

Shenzhen HTT Technology Co., Ltd.

RF Exposure MPE

Report Reference No.....: HTT202507080F02

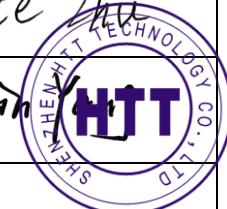
FCC ID.....: 2A87N-MG-SJ100

Compiled by

(position+printed name+signature) ..: File administrators

Heber He

Supervised by


(position+printed name+signature) ..: Project Engineer

Bruce Zhu

Approved by

(position+printed name+signature) ..: RF Manager

Ken

Date of issue: Jul. 08, 2025

Testing Laboratory Name.....: Shenzhen HTT Technology Co.,Ltd.

Address.....: 1F, Building B, Huafeng International Robotics Industrial Park,
Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an
District, Shenzhen, Guangdong, China

Applicant's name.....: Shen Zhen Simaru Tec Co.,Ltd

Address.....: 208, Building C, No.129, Pingxin North Road, Shangmugu
Community, Pinghu Street, Longgang District, Shenzhen,
Guangdong, China

47CFR §1.1310

Standard: 47CFR §2.1091

KDB447498 D01 General RF Exposure Guidance v06

Shenzhen HTT Technology Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HTT Technology Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HTT Technology Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Zigbee Rainwater Leakage Detection

Manufacturer: Shen Zhen Simaru Tec Co.,Ltd

Trade Mark: N/A

Model/Type reference: MG-SJ100-W-ZIG

Rating: DC 3.0V From Battery

Result: **PASS**

TEST REPORT

Equipment under Test : Zigbee Rainwater Leakage Detection

Model /Type : MG-SJ100-W-ZIG

Listed Models : SMR-MG-SJ100-W-ZIG

Model Declaration : PCB board, structure and internal of these model(s) are the same,
So no additional models were tested.

Applicant : **Shen Zhen Simaru Tec Co.,Ltd**

Address : 208, Building C, No.129, Pingxin North Road, Shangmugu
Community, Pinghu Street, Longgang District, Shenzhen,
Guangdong, China

Manufacturer : **Shen Zhen Simaru Tec Co.,Ltd**

Address : 208, Building C, No.129, Pingxin North Road, Shangmugu
Community, Pinghu Street, Longgang District, Shenzhen,
Guangdong, China

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of
the test laboratory.

Contents

<u>1</u>	<u>TEST STANDARDS</u>	4
<u>2</u>	<u>SUMMARY</u>	5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Special Accessories	5
2.4	Modifications	5
<u>3</u>	<u>TEST ENVIRONMENT</u>	6
3.1	Address of the test laboratory	6
3.2	Test Facility	6
3.3	Statement of the measurement uncertainty	6
<u>4</u>	<u>TEST LIMIT</u>	8
4.1	Requirement	8
4.2	Conducted Power Results	8
4.3	Manufacturing tolerance	9
4.4	Evaluation Result	错误!未定义书签。
4.5	Simultaneous Transmission for SAR Exclusion	错误!未定义书签。
<u>5</u>	<u>CONCLUSION</u>	9

1 TEST STANDARDS

The tests were performed according to following standards:

[ANSI C95.1-1999](#): IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

[FCC KDB 447498 D01 General RF Exposure Guidance v06](#): Mobile and Portable Device, RF Exposure, Equipment Authorization Procedures.

[FCC CFR 47 part1 1.1310](#): Radiofrequency radiation exposure limits.

[FCC CFR 47 part2 2.1091](#): Radiofrequency radiation exposure evaluation: mobile devices

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Jul. 01, 2025
Testing commenced on	:	Jul. 01, 2025
Testing concluded on	:	Jul. 08, 2025

2.2 Product Description

Name of EUT	Zigbee Rainwater Leakage Detection
Model Number	MG-SJ100-W-ZIG
Power Rating	DC 3.0V From Battery
Sample ID:	HTT202507080-1# (Engineer sample) HTT202507080-2# (Normal sample)
Operation frequency	2405-2480MHz
Modulation	OQPSK
Antenna Type	PCB antenna
Antenna Gain	1.08 dBi

2.3 Special Accessories

The following is the EUT test of the auxiliary equipment provided by the laboratory:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
/	/	/	/	/	/

2.4 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen HTT Technology Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen HTT Technology Co.,Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.12 dB	(1)
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Output Peak power	30MHz~18GHz	0.57 dB	(1)
Power spectral density	/	0.54 dB	(1)
Spectrum bandwidth	/	1.2%	(1)
Time	/	±10%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.25 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.15 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.35 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.20 dB	(1)

Band Edge Compliance of RF Emission	9KHz~40GHz	1.20 dB	(1)
Occupied Bandwidth	9KHz~40GHz	-	(1)

4 Test limit

4.1 Requirement

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for Occupational/Controlled Exposure				
0.3 – 3.0	614	1.63	(100) *	6
3.0 – 30	1842/f	4.89/f	(900/f ²)*	6
30 – 300			1.0	6
300 – 1500	61.4	0.163	f/300	6
1500 –	/	/	5	6
100,000	/	/		

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for Occupational/Controlled Exposure				
0.3 – 3.0	614	1.63	(100) *	30
3.0 – 30	824/f	2.19/f	(180/f ²)*	30
30 – 300	27.5	0.073	0.2	30
300 – 1500	/	/	f/1500	30
1500 –	/	/	1.0	30
100,000	/	/		

F=frequency in MHz

*=Plane-wave equivalent power density

4.2 MPE Calculation Method

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

4.3 Conducted Power Results

Mode	TX Type	Frequency (MHz)	Maximum Peak Conducted Output Power (dBm)	
			ANT1	Limit
Zigbee	SISO	2405	2.11	<=30
		2440	1.66	<=30
		2480	1.08	<=30

4.4 Manufacturing tolerance

Mode	Max. Peak Conducted Output Power (dBm)	Max. tune-up
Zigbee	2.11	3.0±1

4.5 Standalone MPE Result

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, $r = 20\text{cm}$, as well as the gain of the used antenna is refer to section 2.2, the RF power density can be obtained.

Modulation Type	Output power		Antenna Gain (dBi)	Antenna Gain (linear)	MPE (mW/cm ²)	MPE Limits (mW/cm ²)
	dBm	mW				
Zigbee	4.0	2.5119	1.08	1.2823	0.0006	1.0000

Remark:

1. Output power (Peak) including turn-up tolerance;
2. MPE evaluate distance is 20cm from user manual provide by manufacturer.

5 Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device Threshold per KDB 447498 D01v06

***** End of Report *****