

Report on the Radio Testing

For

Lacuna Space

on

LS300

Report no. TRA-058206-47-00C

2023-03-29

RF916 11.0

Report Number: TRA-058206-47-00C

Issue: C

REPORT ON THE RADIO TESTING OF A
Lacuna Space
LS300
WITH RESPECT TO SPECIFICATION
FCC 47CFR 15.247

TEST DATE: 2022-12-09 to 2022-12-20

Tested by:

Steven Garwell
Radio test Engineer

Written by:

Steven Garwell
Radio Test Engineer

John Charters

2023-03-29

Approved by: Department Manager - Radio

Disclaimers

Date:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

Issue Number	Issue Date	Revision History
А	2022-12-06	Original
В	2022-12-09	Contact details amended, Typographical corrections
С	2023-03-15	Technical corrections throughout document

RF916 11.0 Page 3 of 56

2 Summary

TEST REPORT NUMBER: TRA-058206-47-00C WORKS ORDER NUMBER: TRA-058206-01 PURPOSE OF TEST: Certification **TEST SPECIFICATION:** 47CFR15.247 EQUIPMENT UNDER TEST (EUT): LS300 FCC IDENTIFIER: 2A8AP-LS300 **EUT SERIAL NUMBER:** 0012 (conducted), 0009 (radiated) MANUFACTURER/AGENT: Lacuna Space ADDRESS: R104 Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX United Kingdom CLIENT CONTACT: Rob Spurret ***** +447827828624 □ regulatory@lacuna.space ORDER NUMBER: LN-PO-042-22 TEST DATE: 2022-12-09 to 2022-12-20 **TESTED BY:** Steven Garwell

RF916 11.0 Page 4 of 56

Element

2.1 Test Summary

Test Method and Description	Requirement Clause 47CFR15	Applicable to this equipment	Result / Note
Radiated spurious emissions (restricted bands of operation and cabinet radiation)	15.247(d)		PASS
AC power line conducted emissions	15.207		Note 1
Carrier frequency separation	15.247 (a) (1)		PASS
Number of hopping channels	15.247 (a) (1) (i), (ii) and (iii)	\boxtimes	PASS
Average time of occupancy	15.247 (a) (1) (i), (ii) and (iii)		PASS
Maximum peak conducted output power	15.247 (a) (1), (b)(1) and (b)(2)		PASS
20 dB emission bandwidth	15.247 (a) (1) (i) and (ii)		PASS
Out-of-band emissions	15.247(d)		PASS
Calculation of duty correction	-		Client Declaration

Specific Note:

1. The EUT is a battery powered device

General Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF916 11.0 Page 5 of 56

3 Contents

1 Rev	ISION Record	3
2 Sum	nmary	4
2.1	Test Summary	
	tents	
4 Intro	oduction	8
5 Test	t Specifications	9
5.1	Normative References	
-	Normalive References	9
5.2	Deviations from Test Standards	
6 Glos	ssary of Terms	.10
7 Equ	ipment under Test	.11
7.1	EUT Identification	
7.2	System Equipment	
7.3	EUT Mode of Operation	. 11
7.4	EUT Radio Parameters	. 11
7.4.		
7.4.		
7.5	EUT Description	
8 Mod	lifications	.12
	Test Setup	
9.1	Block Diagram	
-		
9.2	General Set-up Photograph	
9.3	Measurement software	
10 G	eneral Technical Parameters	
10.1	Normal Conditions	
_		
10.2	Varying Test Conditions	
11 R	adiated emissions	. 17
11.1	Definitions	.17
11.2	Test Parameters	
11.3	Test Limit	
11.4	Test Method	
11.5	Test Equipment	. 19
11.6	Test Results	.20
	arrier frequency separation	
12.1	Definition	
12.2	Test Parameters	. 23
12.3	Test Limit	.23
12.4	Test Method	
	Test Equipment	
12.5		
12.6	Test Results	
13 N	umber of hopping frequencies	. 27
13.1	Definition	.27
13.2	Test Parameters	27
_		
13.3	Test Limit	
13.4	Test Method	_
13.5	Test Equipment	. 28
13.6	Test Results	
	verage channel occupancy	
14.1	Definition	
14.2	Test Parameters	
14.3	Test Limit	.31
14.4	Test Method	
14.5		
	Test Equipment	
14.6	Test Results	
15 M	laximum peak conducted output power	. 36
15.1	Definition	. 36
15.2	Test Parameters	
15.2		
	Test Limit	
15.4	Test Method	
15.5	Test Equipment	. 37
15.6	Test Results	
	ccupied Bandwidth	
16.1	Definition	
16.2	Test Parameters	
16.3	Test Limit	. 40
16.4	Test Method	. 40

16.5 T	Fest Equipment	. 41
16.6 T	Fest Results – 20 dB Bandwidth	. 42
17 Out	t-of-band and conducted spurious emissions	.44
17.1 E	Definition	. 44
17.2 T	Fest Parameters	. 44
17.3 T	Test Limits	. 44
17.4 T	Fest Method	. 45
	Fest Equipment	
	Fest Results	
18 Mea	asurement Uncertainty	. 52
19 RF	Exposure	. 54
21 Apr	pendix A	. 56
	Antenna Information	

Introduction

This report TRA-058206-47-00C presents the results of the Radio testing on a Lacuna Space, LS300 to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for Lacuna Space by Element, at the address detailed below.

 \Box Element Hull \boxtimes Element Skelmersdale

Unit F Unit 1

South Orbital Trading Park Pendle Place Hedon Road Skemersdale West Lancashire Hull

WN8 9PN HU9 1NJ UK

UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

The test laboratory is accredited for the above sites under the US-UK MRA.

Designation number(s):

Element Hull UK2007 Element Skelmersdale UK2020

IC Registration Numbers:

Element Hull 3483A Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF916 11.0 Page 8 of 56

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF916 11.0 Page 9 of 56

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FRS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre
max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mptPoint-to-multipointPt-ptPoint-to-pointRFRadio FrequencyRHRelative HumidityRMSRoot Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF916 11.0 Page 10 of 56

Report Number: TRA-058206-47-00C

7 Equipment under Test

7.1 EUT Identification

Name: LS300

Serial Number: 0012 (conducted), 0009 (radiated)

Model Number: LS300-915-ASoftware Revision: LSM Ver 0.10.0

• Build Level / Revision Number: Version 2.1

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

• Laptop Computer – Dell Inspiron P114G

7.3 EUT Mode of Operation

The EUT was transmitting a modulated carrier on the required frequencies for the duration of the test, programming was performed using customer supplied test scripts.

7.4 EUT Radio Parameters

7.4.1 General

Frequencies of operation:	902 MHz – 928 MHz
Modulation type:	LR-FHSS
Occupied channel bandwidth:	1.523 MHz
Channel spacing:	25.415 kHz
Declared output power:	≤ 23 dBm
Nominal Supply Voltage:	4.5 Vdc

7.4.2 Antennas

Туре:	Integrated RHCP patch
Frequency range:	902 MHz to 908 MHz
Gain:	1.75 dBi Peak
Connector type:	Integrated

RF916 11.0 Page 11 of 56

7.5 EUT Description

The EUT is a Wireless satellite terminal utilising a Lora LR-FHSS modulation scheme the EUT has an integrated multi-band circularly polarized antenna system, See datasheet in appendix A.

