

TEST REPORT

FCC ID.	2A85Y-K96PRO
Test Report No.	TCT240612E057
Date of issue	Jul. 02, 2024
Testing laboratory	SHENZHEN TONGCE TESTING LAB
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China
Applicant's name	DONGGUAN ESWN TECHNOLOGY CO., LTD
Address	Room106, No.15 chukeng Industrial Road, Dongkeng Town, Dongguan City, Guangdong Province, China
Manufacturer's name ...	DONGGUAN ESWN TECHNOLOGY CO., LTD
Address	Room106, No.15 chukeng Industrial Road, Dongkeng Town, Dongguan City, Guangdong Province, China
Standard(s)	FCC CFR Title 47 Part 15 Subpart C Section 15.249 ANSI C63.10:2013
Product Name	Mechanical Keyboard
Trade Mark	N/A
Model/Type reference	K96Pro
Rating(s)	Rechargeable Li-ion Battery DC 3.7V
Date of receipt of test item	Jun. 12, 2024
Date (s) of performance of test	Jun. 12, 2024 ~ Jul. 02, 2024
Tested by (+signature) ...	Ronaldo LUO
Check by (+signature)	Beryl ZHAO
Approved by (+signature):	Tomsin

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1. General Product Information	3
1.1. EUT description	3
1.2. Model(s) list.....	3
1.3. Operation Frequency	3
2. Test Result Summary	4
3. General Information.....	5
3.1. Test Environment and Mode.....	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	6
4.1. Facilities	6
4.2. Location	6
4.3. Measurement Uncertainty.....	6
5. Test Results and Measurement Data	7
5.1. Antenna Requirement	7
5.2. Conducted Emission.....	8
5.3. Radiated Emission Measurement	12
5.4. 20dB Occupied Bandwidth	24

Appendix A: Photographs of Test Setup

Appendix B: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name.....	Mechanical Keyboard
Model/Type reference.....	K96Pro
Sample Number.....	TCT240612E056-0101
Operation Frequency	2402MHz~2480MHz
Number of Channel.....	40
Modulation Technology	GFSK
Antenna Type.....	PCB Antenna
Antenna Gain.....	3.85dBi
Rating(s).....	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
...
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Remark: Channel 0, 19 & 39 have been tested.

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§15.249 (a) (d)/ §15.209	PASS
Band Edge	§15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§15.215 (c)	PASS

Note:

1. Pass: Test item meets the requirement.
2. Fail: Test item does not meet the requirement.
3. N/A: Test case does not apply to the test object.
4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	23.8 °C	22.8 °C
Humidity:	51% RH	51 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	RFTest	
Power Level:	0*06	
Test Mode:		
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.	
<p>The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.</p>		

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China
TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

