHz</td> <td>dbuV/m</td> <td>db</td> <td>dbuV/m</td> <td>db</td> <td>dB</td> <td>dB</td> <td>cm deg</td> </tr> <tr> <td>1</td> <td>4880.00</td> <td>45.30</td> <td>-28.77</td> <td>74.00</td> <td>59.26</td> <td>34.37</td> <td>9.58 57.98 Peak</td> </tr> <tr> <td>2</td> <td>7329.00</td> <td>46.54</td> <td>-25.36</td> <td>54.00</td> <td>58.88</td> <td>56.84</td> <td>11.24 59.52 Average</td> </tr> <tr> <td>3</td> <td>7329.00</td> <td>46.54</td> <td>-25.36</td> <td>54.00</td> <td>58.88</td> <td>56.84</td> <td>11.24 59.52 315 Peak</td> </tr> <tr> <td>4</td> <td>7329.00</td> <td>41.22</td> <td>-12.72</td> <td>54.00</td> <td>53.46</td> <td>56.84</td> <td>11.24 59.52 180 315 Average</td> </tr> </tbody> </table> </div> <div style="width: 45%;"> <p>Data: 18</p> <p>Site: 03CH025_S Condition: F24, 3m HF_ANT_3117_0107 VERTICAL Project: 2H2209-01 Mode: Model SN: 03CH025MM03087000K Plane: X with Accessories 6/11</p> <table border="1"> <thead> <tr> <th>Freq</th> <th>Level</th> <th>Over Limit</th> <th>ReadAntenna</th> <th>Cable Preamp</th> <th>A/Pos</th> <th>T/Pos</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>MHz</td> <td>dbuV/m</td> <td>db</td> <td>dbuV/m</td> <td>db</td> <td>dB</td> <td>dB</td> <td>cm deg</td> </tr> <tr> <td>1</td> <td>4880.00</td> <td>45.23</td> <td>-28.77</td> <td>74.00</td> <td>59.26</td> <td>34.37</td> <td>9.58 57.98 Peak</td> </tr> <tr> <td>2</td> <td>7329.00</td> <td>41.18</td> <td>-22.72</td> <td>54.00</td> <td>54.00</td> <td>63.52</td> <td>36.84 11.24 59.52 200 Average</td> </tr> <tr> <td>3</td> <td>7329.00</td> <td>44.57</td> <td>-9.43</td> <td>54.00</td> <td>56.81</td> <td>36.84</td> <td>11.24 59.52 100 315 Peak</td> </tr> <tr> <td>4</td> <td>7329.00</td> <td>44.57</td> <td>-9.43</td> <td>54.00</td> <td>56.81</td> <td>36.84</td> <td>11.24 59.52 100 315 Average</td> </tr> </tbody> </table> </div> </div>	Freq	Level	Over Limit	ReadAntenna	Cable Preamp	A/Pos	T/Pos	Remark	MHz	dbuV/m	db	dbuV/m	db	dB	dB	cm deg	1	4880.00	45.30	-28.77	74.00	59.26	34.37	9.58 57.98 Peak	2	7329.00	46.54	-25.36	54.00	58.88	56.84	11.24 59.52 Average	3	7329.00	46.54	-25.36	54.00	58.88	56.84	11.24 59.52 315 Peak	4	7329.00	41.22	-12.72	54.00	53.46	56.84	11.24 59.52 180 315 Average	Freq	Level	Over Limit	ReadAntenna	Cable Preamp	A/Pos	T/Pos	Remark	MHz	dbuV/m	db	dbuV/m	db	dB	dB	cm deg	1	4880.00	45.23	-28.77	74.00	59.26	34.37	9.58 57.98 Peak	2	7329.00	41.18	-22.72	54.00	54.00	63.52	36.84 11.24 59.52 200 Average	3	7329.00	44.57	-9.43	54.00	56.81	36.84	11.24 59.52 100 315 Peak	4	7329.00	44.57	-9.43	54.00	56.81	36.84	11.24 59.52 100 315 Average
Freq	Level	Over Limit	ReadAntenna	Cable Preamp	A/Pos	T/Pos	Remark																																																																																									
MHz	dbuV/m	db	dbuV/m	db	dB	dB	cm deg																																																																																									
1	4880.00	45.30	-28.77	74.00	59.26	34.37	9.58 57.98 Peak																																																																																									
2	7329.00	46.54	-25.36	54.00	58.88	56.84	11.24 59.52 Average																																																																																									
3	7329.00	46.54	-25.36	54.00	58.88	56.84	11.24 59.52 315 Peak																																																																																									
4	7329.00	41.22	-12.72	54.00	53.46	56.84	11.24 59.52 180 315 Average																																																																																									
Freq	Level	Over Limit	ReadAntenna	Cable Preamp	A/Pos	T/Pos	Remark																																																																																									
MHz	dbuV/m	db	dbuV/m	db	dB	dB	cm deg																																																																																									
1	4880.00	45.23	-28.77	74.00	59.26	34.37	9.58 57.98 Peak																																																																																									
2	7329.00	41.18	-22.72	54.00	54.00	63.52	36.84 11.24 59.52 200 Average																																																																																									
3	7329.00	44.57	-9.43	54.00	56.81	36.84	11.24 59.52 100 315 Peak																																																																																									
4	7329.00	44.57	-9.43	54.00	56.81	36.84	11.24 59.52 100 315 Average																																																																																									

Emission below 1GHz

2.4GHz BLE (LF)




Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE 1Mbps	61.41	0.382	2.618	3KHz
Bluetooth LE 2Mbps	57.20	1.072	0.933	1KHz

Bluetooth LE 1Mbps

Bluetooth LE 2Mbps