The EUT hops across 60 channels, separated by 25.4 kHz giving a total occupied bandwidth of 1.523 MHz, testing was performed with the EUT hopping across all 60 channels in the bottom, middle and top sections of the band.

8 Modifications

No modifications were performed during this assessment.

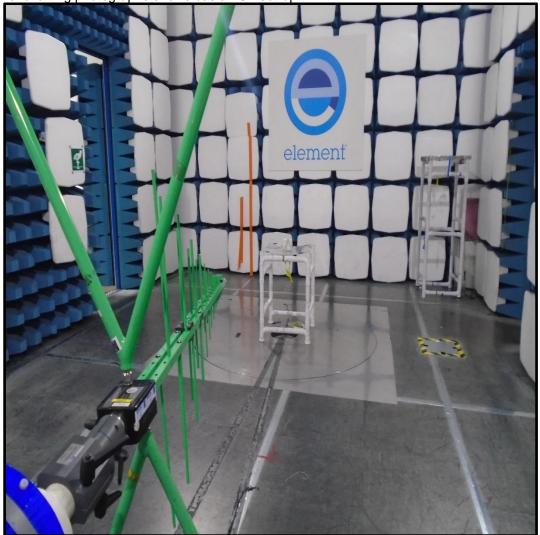
RF916 11.0 Page 12 of 56

9 EUT Test Setup

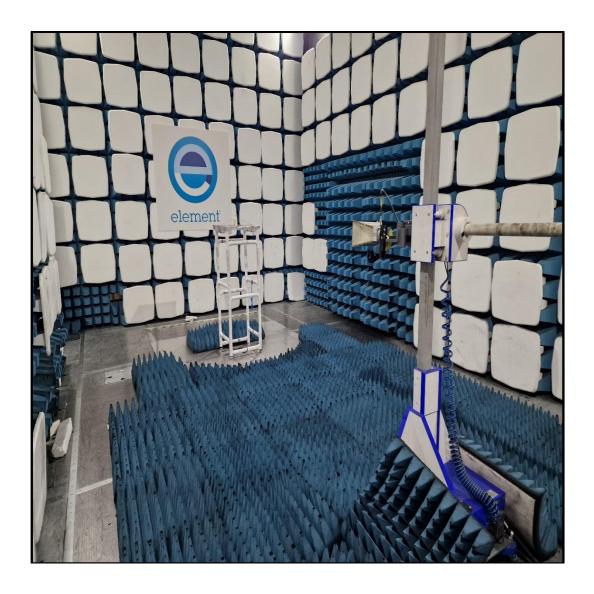
9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

EUT


Battery Operated

4.5 V dc


RF916 11.0 Page 13 of 56

9.2 General Set-up Photograph

The following photographs shows basic EUT set-up:

RF916 11.0 Page 14 of 56

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 Element Transmitter Bench Test ETS Lindgren EMPower V1.0.4.2

RF916 11.0 Page 15 of 56

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 4.5 V dc via 3 AA Alkaline batteries.

10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

Category	Nominal	Variation
Mains	110 Vac +/-2 %	85 % and 115 %
Battery	New battery	N/A

RF916 11.0 Page 16 of 56

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: SK03 Radio Chamber

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Frequencies Measured: 903 MHz, 915 MHz, 927 MHz

Deviations from Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak; Above 1 GHz: RMS average and

Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

Supply: 4.5 V dc 4.5 V dc (as declared)

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)	Field Strength (dBµV/m at 3 m)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

On frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function. On frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit.

RF916 11.0 Page 17 of 56

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

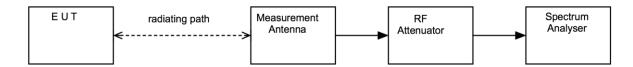
 $Factor = CL + AF - PA$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

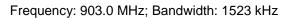

PA is the pre-amplifier gain in dB (where used);

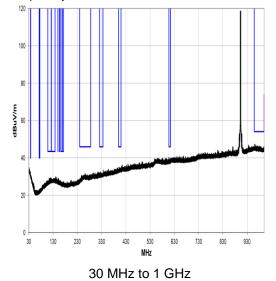
DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental):

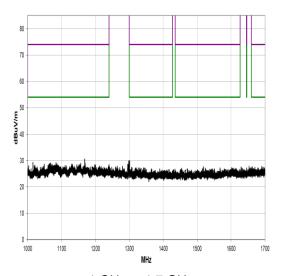
CF is the distance factor in dB (where measurement distance different to limit distance):

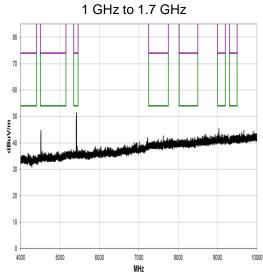
This field strength value is then compared with the regulatory limit.

Figure i Test Setup

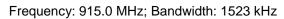

RF916 11.0 Page 18 of 56

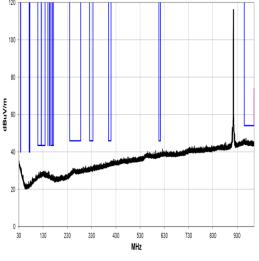

11.5 Test Equipment

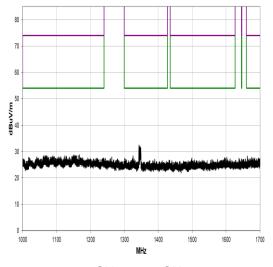

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Radio Chamber - PP	Rainford EMC	ATS	REF940	2023-11-06
Radiated Test Software	Element	Emissions R5	REF9000	Cal not required
Spectrum Analyser	R&S	ESR 7	U727	2023-04-27
Spectrum Analyser	R&S	FSU46	REF910	2022-12-22
Bilog	Chase	CBL611/A	L290	2023-03-24
PreAmp	Watkins Johnson	6201-69	U372	2023-03-01
1-18GHz Horn	EMCO	3115	L139	2024-07-01
Pre Amp	Agilent	8449B	U457	2023-01-22
High Pass Filter	MiniCircuits	VHF-1500+	U519	2023-02-03