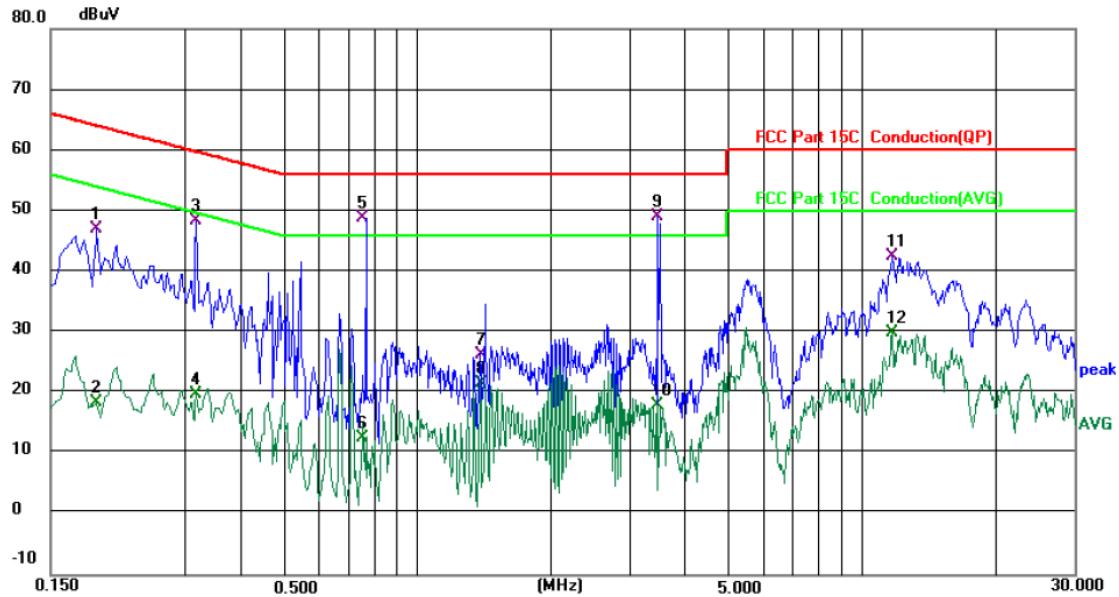
5.1. Antenna Requirement

Standard requirement:	FCC Part15 C Section 15.203
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.	
E.U.T Antenna:	
E.U.T Antenna:	The EUT antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 3.85dBi.
<img alt="Close-up photograph of a printed circuit board (PCB) showing a yellow PCB antenna connected to the board. A red arrow points to the antenna, and the word 'Antenna' is written next to it. The board has various components and labels like 'A1-L1', 'S96', 'S98', 'S99', 'S95', 'S94', 'S93', 'S92', 'S91', 'S90', 'S89', 'S88', 'S87', 'S86', 'S85', 'S84', 'S83', 'S82', 'S81', 'S80', 'S79', 'S78', 'S77', 'S76', 'S75', 'S74', 'S73', 'S72', 'S71', 'S70', 'S69', 'S68', 'S67', 'S66', 'S65', 'S64', 'S63', 'S62', 'S61', 'S60', 'S59', 'S58', 'S57', 'S56', 'S55', 'S54', 'S53', 'S52', 'S51', 'S50', 'S49', 'S48', 'S47', 'S46', 'S45', 'S44', 'S43', 'S42', 'S41', 'S40', 'S39', 'S38', 'S37', 'S36', 'S35', 'S34', 'S33', 'S32', 'S31', 'S30', 'S29', 'S28', 'S27', 'S26', 'S25', 'S24', 'S23', 'S22', 'S21', 'S20', 'S19', 'S18', 'S17', 'S16', 'S15', 'S14', 'S13', 'S12', 'S11', 'S10', 'S9', 'S8', 'S7', 'S6', 'S5', 'S4', 'S3', 'S2', 'S1', 'S0', 'S-1', 'S-2', 'S-3', 'S-4', 'S-5', 'S-6', 'S-7', 'S-8', 'S-9', 'S-10', 'S-11', 'S-12', 'S-13', 'S-14', 'S-15', 'S-16', 'S-17', 'S-18', 'S-19', 'S-20', 'S-21', 'S-22', 'S-23', 'S-24', 'S-25', 'S-26', 'S-27', 'S-28', 'S-29', 'S-30', 'S-31', 'S-32', 'S-33', 'S-34', 'S-35', 'S-36', 'S-37', 'S-38', 'S-39', 'S-40', 'S-41', 'S-42', 'S-43', 'S-44', 'S-45', 'S-46', 'S-47', 'S-48', 'S-49', 'S-50', 'S-51', 'S-52', 'S-53', 'S-54', 'S-55', 'S-56', 'S-57', 'S-58', 'S-59', 'S-60', 'S-61', 'S-62', 'S-63', 'S-64', 'S-65', 'S-66', 'S-67', 'S-68', 'S-69', 'S-70', 'S-71', 'S-72', 'S-73', 'S-74', 'S-75', 'S-76', 'S-77', 'S-78', 'S-79', 'S-80', 'S-81', 'S-82', 'S-83', 'S-84', 'S-85', 'S-86', 'S-87', 'S-88', 'S-89', 'S-90', 'S-91', 'S-92', 'S-93', 'S-94', 'S-95', 'S-96', 'S-97', 'S-98', 'S-99', 'S-100', 'S-101', 'S-102', 'S-103', 'S-104', 'S-105', 'S-106', 'S-107', 'S-108', 'S-109', 'S-110', 'S-111', 'S-112', 'S-113', 'S-114', 'S-115', 'S-116', 'S-117', 'S-118', 'S-119', 'S-120', 'S-121', 'S-122', 'S-123', 'S-124', 'S-125', 'S-126', 'S-127', 'S-128', 'S-129', 'S-130', 'S-131', 'S-132', 'S-133', 'S-134', 'S-135', 'S-136', 'S-137', 'S-138', 'S-139', 'S-140', 'S-141', 'S-142', 'S-143', 'S-144', 'S-145', 'S-146', 'S-147', 'S-148', 'S-149', 'S-150', 'S-151', 'S-152', 'S-153', 'S-154', 'S-155', 'S-156', 'S-157', 'S-158', 'S-159', 'S-160', 'S-161', 'S-162', 'S-163', 'S-164', 'S-165', 'S-166', 'S-167', 'S-168', 'S-169', 'S-170', 'S-171', 'S-172', 'S-173', 'S-174', 'S-175', 'S-176', 'S-177', 'S-178', 'S-179', 'S-180', 'S-181', 'S-182', 'S-183', 'S-184', 'S-185', 'S-186', 'S-187', 'S-188', 'S-189', 'S-190', 'S-191', 'S-192', 'S-193', 'S-194', 'S-195', 'S-196', 'S-197', 'S-198', 'S-199', 'S-200', 'S-201', 'S-202', 'S-203', 'S-204', 'S-205', 'S-206', 'S-207', 'S-208', 'S-209', 'S-210', 'S-211', 'S-212', 'S-213', 'S-214', 'S-215', 'S-216', 'S-217', 'S-218', 'S-219', 'S-220', 'S-221', 'S-222', 'S-223', 'S-224', 'S-225', 'S-226', 'S-227', 'S-228', 'S-229', 'S-230', 'S-231', 'S-232', 'S-233', 'S-234', 'S-235', 'S-236', 'S-237', 'S-238', 'S-239', 'S-240', 'S-241', 'S-242', 'S-243', 'S-244', 'S-245', 'S-246', 'S-247', 'S-248', 'S-249', 'S-250', 'S-251', 'S-252', 'S-253', 'S-254', 'S-255', 'S-256', 'S-257', 'S-258', 'S-259', 'S-260', 'S-261', 'S-262', 'S-263', 'S-264', 'S-265', 'S-266', 'S-267', 'S-268', 'S-269', 'S-270', 'S-271', 'S-272', 'S-273', 'S-274', 'S-275', 'S-276', 'S-277', 'S-278', 'S-279', 'S-280', 'S-281', 'S-282', 'S-283', 'S-284', 'S-285', 'S-286', 'S-287', 'S-288', 'S-289', 'S-290', 'S-291', 'S-292', 'S-293', 'S-294', 'S-295', 'S-296', 'S-297', 'S-298', 'S-299', 'S-300', 'S-301', 'S-302', 'S-303', 'S-304', 'S-305', 'S-306', 'S-307', 'S-308', 'S-309', 'S-310', 'S-311', 'S-312', 'S-313', 'S-314', 'S-315', 'S-316', 'S-317', 'S-318', 'S-319', 'S-320', 'S-321', 'S-322', 'S-323', 'S-324', 'S-325', 'S-326', 'S-327', 'S-328', 'S-329', 'S-330', 'S-331', 'S-332', 'S-333', 'S-334', 'S-335', 'S-336', 'S-337', 'S-338', 'S-339', 'S-340', 'S-341', 'S-342', 'S-343', 'S-344', 'S-345', 'S-346', 'S-347', 'S-348', 'S-349', 'S-350', 'S-351', 'S-352', 'S-353', 'S-354', 'S-355', 'S-356', 'S-357', 'S-358', 'S-359', 'S-360', 'S-361', 'S-362', 'S-363', 'S-364', 'S-365', 'S-366', 'S-367', 'S-368', 'S-369', 'S-370', 'S-371', 'S-372', 'S-373', 'S-374', 'S-375', 'S-376', 'S-377', 'S-378', 'S-379', 'S-380', 'S-381', 'S-382', 'S-383', 'S-384', 'S-385', 'S-386', 'S-387', 'S-388', 