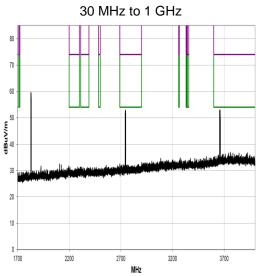

RF916 11.0 Page 19 of 56

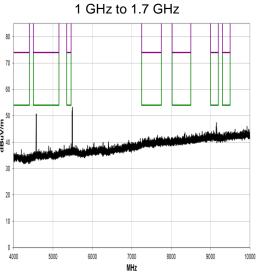
11.6 Test Results


1.7 GHz to 4 GHz


4 GHz to 10 GHz

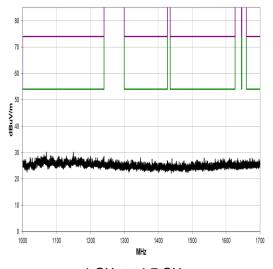

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
2706.958	52.4	-2.6	1.16	296.9	3.0	0.0	Vert	AV	0.0	49.8	54.0	-4.2
3612.167	44.9	1.0	1.03	301.0	3.0	0.0	Vert	AV	0.0	45.9	54.0	-8.1
2709.958	48.1	-2.6	1.25	2.1	3.0	0.0	Horz	AV	0.0	45.5	54.0	-8.5
3611.250	43.1	1.0	1.5	7.9	3.0	0.0	Horz	AV	0.0	44.1	54.0	-9.9
2708.750	57.6	-2.6	1.16	296.9	3.0	0.0	Vert	PK	0.0	55.0	74.0	-19.0
3614.750	53.8	1.1	1.03	301.0	3.0	0.0	Vert	PK	0.0	54.9	74.0	-19.1
2709.542	57.2	-2.6	1.25	2.1	3.0	0.0	Horz	PK	0.0	54.6	74.0	-19.4

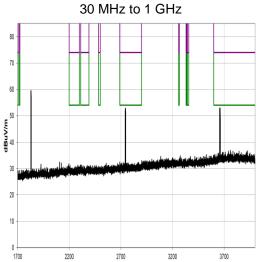

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
5419.517	42.1	4.4	1.33	208.8	3.0	0.0	Vert	AV	0.0	46.5	54.0	-7.5
5421.642	39.2	4.4	1.73	279.1	3.0	0.0	Horz	AV	0.0	43.6	54.0	-10.4
9036.892	33.8	9.0	2.02	207.2	3.0	0.0	Horz	AV	0.0	42.8	54.0	-11.2
4518.425	39.4	2.5	1.08	137.9	3.0	0.0	Horz	AV	0.0	41.9	54.0	-12.1
4515.642	38.9	2.5	1.5	252.1	3.0	0.0	Vert	AV	0.0	41.4	54.0	-12.6
9036.142	32.2	9.0	1.7	215.8	3.0	0.0	Vert	AV	0.0	41.2	54.0	-12.8
9034.458	47.3	9.0	2.02	207.2	3.0	0.0	Horz	PK	0.0	56.3	74.0	-17.7
5419.300	51.2	4.4	1.33	208.8	3.0	0.0	Vert	PK	0.0	55.6	74.0	-18.4
5421.742	50.4	4.4	1.73	279.1	3.0	0.0	Horz	PK	0.0	54.8	74.0	-19.2
9037.367	45.3	9.0	1.7	215.8	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7

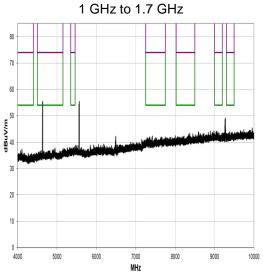

RF916 11.0 Page 20 of 56

1.7 GHz to 4 GHz

4 GHz to 10 GHz


Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
3659.750	49.8	1.3	3.08	342.9	3.0	0.0	Horz	AV	0.0	51.1	54.0	-2.9
2746.667	52.1	-2.5	1.12	285.2	3.0	0.0	Vert	AV	0.0	49.6	54.0	-4.4
2746.542	51.7	-2.5	1.25	359.9	3.0	0.0	Horz	AV	0.0	49.2	54.0	-4.8
3657.583	47.2	1.3	1.05	283.0	3.0	0.0	Vert	AV	0.0	48.5	54.0	-5.5
3661.750	56.4	1.3	1.05	283.0	3.0	0.0	Vert	PK	0.0	57.7	74.0	-16.3
3657.375	55.1	1.3	3.08	342.9	3.0	0.0	Horz	PK	0.0	56.4	74.0	-17.6
2745.917	58.7	-2.5	1.12	285.2	3.0	0.0	Vert	PK	0.0	56.2	74.0	-17.8
2743.583	57.3	-2.5	1.25	359.9	3.0	0.0	Horz	PK	0.0	54.8	74.0	-19.2


Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
9153.042	38.3	9.6	1.88	185.1	3.0	0.0	Horz	AV	0.0	47.9	54.0	-6.1
4573.667	41.3	3.2	1.36	246.1	3.0	0.0	Vert	AV	0.0	44.5	54.0	-9.5
4578.667	40.2	3.2	1.5	136.9	3.0	0.0	Horz	AV	0.0	43.4	54.0	-10.6
9151.125	32.5	9.6	1.5	223.9	3.0	0.0	Vert	AV	0.0	42.1	54.0	-11.9
9146.542	47.9	9.6	1.88	185.1	3.0	0.0	Horz	PK	0.0	57.5	74.0	-16.5
9148.167	46.5	9.6	1.5	223.9	3.0	0.0	Vert	PK	0.0	56.1	74.0	-17.9
4577.875	52.0	3.2	1.36	246.1	3.0	0.0	Vert	PK	0.0	55.2	74.0	-18.8


RF916 11.0 Page 21 of 56

Frequency: 927.0 MHz; Bandwidth: 1523 kHz

1.7 GHz to 4 GHz

4 GHz to 10 GHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
2780.625	53.7	-2.5	1.5	8.9	3.0	0.0	Horz	AV	0.0	51.2	54.0	-2.8
3708.167	49.6	1.6	1.17	310.9	3.0	0.0	Vert	AV	0.0	51.2	54.0	-2.8
2781.583	52.1	-2.5	1.1	293.9	3.0	0.0	Vert	AV	0.0	49.6	54.0	-4.4
3705.125	46.1	1.6	1.39	346.0	3.0	0.0	Horz	AV	0.0	47.7	54.0	-6.3
3705.750	55.7	1.6	1.17	310.9	3.0	0.0	Vert	PK	0.0	57.3	74.0	-16.7
2778.792	59.5	-2.5	1.1	293.9	3.0	0.0	Vert	PK	0.0	57.0	74.0	-17.0
3705.375	55.0	1.6	1.39	346.0	3.0	0.0	Horz	PK	0.0	56.6	74.0	-17.4
2781.750	57.8	-2.5	1.5	8.9	3.0	0.0	Horz	PK	0.0	55.3	74.0	-18.7

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4637.125	46.7	3.3	1.06	315.9	3.0	0.0	Horz	AV	0.0	50.0	54.0	-4.0
4632.750	46.5	3.3	1.4	245.9	3.0	0.0	Vert	AV	0.0	49.8	54.0	-4.2
4631.750	55.0	3.3	1.4	245.9	3.0	0.0	Vert	PK	0.0	58.3	74.0	-15.7
4636.167	54.4	3.3	1.06	315.9	3.0	0.0	Horz	PK	0.0	57.7	74.0	-16.3

RF916 11.0 Page 22 of 56

12 Carrier frequency separation

12.1 Definition

The carrier frequency separation is the frequency separation between two adjacent hopping frequencies.