'S-389', 'S-390', 'S-391', 'S-392', 'S-393', 'S-394', 'S-395', 'S-396', 'S-397', 'S-398', 'S-399', 'S-400', 'S-401', 'S-402', 'S-403', 'S-404', 'S-405', 'S-406', 'S-407', 'S-408', 'S-409', 'S-410', 'S-411', 'S-412', 'S-413', 'S-414', 'S-415', 'S-416', 'S-417', 'S-418', 'S-419', 'S-420', 'S-421', 'S-422', 'S-423', 'S-424', 'S-425', 'S-426', 'S-427', 'S-428', 'S-429', 'S-430', 'S-431', 'S-432', 'S-433', 'S-434', 'S-435', 'S-436', 'S-437', 'S-438', 'S-439', 'S-440', 'S-441', 'S-442', 'S-443', 'S-444', 'S-445', 'S-446', 'S-447', 'S-448', 'S-449', 'S-450', 'S-451', 'S-452', 'S-453', 'S-454', 'S-455', 'S-456', 'S-457', 'S-458', 'S-459', 'S-460', 'S-461', 'S-462', 'S-463', 'S-464', 'S-465', 'S-466', 'S-467', 'S-468', 'S-469', 'S-470', 'S-471', 'S-472', 'S-473', 'S-474', 'S-475', 'S-476', 'S-477', 'S-478', 'S-479', 'S-480', 'S-481', 'S-482', 'S-483', 'S-484', 'S-485', 'S-486', 'S-487', 'S-488', 'S-489', 'S-490', 'S-491', 'S-492', 'S-493', 'S-494', 'S-495', 'S-496', 'S-497', 'S-498', 'S-499', 'S-500', 'S-501', 'S-502', 'S-503', 'S-504', 'S-505', 'S-506', 'S-507', 'S-508', 'S-509', 'S-510', 'S-511', 'S-512', 'S-513', 'S-514', 'S-515', 'S-516', 'S-517', 'S-518', 'S-519', 'S-520', 'S-521', 'S-522', 'S-523', 'S-524', 'S-525', 'S-526', 'S-527', 'S-528', 'S-529', 'S-530', 'S-531', 'S-532', 'S-533', 'S-534', 'S-535', 'S-536', 'S-537', 'S-538', 'S-539', 'S-540', 'S-541', 'S-542', 'S-543', 'S-544', 'S-545', 'S-546', 'S-547', 'S-548', 'S-549', 'S-550', 'S-551', 'S-552', 'S-553', 'S-554', 'S-555', 'S-556', 'S-557', 'S-558', 'S-559', 'S-560', 'S-561', 'S-562', 'S-563', 'S-564', 'S-565', 'S-566', 'S-567', 'S-568', 'S-569', 'S-570', 'S-571', 'S-572', 'S-573', 'S-574', 'S-575', 'S-576', 'S-577', 'S-578', 'S-579', 'S-580', 'S-581', 'S-582', 'S-583', 'S-584', 'S-585', 'S-586', 'S-587', 'S-588', 'S-589', 'S-590', 'S-591', 'S-592', 'S-593', 'S-594', 'S-595', 'S-596', 'S-597', 'S-598', 'S-599', 'S-600', 'S-601', 'S-602', 'S-603', 'S-604', 'S-605', 'S-606', 'S-607', 'S-608', 'S-609', 'S-610', 'S-611', 'S-612', 'S-613', 'S-614', 'S-615', 'S-616', 'S-617', 'S-618', 'S-619', 'S-620', 'S-621', 'S-622', 'S-623', 'S-624', 'S-625', 'S-626', 'S-627', 'S-628', 'S-629', 'S-630', 'S-631', 'S-632', 'S-633', 'S-634', 'S-635', 'S-636', 'S-637', 'S-638', 'S-639', 'S-640', 'S-641', 'S-642', 'S-643', 'S-644', 'S-645', 'S-646', 'S-647', 'S-648', 'S-649', 'S-650', 'S-651', 'S-652', 'S-653', 'S-654', 'S-655', 'S-656', 'S-657', 'S-658', 'S-659', 'S-660', 'S-661', 'S-662', 'S-663', 'S-664', 'S-665', 'S-666', 'S-667', 'S-668', 'S-669', 'S-670', 'S-671', 'S-672', 'S-673', 'S-674', 'S-675', 'S-676', 'S-677', 'S-678', 'S-679', 'S-680', 'S-681', 'S-682', 'S-683', 'S-684', 'S-685', 'S-686', 'S-687', 'S-688', 'S-689', 'S-690', 'S-691', 'S-692', 'S-693', 'S-694', 'S-695', 'S-696', 'S-697', 'S-698', 'S-699', 'S-700', 'S-701', 'S-702', 'S-703', 'S-704', 'S-705', 'S-706', 'S-707', 'S-708', 'S-709', 'S-710', 'S-711', 'S-712', 'S-713', 'S-714', 'S-715', 'S-716', 'S-717', 'S-718', 'S-719', 'S-720', 'S-721', 'S-722', 'S-723', 'S-724', 'S-725', 'S-726', 'S-727', 'S-728', 'S-729', 'S-730', 'S-731', 'S-732', 'S-733', 'S-734', 'S-735', 'S-736', 'S-737', 'S-738', 'S-739', 'S-740', 'S-741', 'S-742', 'S-743', 'S-744', 'S-745', 'S-746', 'S-747', 'S-748', 'S-749', 'S-750', 'S-751', 'S-752', 'S-753', 'S-754', 'S-755', 'S-756', 'S-757', 'S-758', 'S-759', 'S-760', 'S-761', 'S-762', 'S-763', 'S-764', 'S-765', 'S-766', 'S-767', 'S-768', 'S-769', 'S-770', 'S-771', 'S-772', 'S-773', 'S-774', 'S-775', 'S-776', 'S-777', 'S-778', 'S-779', 'S-780', 'S-781', 'S-782', 'S-783', 'S-784', 'S-785', 'S-786', 'S-787', 'S-788', 'S-789', 'S-790', 'S-791', 'S-792', 'S-793', 'S-794', 'S-795', 'S-796', 'S-797', 'S-798', 'S-799', 'S-800', 'S-801', 'S-802', 'S-803', 'S-804', 'S-805', 'S-806', 'S-807', 'S-808', 'S-809', 'S-810', 'S-811', 'S-812', 'S-813', 'S-814', 'S-815', 'S-816', 'S-817', 'S-818', 'S-819', 'S-820', 'S-821', 'S-822', 'S-823', 'S-824', 'S-825', 'S-826', 'S-827', 'S-828', 'S-829', 'S-830', 'S-831', 'S-832', 'S-833', 'S-834', 'S-835', 'S-836', 'S-837', 'S-838', 'S-839', 'S-840', 'S-841', 'S-842', 'S-843', 'S-844', 'S-845', 'S-846', 'S-847', 'S-848', 'S-849', 'S-850', 'S-851', 'S-852', 'S-853', 'S-854', 'S-855', 'S-856', 'S-857', 'S-858', 'S-859', 'S-860', 'S-861', 'S-862', 'S-863', 'S-864', 'S-865', 'S-866', 'S-867', 'S-868', 'S-869', 'S-870', 'S-871', 'S-872', 'S-873', 'S-874', 'S-875', 'S-876', 'S-877', 'S-878', 'S-879', 'S-880', 'S-881', 'S-882', 'S-883', 'S-884', 'S-885', 'S-886', 'S-887', 'S-888', 'S-889', 'S-890', 'S-891', 'S-892', 'S-893', 'S-894', 'S-895', 'S-896', 'S-897', 'S-898', 'S-899', 'S-900', 'S-901', 'S-902', 'S-903', 'S-904', 'S-905', 'S-906', 'S-907', 'S-908', 'S-909', 'S-910', 'S-911', 'S-912', 'S-913', 'S-914', 'S-915', 'S-916', 'S-917', 'S-918', 'S-919', 'S-920', 'S-921', 'S-922', 'S-923', 'S-924', 'S-925', 'S-926', 'S-927', 'S-928', 'S-929', 'S-930', 'S-931', 'S-932', 'S-933', 'S-934', 'S-935', 'S-936', 'S-937', 'S-938', 'S-939', 'S-940', 'S-941', 'S-942', 'S-943', 'S-944', 'S-945', 'S-946', 'S-947', 'S-948', 'S-949', 'S-950', 'S-951', 'S-952', 'S-953', 'S-954', 'S-955', 'S-956', 'S-957', 'S-958', 'S-959', 'S-960', 'S-961', 'S-962', 'S-963', 'S-964', 'S-965', 'S-966', 'S-967', 'S-968', 'S-969', 'S-970', 'S-971', 'S-972', 'S-973', 'S-974', 'S-975', 'S-976', 'S-977', 'S-978', 'S-979', 'S-980', 'S-981', 'S-982', 'S-983', 'S-984', 'S-985', 'S-986', 'S-987', 'S-988', 'S-989', 'S-990', 'S-991', 'S-992', 'S-993', 'S-994', 'S-995', 'S-996', 'S-997', 'S-998', 'S-999', 'S-1000', 'S-1001', 'S-1002', 'S-1003', 'S-1004', 'S-1005', 'S-1006', 'S-1007', 'S-1008', 'S-1009', 'S-10010', 'S-10011', 'S-10012', 'S-10013', 'S-10014', 'S-10015', 'S-10016', 'S-10017', 'S-10018', 'S-10019', 'S-10020', 'S-10021', 'S-10022', 'S-10023', 'S-10024', 'S-10025', 'S-10026', 'S-10027', 'S-10028', 'S-10029', 'S-10030', 'S-10031', 'S-10032', 'S-10033', 'S-10034', 'S-10035', 'S-10036', 'S-10037', 'S-10038', 'S-10039', 'S-10040', 'S-10041', 'S-10042', 'S-10043', 'S-10044', 'S-10045', 'S-10046', 'S-10047', 'S-10048', 'S-10049', 'S-10050', 'S-10051', 'S-10052', 'S-10053', 'S-10054', 'S-10055', 'S-10056', 'S-10057', 'S-10058', 'S-10059', 'S-10060', 'S-10061', 'S-10062', 'S-10063', 'S-10064', 'S-10065', 'S-10066', 'S-10067', 'S-10068', 'S-10069', 'S-10070', 'S-10071', 'S-10072', 'S-10073', 'S-10074', 'S-10075', 'S-10076', 'S-10077', 'S-10078', 'S-10079', 'S-10080', 'S-10081', 'S-10082', 'S-10083', 'S-10084', 'S-10085', 'S-10086', 'S-10087', 'S-10088', 'S-10089', 'S-10090', 'S-10091', 'S-10092', 'S-10093', 'S-10094', 'S-10095', 'S-10096', 'S-10097', 'S-10098', 'S-10099', 'S-100100', 'S-100101', 'S-100102', 'S-100103', 'S-100104', 'S-100105', 'S-100106', 'S-100107', 'S-100108', 'S-100109', 'S-100110', 'S-100111', 'S-100112', 'S-100113', 'S-100114', 'S-100115', 'S-100116', 'S-100117', 'S-100118', 'S-100119', 'S-100120', 'S-100121', 'S-100122', 'S-100123', 'S-100124', 'S-100125', 'S-100126', 'S-100127', 'S-100128', 'S-100129', 'S-100130', 'S-100131', 'S-100132', 'S-100133', 'S-100134', 'S-100135', 'S-100136', 'S-100137', 'S-100138', 'S-100139', 'S-100140', 'S-100141', 'S-100142', 'S-100143', 'S-100144', 'S-100145', 'S-100146', 'S-100147', 'S-100148', 'S-100149', 'S-100150', 'S-100151', 'S-100152', 'S-100153', 'S-100154', 'S-100155', 'S-100156', 'S-100157', 'S-100158', 'S-100159', 'S-100160', 'S-100161', 'S-100162', 'S-100163', 'S-100164', 'S-100165', 'S-100166', 'S-100167', 'S-100168', 'S-100169', 'S-100170', 'S-100171', 'S-100172', 'S-100173', 'S-100174', 'S-100175', 'S-100176', 'S-100177', 'S-100178', 'S-100179', 'S-100180', 'S-100181', 'S-100182', 'S-100183', 'S-100184', 'S-100185', 'S-100186', 'S-100187', 'S-100188', 'S-100189', 'S-100190', 'S-100191', 'S-100192', 'S-100193', 'S-100194', 'S-100195', 'S-100196', 'S-100197', 'S-100198', 'S-100199', 'S-100200', 'S-100201', 'S-100202', 'S-100203', 'S-100204', 'S-100205', 'S-100206', 'S-100207', 'S-100208', 'S-100209', 'S-100210', 'S-100211', 'S-100212', 'S-100213', 'S-100214', 'S-100215', 'S-100216', 'S-100217', 'S-100218', 'S-100219', 'S-100220', 'S-100221', 'S-100222', 'S-100223', 'S-100224', 'S-100225', 'S-100226', 'S-100227', 'S-100228', 'S-100229', 'S-100230', 'S-100231', 'S-100232', 'S-100233', 'S-100234', 'S-100235', 'S-100236', 'S-100237', 'S-100238', 'S-100239', 'S-100240', 'S-100241', 'S-100242', 'S-100243', 'S-100244', 'S-100245', 'S-100246', 'S-100247', 'S-100248', 'S-100249', 'S-100250', 'S-100251', 'S-100252', 'S-100253', 'S-100254', 'S-100255', 'S-100256', 'S-100257', 'S-100258', 'S-100259', 'S-100260', 'S-100261', 'S-100262', 'S-100263', 'S-100264', 'S-100265', 'S-100266', 'S-100267', 'S-100268', 'S-100269', 'S-100270', 'S-100271', 'S-100272', 'S-100273', 'S-100274', 'S-100275', 'S-100276', 'S-100277', 'S-100278', 'S-100279', 'S-100280', 'S-100281', 'S-100282', 'S-100283', 'S-100284', 'S-100285', 'S-100286', 'S-100287', 'S-100288', 'S-100289', 'S-100290', 'S-100291', 'S-100292', 'S-100293', 'S-100294', 'S-100295', 'S-100296', 'S-100297', 'S-100298', 'S-100299', 'S-100300', 'S-100301', 'S-100302', 'S-100303', 'S-100304', 'S-100305', 'S-100306', 'S-100307', 'S-100308', 'S-100309', 'S-100310', 'S-100311', 'S-100312', 'S-100313', 'S-100314', 'S-100315', 'S-100316', '	