12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.2 Frequencies Measured: 903 MHz, 915 MHz, 927 MHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

None

100 Hz

Environmental Conditions (Normal Environment)

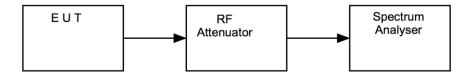
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

Supply: 4.5 V dc (as declared)

12.3 Test Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the band 2400 to 2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

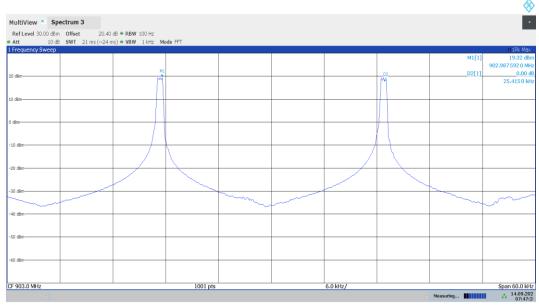

RF916 11.0 Page 23 of 56

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the emissions of the EUT were measured on a spectrum analyser.

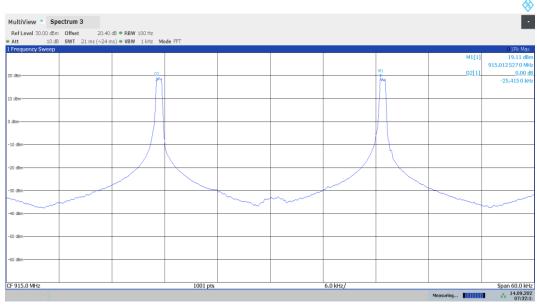
The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iii Test Setup


12.5 Test Equipment

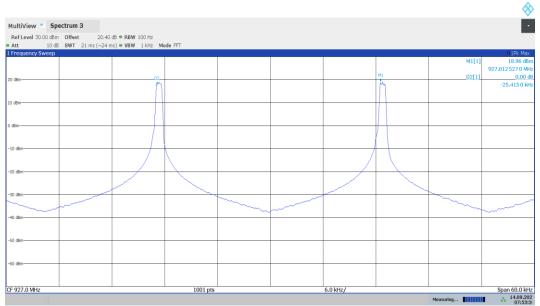
Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSW 43	U728	2023-04-26
Attenuator	AtlanTecRF Microwave	20dB SMA Attenuator	U632	Cal in use

RF916 11.0 Page 24 of 56


12.6 Test Results

Freque	Frequency: 902 MHz; Modulation: d-m2_1523; Power setting: 20							
$F1_c$ $F2_c$ Channel Separation, $F2_c - F1_c$ Result (MHz)								
902.987592	903.013007	25.415	PASS					

07:47:21 14.09.2022


Frequency: 915 MHz; Modulation: d-m2_1523; Power setting: 20							
$ \begin{array}{c cccc} F1_c & F2_c & Channel Separation, \\ (MHz) & (MHz) & F2_c - F1_c & Result \\ (kHz) & (kHz) & \end{array} $							
914.758377	915.012527	25.415	PASS				

07:32:17 14.09.2022

RF916 11.0 Page 25 of 56

Frequency: 927 MHz; Modulation: d-m2_1523; Power setting: 20							
$ \begin{array}{c cccc} F1_c & F2_c & Channel Separation, \\ \hline F1_c & F2_c & F2_c - F1_c & Result \\ \hline (MHz) & (MHz) & (kHz) & \\ \end{array} $							
926.758377	927.012527	25.415	PASS				

07:53:37 14.09.2022

RF916 11.0 Page 26 of 56

13 Number of hopping frequencies

13.1 Definition

The total number of hopping frequencies (the centre frequencies defined within the hopping sequence of a FHSS equipment) which are randomly sequenced in order to spread the transmission.

13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.3
Frequencies Measured: All; 903 MHz, 915 MHz, 927 MHz

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

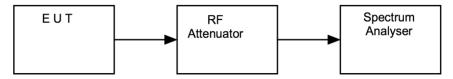
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

Supply: 4.5 V dc (as declared)

13.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth
 of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping
 channels:
 - If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz shall use at least 15 hopping channels;
- Frequency hopping systems operating in the band 5725 to 5850 MHz shall use at least 75 hopping channels.

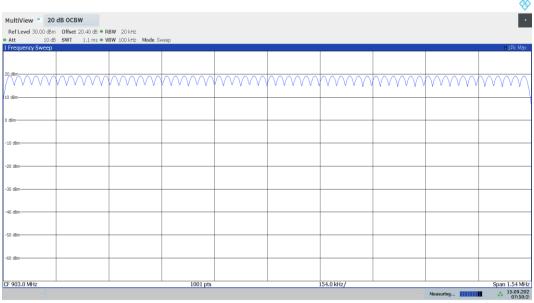

RF916 11.0 Page 27 of 56

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the emissions of the EUT were measured on a spectrum analyser.

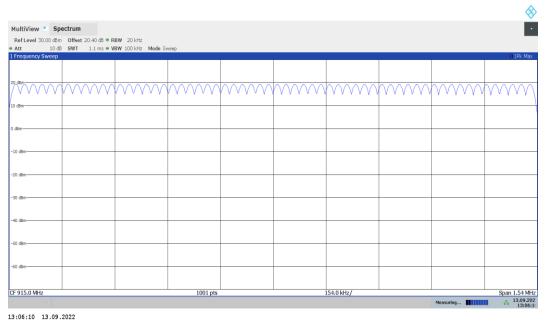
The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each nominal bandwidth.

Figure iv Test Setup

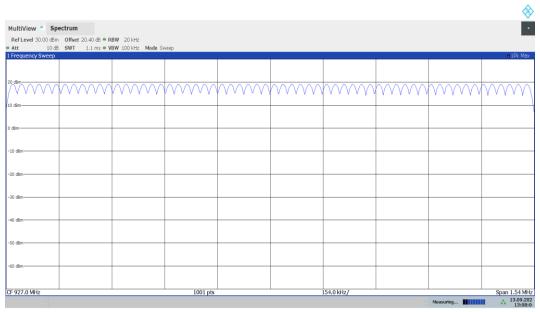

13.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSW 43	U728	2023-04-26
Attenuator	AtlanTecRF Microwave	20dB SMA Attenuator	U632	Cal in use

RF916 11.0 Page 28 of 56


13.6 Test Results

	Modulation: d-m2_1523; Power setting: 20								
Frequency (MHz)	Lowest channel, F _{CL} (MHz)	Number of channels observed	Result						
903	902.2385	903.7615	60	PASS					
915	914.2385	915.7615	60	PASS					
927	926.2385	927.7615	60	PASS					


07:50:28 15.09.2022

Frequency: 903 MHz

Frequency: 915 MHz

RF916 11.0 Page 29 of 56

13:08:07 13.09.2022

Frequency: 927 MHz

RF916 11.0 Page 30 of 56

14 Average channel occupancy

14.1 Definition

The channel occupancy is the total of the transmitter 'on' times, during an observation period, on a particular hopping frequency.

14.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.4

EUT Frequencies Measured: 903 MHz, 915 MHz, 927 MHz

EUT Number of hopping channels: 60

EUT Test Modulations: Internal pattern generation – hopping enabled

Deviations From Standard:

Measurement BW:

1 kHz

Measurement Detector:

Peak

Environmental Conditions (Normal Environment)

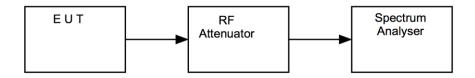
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

Supply: 4.5 V dc 4.5 V dc (as declared)

14.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: if the -20 dB bandwidth
 of the hopping channel is less than 250 kHz, the average time of occupancy on any
 channel shall not be greater than 0.4 seconds within a 20 second period;
 If the -20 dB bandwidth of the hopping channel is 250 kHz or greater, the average
 time of occupancy on any channel shall not be greater than 0.4 seconds within a 10
 second period;
- Frequency hopping systems operating in the band 2400 to 2483.5 MHz: The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed;
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

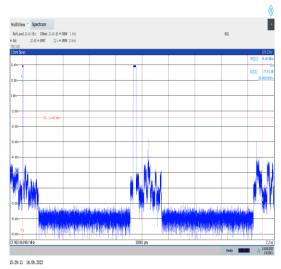

RF916 11.0 Page 31 of 56

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions of the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. A number of hops were observed to confirm consistency of the dwell time / observe the worst case. All modulation schemes, data rates and power settings were used to observe the worst-case configuration.

Figure v Test Setup


14.5 Test Equipment

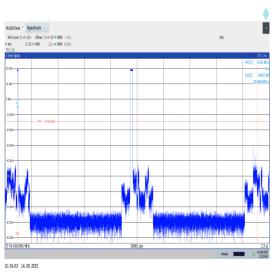
Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
Spectrum Analyser	R&S	FSW 43	U728	2023-04-26
Attenuator	AtlanTecRF Microwave	20dB SMA Attenuator	U632	Cal in use

RF916 11.0 Page 32 of 56

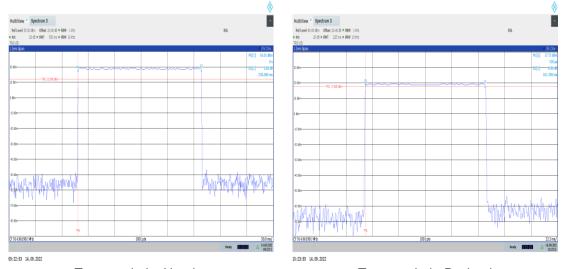
14.6 Test Results

F	Frequency: 903 MHz; Modulation: d-m6_1523: Power setting: 20							
Individual occupancy time (ms)	Observation period (s)	Average time of occupancy (s)	Result					
233.0	20	1	0.0047	DAGG				
101.7	20	1	0.3347	PASS				

Number of transmissions in 20 seconds


Tx on period – Header

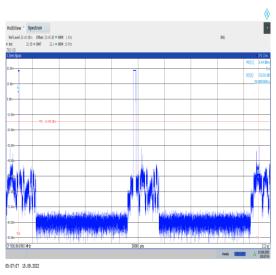
Tx on period - Payload


Note: Average time of occupancy = Individual occupancy time * Number of hops observed (Header) + Individual occupancy time * Number of hops observed (Payload)

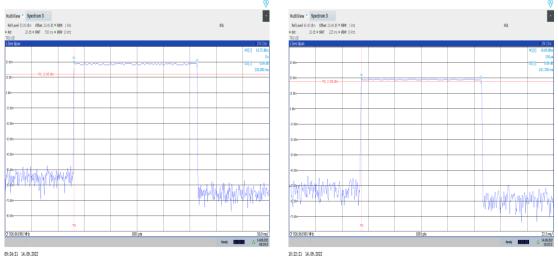
RF916 11.0 Page 33 of 56

	Frequency: 915 MHz; Modulation: d-m6_1523: Power setting: 20								
Individual Observation occupancy time (ms) Observation period (s) Number of hops observed Average time of occupancy (s) Result									
233.0	20	1	0.3347	PASS					
101.7	20	1	U.3347 PASS						

Number of transmissions in 20 seconds


Tx on period - Header

Tx on period - Payload


Note: Average time of occupancy = Individual occupancy time * Number of hops observed (Header) + Individual occupancy time * Number of hops observed (Payload)

RF916 11.0 Page 34 of 56

Frequency: 915 MHz; Modulation: d-m6_1523: Power setting: 20				
Individual occupancy time (ms)	Observation period (s)	Number of hops observed	Average time of occupancy (s)	Result
233.0	20	1	0.3347	PASS
101.7	20	1		

Number of transmissions in 20 seconds

Tx on period - Header

Tx on period - Payload

Note: Average time of occupancy = Individual occupancy time * Number of hops observed (Header) + Individual occupancy time * Number of hops observed (Payload)

RF916 11.0 Page 35 of 56

15 Maximum peak conducted output power

15.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

15.2 Test Parameters

EUT Channels Measured:

EUT Test Modulations:

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.5

Lower Band Hopping Range

Low - 902.25095 MHz; High - 903.74899 MHz

Middle Band Hopping Range

Low - 914.25095 MHz; High - 915.74899 MHz

Upper Band Hopping Range

Low - 926.25095 MHz; High - 927.74899 MHz Internal pattern generation – hopping disabled

Deviations From Standard: None

Measurement BW: 2 kHz
Spectrum Analyzer Video BW: 10 kHz

Measurement Detector: Peak

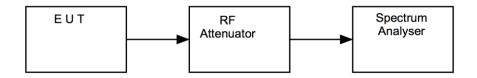
Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

15.3 Test Limit

- For frequency hopping systems operating in the band 902 to 928 MHz, the maximum peak conducted output power shall not exceed 1 W, and the e.i.r.p. shall not exceed 4 W, if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W, and the e.i.r.p. shall not exceed 1 W, if the hopset uses less than 50 hopping channels.
- For frequency hopping systems operating in the band 2400 to 2483.5 MHz and employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W;
 - for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W. The e.i.r.p. shall not exceed 4 W.
- For frequency hopping systems operating in the band 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W.
- Point-to-point systems in the bands 2400-2483.5 MHz and 5725 to 5850 MHz are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers.