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207														
Test Method:	ANSI C63.10:2013														
Frequency Range:	150 kHz to 30 MHz														
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto														
Limits:	<table border="1"> <thead> <tr> <th rowspan="2">Frequency range (MHz)</th> <th colspan="2">Limit (dBuV)</th> </tr> <tr> <th>Quasi-peak</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15-0.5</td> <td>66 to 56*</td> <td>56 to 46*</td> </tr> <tr> <td>0.5-5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5-30</td> <td>60</td> <td>50</td> </tr> </tbody> </table>	Frequency range (MHz)	Limit (dBuV)		Quasi-peak	Average	0.15-0.5	66 to 56*	56 to 46*	0.5-5	56	46	5-30	60	50
Frequency range (MHz)	Limit (dBuV)														
	Quasi-peak	Average													
0.15-0.5	66 to 56*	56 to 46*													
0.5-5	56	46													
5-30	60	50													
Test Setup:	<p>Reference Plane</p> <p>Remark E.U.T: Equipment Under Test LISN: Line Impedance Stabilization Network Test table height=0.8m</p>														
Test Mode:	Charging + Transmitting Mode														
Test Procedure:	<ol style="list-style-type: none"> 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 														
Test Result:	PASS														


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Attenuator	N/A	10dB	164080	Jun. 26, 2025
Line-5	TCT	CE-05	/	Jun. 26, 2025
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	/