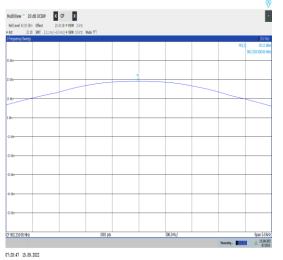

RF916 11.0 Page 36 of 56

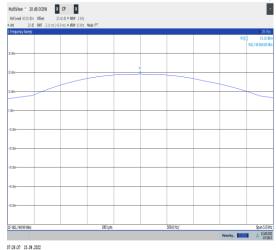
15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vi Test Setup

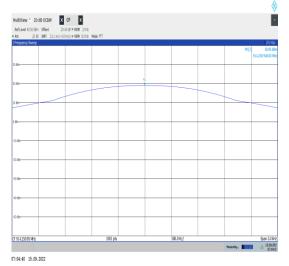

15.5 Test Equipment

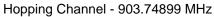

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
Spectrum Analyser	R&S	FSW 43	U728	2023-04-26
Attenuator	AtlanTecRF Microwave	20dB SMA Attenuator	U632	Cal in use

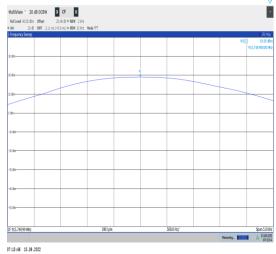
RF916 11.0 Page 37 of 56

15.6 Test Results

Lower Band Hopping Range; Modulation: d-m4_1523; Power setting: 20					
Channel Frequency (MHz)	Analyzer peak Antenna E.I.R.P. Resulting (W)				Result
Low - 902.25095	19.12	0.0817	1.75	0.1222	PASS
High - 903.74899	19.10	0.0813	1.75	0.1216	PASS

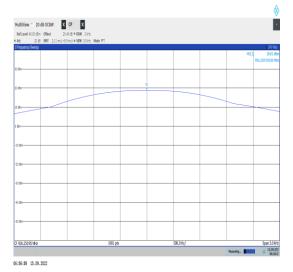


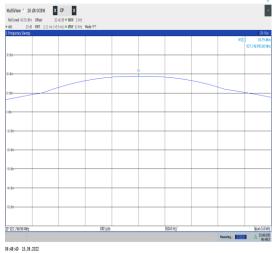



Hopping Channel - 902.25095 MHz

Hopping Channel - 903.74899 MHz

Middle Band Hopping Range; Modulation: d-m4_1523; Power setting: 20					
Channel Frequency (MHz)	Analyzer Level (dBm)	Level conducted gain		E.I.R.P. (W)	Result
Low - 903.74899	18.96	0.0787	1.75	0.1178	PASS
High - 903.74899	18.95	0.0785	1.75	0.1175	PASS





Hopping Channel - 915.74899 MHz

RF916 11.0 Page 38 of 56

Upper Band Hopping Range; Modulation: d-m4_1523; Power setting: 20					
Channel Frequency (MHz)	Analyzer Level (dBm)	Level conducted gain		E.I.R.P. (W)	Result
Low - 926.25095	18.81	0.0760	1.75	0.1138	PASS
High - 927.74899	18.79	0.0757	1.75	0.1132	PASS

Hopping Channel - 926.25095 MHz

Hopping Channel - 927.74899 MHz

RF916 11.0 Page 39 of 56

16 Occupied Bandwidth

16.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

16.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 6.9

Lower Band Hopping Range

Low - 902.25095 MHz; High - 903.74899 MHz

Middle Band Hopping Range

EUT Frequencies Measured: Low - 914.25095 MHz; High - 915.74899 MHz

Upper Band Hopping Range

Low - 926.25095 MHz; High - 927.74899 MHz

EUT Test Modulations: Internal pattern generation – hopping disabled

Deviations From Standard: None Measurement BW: 10 Hz

(requirement: 1 % to 5 % OBW)

Spectrum Analyzer Video BW: 100 Hz

(requirement at least 3x RBW)

Measurement Span: 1.3 kHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

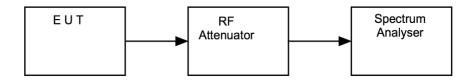
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

Supply: 4.5 V dc (as declared)

16.3 Test Limit

- For frequency hopping systems in the band 902 to 928 MHz: The maximum allowed -20 dB bandwidth of the hopping channel is 500 kHz.
- Frequency hopping systems operating in the band 5725 to 5850 MHz: The maximum
 -20 dB bandwidth of the hopping channel shall be 1 MHz


16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

RF916 11.0 Page 40 of 56

Figure vii Test Setup

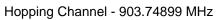
16.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSU46	REF910	2022-12-22
Attenuator	AtlanTecRF Microwave	20dB SMA Attenuator	U632	Cal in use

RF916 11.0 Page 41 of 56

16.6 Test Results - 20 dB Bandwidth

Lower Band Hopping Range; Modulation: d-m4_1523; Power Setting: 20					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Low - 902.25095	902.250644	902.251237	0.593	PASS	
High - 903.74899	903.748681	903.749289	0.608	PASS	



Hopping Channel - 903.74899 MHz

Hopping Channel - 903.74899 MHz

Middle Band Hopping Range; Modulation: d-m4_1523; Power Setting: 20					
Channel Frequency F _L F _H 20dB Bandwidth Result					
(MHz)	(MHz)	(MHz)	(kHz)	Result	
Low - 903.74899	914.250647	914.251242	0.595	PASS	
High - 903.74899	915.748695	915.749293	0.597	PASS	

Hopping Channel - 903.74899 MHz

RF916 11.0 Page 42 of 56

Upper Band Hopping Range; Modulation: d-m4_1523; Power Setting: 20					
Channel Frequency F _L F _H 20dB Bandwidth Result					
(MHz)	(MHz)	(MHz)	(kHz)	Result	
Low - 926.25095	926.250653	926.251247	0.595	PASS	
High - 927.74899	927.748703	927.749297	0.594	PASS	

Hopping Channel - 926.25095 MHz

Hopping Channel - 927.74899 MHz

RF916 11.0 Page 43 of 56

17 Out-of-band and conducted spurious emissions

17.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

17.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.8.8

Lower Band Hopping Range

Low - 902.25095 MHz; High - 903.74899 MHz

Middle Band Hopping Range

EUT Channels Measured: Low - 914.25095 MHz; High - 915.74899 MHz

Upper Band Hopping Range

Low - 926.25095 MHz; High - 927.74899 MHz

EUT Test Modulations: Internal pattern generation – hopping enabled /

disabled

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

None

100 kHz

300 kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 9 kHz to 10 GHz

Environmental Conditions (Normal Environment)

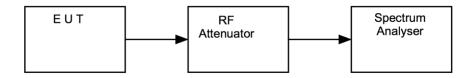
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 46 % RH 20 % RH to 75 % RH (as declared)

Supply: 4.5 V dc 4.5 V dc (as declared)