5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room			Phase: L1		Temperature: 23.8 (°C)		Humidity: 51 %	
Limit: FCC Part 15C Conduction(QP)			Power: DC 5V(Adapter Input AC 120V/60Hz)					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measurement	Limit	Over	
		MHz	dBuV	dB	dBuV	dB	Detector	Comment
1		0.1900	36.94	10.03	46.97	64.04	-17.07	QP
2		0.1900	8.54	10.03	18.57	54.04	-35.47	AVG
3		0.3180	38.48	9.84	48.32	59.76	-11.44	QP
4		0.3180	9.96	9.84	19.80	49.76	-29.96	AVG
5		0.7539	39.77	9.12	48.89	56.00	-7.11	QP
6		0.7539	3.49	9.12	12.61	46.00	-33.39	AVG
7		1.3857	16.39	9.95	26.34	56.00	-29.66	QP
8		1.3857	11.57	9.95	21.52	46.00	-24.48	AVG
9	*	3.4860	38.85	10.23	49.08	56.00	-6.92	QP
10		3.4860	7.89	10.23	18.12	46.00	-27.88	AVG
11		11.7420	32.01	10.64	42.65	60.00	-17.35	QP
12		11.7420	19.28	10.64	29.92	50.00	-20.08	AVG

Note:

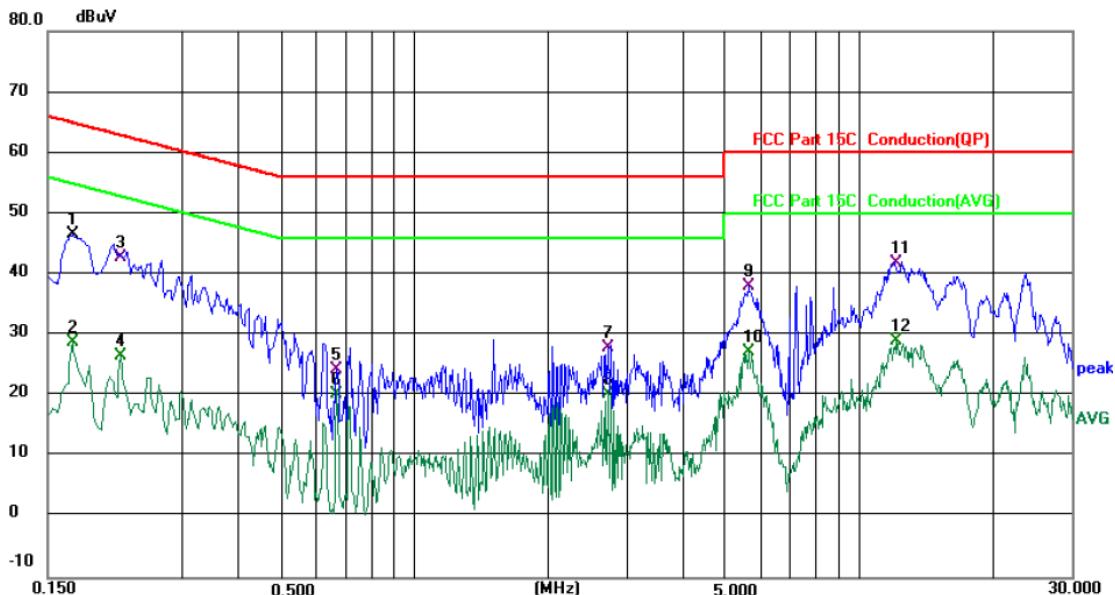
Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard


Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

QP. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room				Phase: <i>N</i>	Temperature: 23.8 (°C)		Humidity: 51 %	
Limit: FCC Part 15C Conduction(QP)				Power: DC 5V(Adapter Input AC 120V/60Hz)				
No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure-ment dBuV	Limit dB	Over	Detector	Comment
1	0.1700	36.57	10.00	46.57	64.96	-18.39	QP	
2	0.1700	18.87	10.00	28.87	54.96	-26.09	AVG	
3	0.2179	32.89	9.82	42.71	62.90	-20.19	QP	
4	0.2179	16.66	9.82	26.48	52.90	-26.42	AVG	
5	0.6700	15.25	9.16	24.41	56.00	-31.59	QP	
6	0.6700	11.10	9.16	20.26	46.00	-25.74	AVG	
7	2.7300	17.77	10.07	27.84	56.00	-28.16	QP	
8	2.7300	10.26	10.07	20.33	46.00	-25.67	AVG	
9	5.6300	27.75	10.36	38.11	60.00	-21.89	QP	
10	5.6300	16.90	10.36	27.26	50.00	-22.74	AVG	
11 *	12.1660	31.27	10.62	41.89	60.00	-18.11	QP	
12	12.1660	18.35	10.62	28.97	50.00	-21.03	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

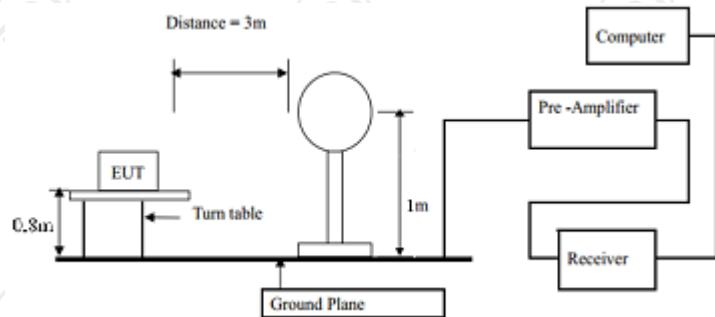
Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard

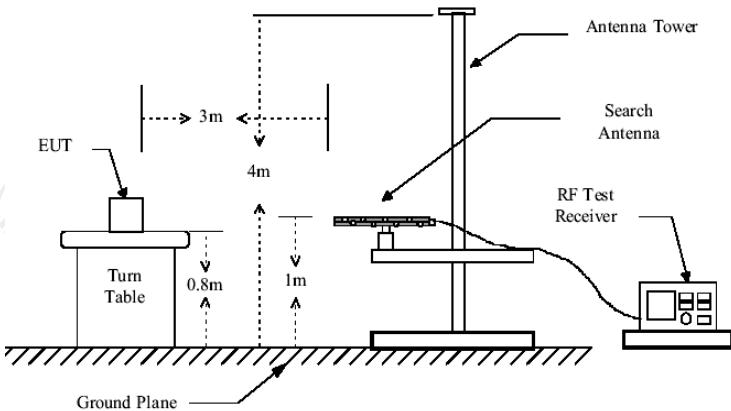
Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

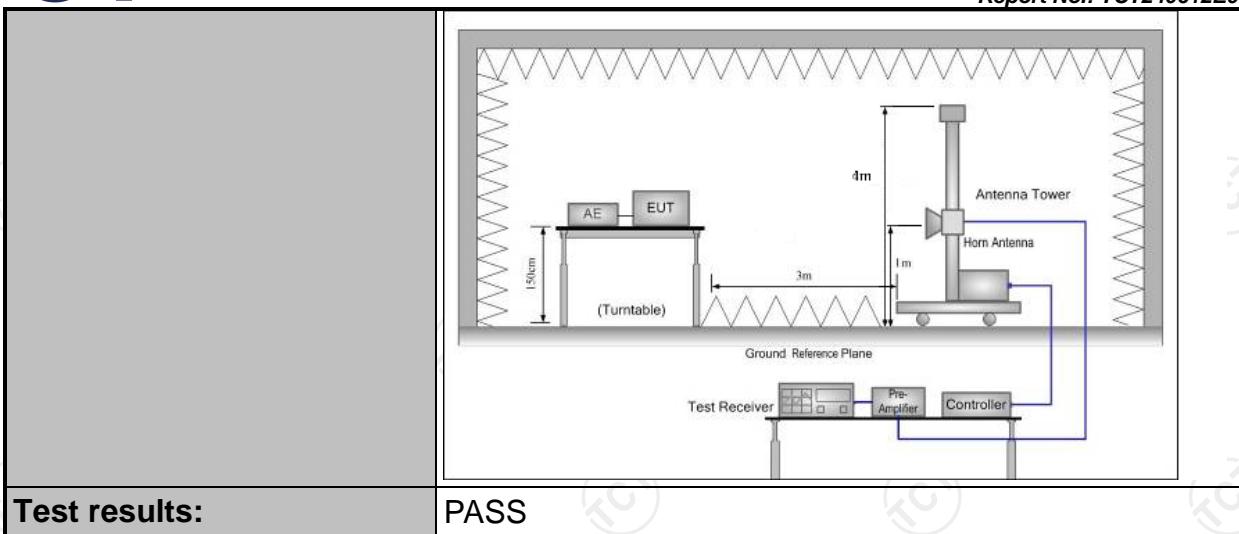

5.3. Radiated Emission Measurement

5.3.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Frequency Range:	9 kHz to 25 GHz								
Measurement Distance:	3 m								
Antenna Polarization:	Horizontal & Vertical								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value				
	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		Peak	1MHz	10Hz	Average Value				
Limit(Field strength of the fundamental signal):	Frequency	Limit (dBuV/m @3m)		Remark					
	2400MHz-2483.5MHz	94.00		Average Value					
		114.00		Peak Value					
Limit(Spurious Emissions):	Frequency	Limit (dBuV/m @3m)		Remark					
	0.009-0.490	2400/F(KHz)		Quasi-peak Value					
	0.490-1.705	24000/F(KHz)		Quasi-peak Value					
	1.705-30	30		Quasi-peak Value					
	30MHz-88MHz	40.0		Quasi-peak Value					
	88MHz-216MHz	43.5		Quasi-peak Value					
	216MHz-960MHz	46.0		Quasi-peak Value					
	960MHz-1GHz	54.0		Quasi-peak Value					
	Above 1GHz	54.0		Average Value					
		74.0		Peak Value					
Limit (band edge) :	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.								
Test Procedure:	<ol style="list-style-type: none"> 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 								

4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz


30MHz to 1GHz

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

Test setup:

5.3.2. Test Instruments

Radiated Emission Test Site (966)				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G-50	SK202109203500	Jan. 31, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	/	/
EMI Test Software	EZ_EMCA	FA-03A2 RE+	1.1.4.2	/