17.3 Test Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

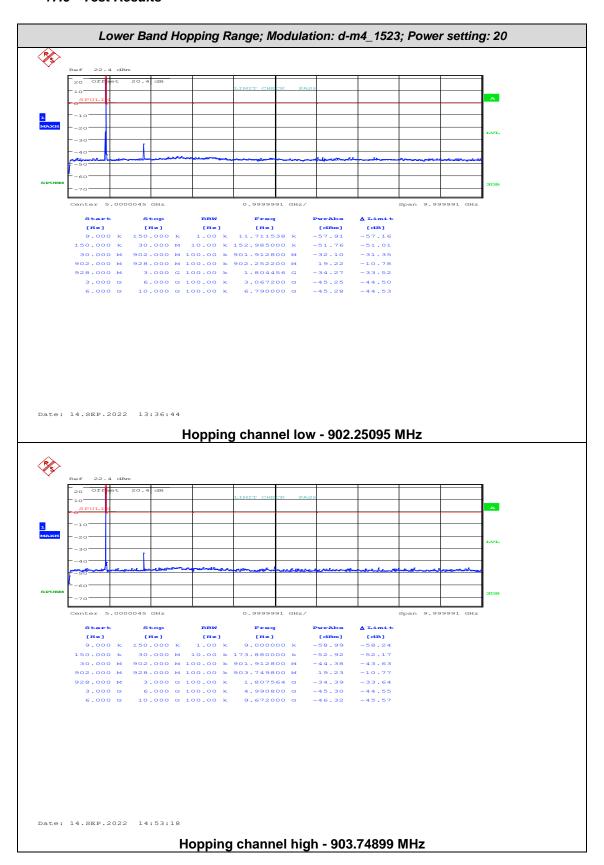

RF916 11.0 Page 44 of 56

17.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

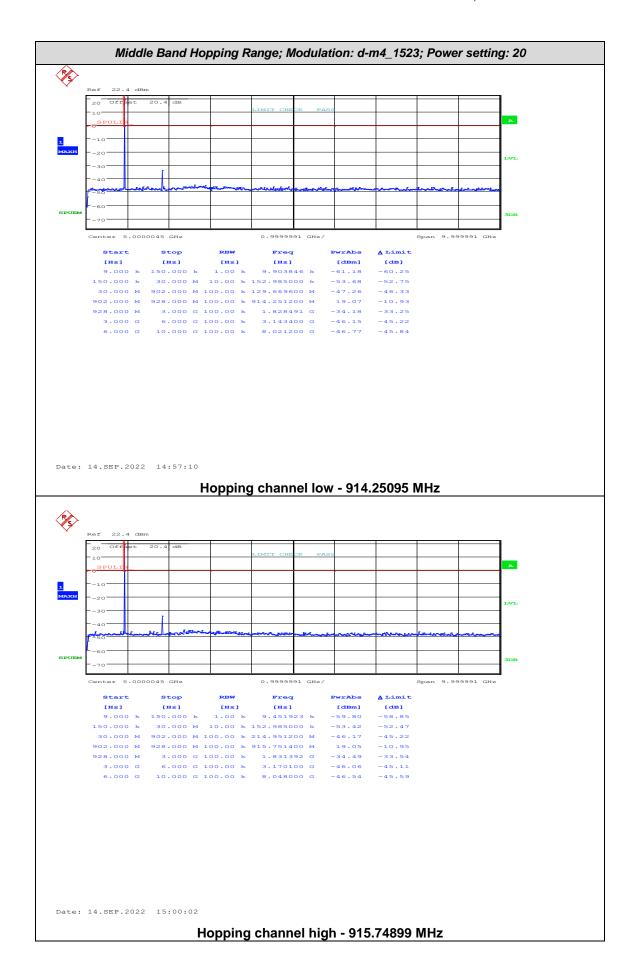
Figure viii Test Setup

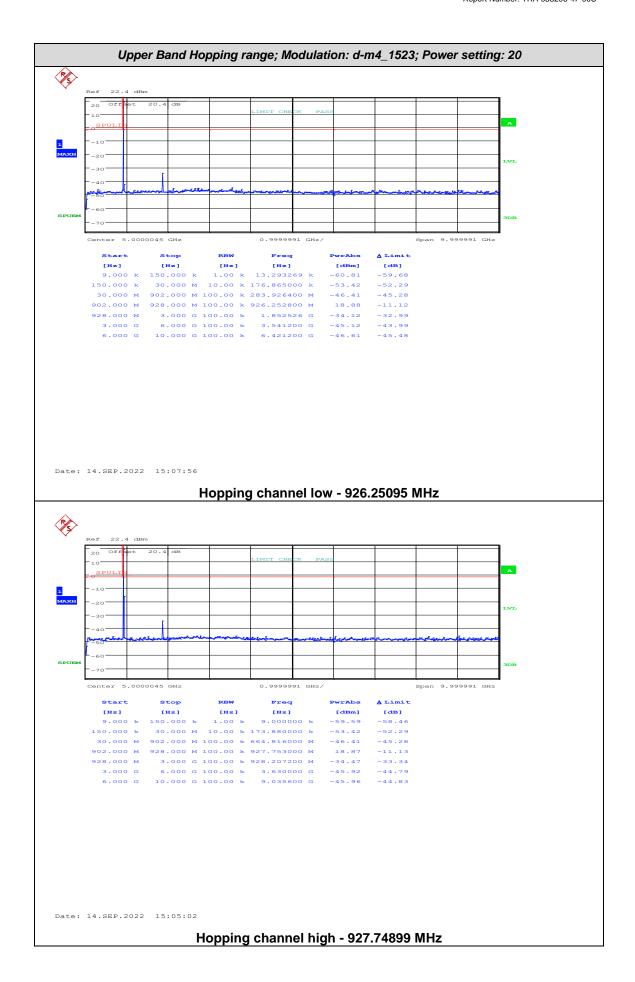


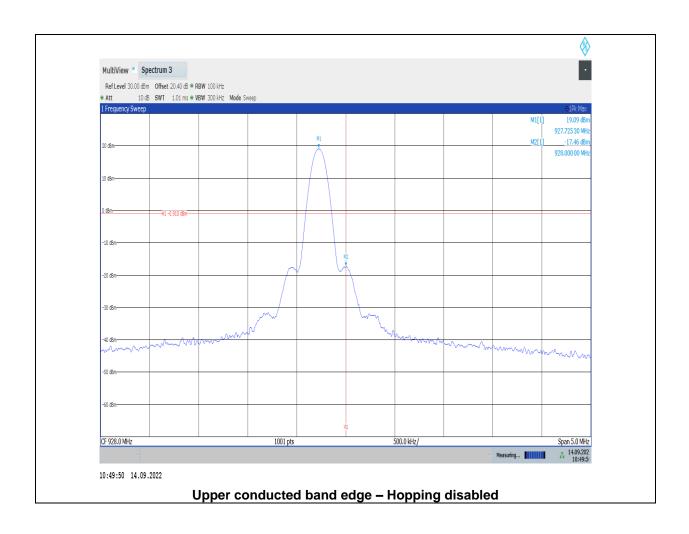
17.5 Test Equipment

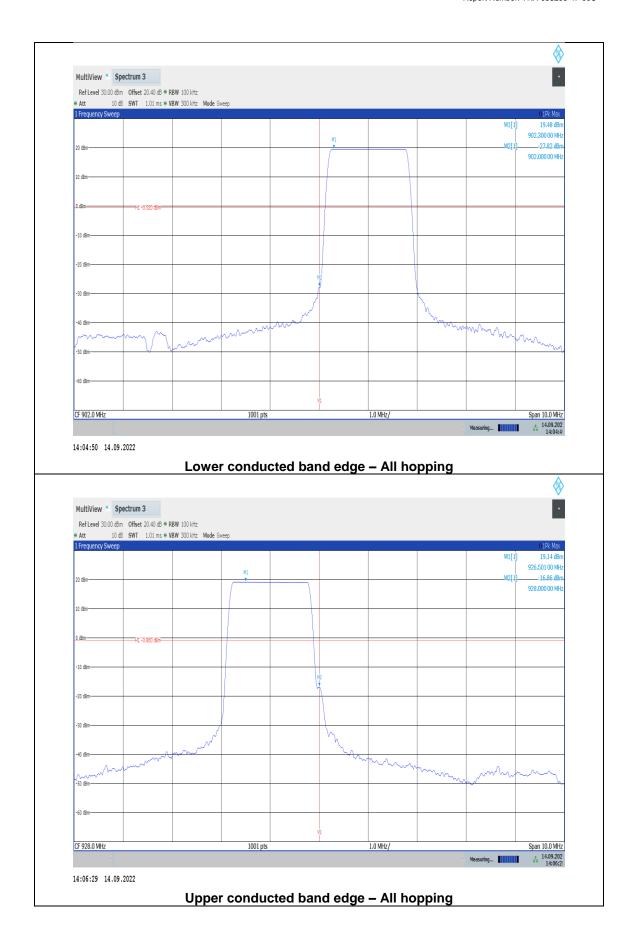

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSW 43	U728	2023-04-26
Attenuator	AtlanTecRF Microwave	20dB SMA Attenuator	U632	Cal in use

RF916 11.0 Page 45 of 56


17.6 Test Results


RF916 11.0 Page 46 of 56


RF916 11.0 Page 47 of 56


RF916 11.0 Page 48 of 56

RF916 11.0 Page 49 of 56

RF916 11.0 Page 50 of 56

RF916 11.0 Page 51 of 56

18 Measurement Uncertainty

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and		
Spurious emissions		
Absolute RF power (via antenna connecter) Dare RPR3006W Power Head	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	0.9 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz	MU4037	4.7 dB
Radiated Spurious Emissions 30 Minz to 1 Griz Radiated Spurious Emissions 1-18 GHz	MU4037	4.5 dB
E Field Emissions 18GHz to 26 GHz	MU4032	3.2 dB
E Field Emissions 26GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75GHz to 110 GHz	MU4028	3.6 dB
Radiated Magnetic Field Emissions	MU4031	2.3 dB
Francisco Magaziromento		
Frequency Measurements Frequency Deviation	MU4022	0.316 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
	MU4045	0.0413 ppm
Frequency error using GPS locked frequency source	10104045	0.0413 ppiii
Bandwidth/Spectral Mask Measurements		
Channel Bandwidth	MU4005	3.87 %
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59 %
Time Domain Measurements		
Transmission Time	MU4038	4.40 %
Dynamic Frequency Selection (DFS) Parameters)	-	
DFS Analyser - Measurement Time	MU4006	679 µs
DFS Generator - Frequency Error	MU4007	92 Hz
DFS Threshold Conducted	MU4007 MU4008	1.3 dB
DFS Threshold Radiated	MU4009	3.2 dB
	I IVIUTUUJ	J.2 UD

RF916 11.0 Page 52 of 56

Test/Measurement	Budget Number	MU
Receiver Parameters		
EN300328 Receiver Blocking	MU4010	1.1 dB
EN301893 Receiver Blocking	MU4011	1.1 dB
EN303340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN303340 Overloading	MU4013	1.1 dB
EN303340 Receiver Blocking	MU4014	1.1 dB
EN303340 Receiver Sensitivity	MU4015	0.9 dB
EN303372-1 Image Rejection	MU4016	1.4 dB
EN303372-1 Receiver Blocking	MU4017	1.1 dB
EN303372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN303372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

RF916 11.0 Page 53 of 56

19 RF Exposure

General SAR test reduction & exclusion guidance

KDB 447498

Section 4.3 General SAR test reduction and exclusion guidance

For Standalone SAR exclusion consideration, when SAR Exclusion Threshold requirement in KDB 447498 is satisfied, standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

The SAR Test Exclusion Threshold for frequencies in the range 100 MHz to 6 GHz, and for test separation distance of \leq 50 mm, is determined as follows.

SAR Exclusion Threshold (SARET) = $(NT \times TSD_A) / \sqrt{f_{GHz}}$

Where,

NT = Numeric Threshold (3.0 for 1-g SAR and 7.5 for 10-g SAR) TSDA = Minimum Test separation distance or 50 mm (whichever is lower) $f_{GHz} = Transmit frequency in GHz$

Channel Frequency (MHz)	Maximum Conducted Power (mW)	SAR Exclusion Threshold at 27 mm (mW)	SAR Evaluation
902	85.1	85.3	Not Required
915	81.3	84.7	Not Required
927	77.6	84.1	Not Required

Therefore standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

Note: Evaluation based on maximum conducted power.

RF916 11.0 Page 54 of 56

MPE Calculation

Prediction of MPE limit at a given distance

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20 cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than the power density limit, as required under FCC rules.

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2}$$
 re-arranged $R = \sqrt{\frac{EIRP}{S4\pi}}$

Where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Result

Channel Frequency (MHz)	EIRP (mW)	Power density limit (S) (mW/cm²)	Distance (R) cm required to be less than the power density limit
902	126.5	0.6	4.1
915	122.2	0.6	4.0
927	116.9	0.6	3.9

Note: Evaluation based on maximum conducted power.

RF916 11.0 Page 55 of 56

21 Appendix A

21.1 Antenna Information

RF Parameter

Parameter	868/915 band*		GNSS	S-Band	
Frequency Range (MHz)	862-870	902-928	1500-1700	1950-2250	
Typical Frequency (MHz)	870	915	1575	2000 (up)	2180 (down)
Peak Total Gain (dBi)**	1.69	1.75	1.31	2.68	2.78
Peak RHCP Gain (dBic)**	1.49	1.62	0.99	2.51	1.53
Average Gain (dBi)**	-2.3	-2.2	-2.74	-1.77	-2.85
Total Efficiency	< 49%	< 50%	< 37%	< 46%	< 45%
Axial Ratio (dB)	< 6	< 6	< 6	< 6	< 6
Reflection coefficient (dB)	< -10	< -10	< -6	< -6	< -6
Peak EIRP (dBm)***	23.69	23.75	N/A	26.51	N/A

Antenna Type

All antennas are integrated RHCP patch antennas. The antennas will be fixed, i.e. not replaceable by other antennas.

RF916 11.0 Page 56 of 56

^{*} Model variant 868: LS300-868-A, Model variant 915: LS300-915-A
** Values for "Typical Frequency"
*** Hardware maximum. Transmissions will be limited in software according to regional regulations.