5.3.3. Test Data

Field Strength of Fundamental

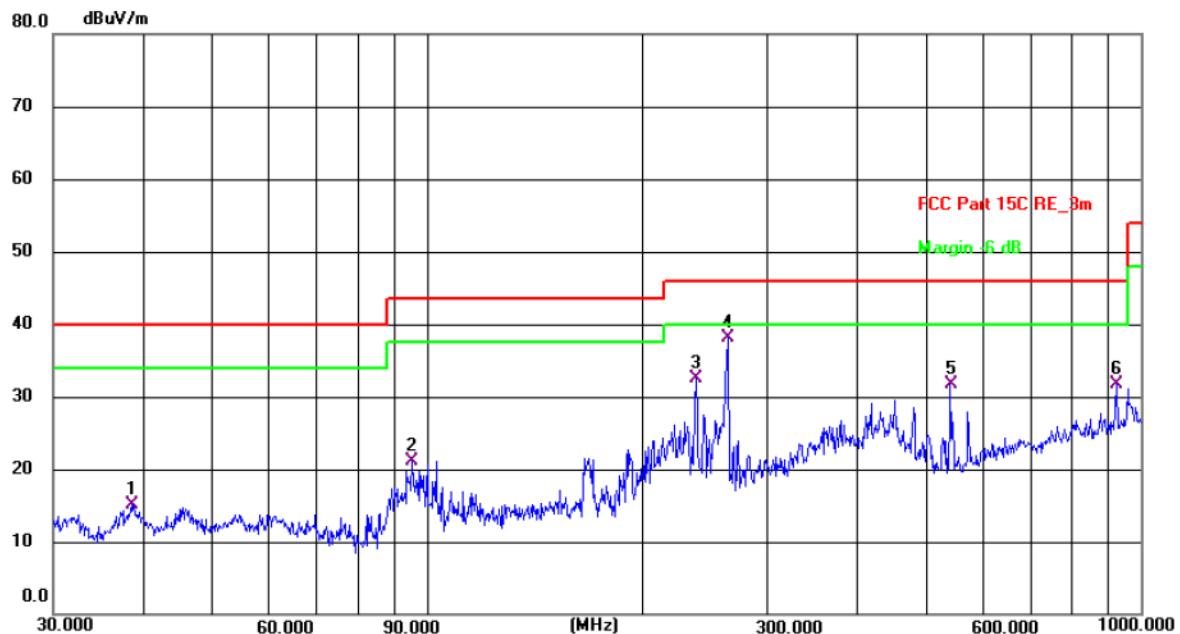
Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2402	78.23	H	114	-35.77
2402	84.20	V	114	-29.80
2440	71.94	H	114	-42.06
2440	82.25	V	114	-31.75
2480	71.56	H	114	-42.44
2480	81.38	V	114	-32.62

Frequency (MHz)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2402	78.08	H	94	-15.92
2402	84.12	V	94	-9.88
2440	71.77	H	94	-22.23
2440	82.11	V	94	-11.89
2480	71.38	H	94	-22.62
2480	81.33	V	94	-12.67

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dB μ V/m)	Limit@3m (dB μ V/m)
--	--	--
--	--	--
--	--	--
--	--	--


Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

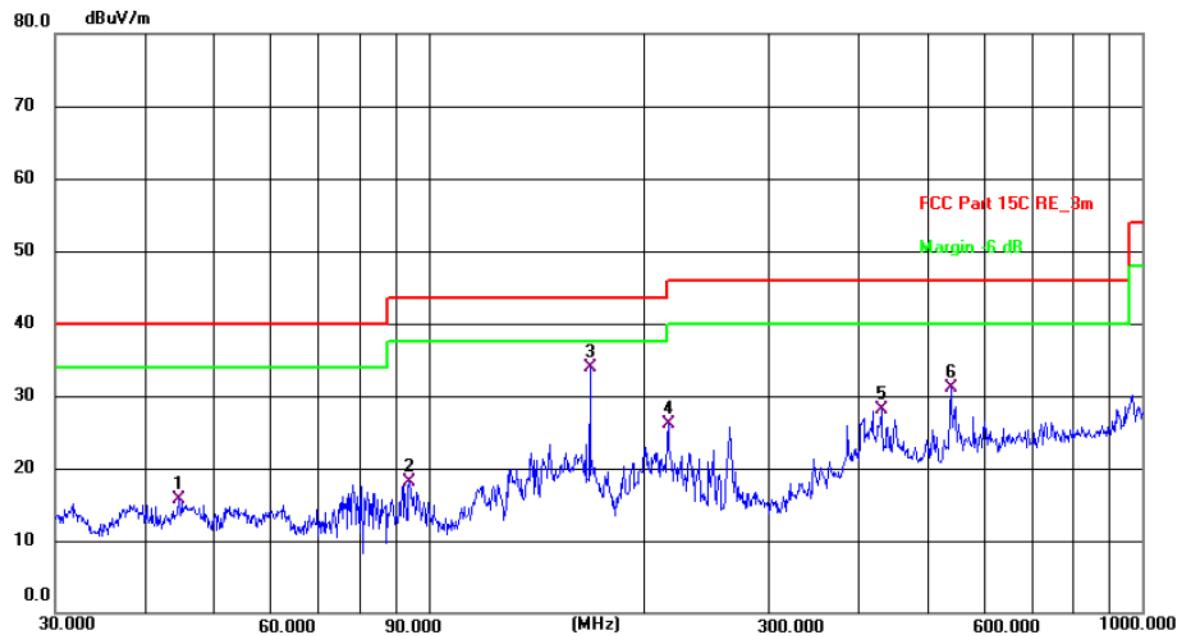
3. For fundamental frequency, RBW >20dB BW , VBW>=RBW, PK detector is for PK value, RMS detector is for AV value.

Frequency Range (30MHz-1GHz)

Horizontal:

Site 3m Anechoic Chamber2

 Polarization: **Horizontal**


Temperature: 22.8(C) Humidity: 51 %

Limit: FCC Part 15C RE_3m

Power: DC 3.7V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.6160	33.55	-18.40	15.15	40.00	-24.85	QP	P	
2	95.4269	42.82	-21.66	21.16	43.50	-22.34	QP	P	
3	238.3101	51.75	-19.23	32.52	46.00	-13.48	QP	P	
4 *	263.8190	56.15	-18.12	38.03	46.00	-7.97	QP	P	
5	541.3725	43.10	-11.38	31.72	46.00	-14.28	QP	P	
6	925.7562	36.59	-4.96	31.63	46.00	-14.37	QP	P	

Vertical:

Site 3m Anechoic Chamber2

Polarization: **Vertical**

Temperature: 22.8(C) Humidity: 51 %

Limit: FCC Part 15C RE_3m

Power: DC 3.7V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	44.7433	34.11	-18.33	15.78	40.00	-24.22	QP	P	
2	94.0978	39.84	-21.79	18.05	43.50	-25.45	QP	P	
3 *	168.4137	51.18	-17.29	33.89	43.50	-9.61	QP	P	
4	216.7828	46.33	-20.13	26.20	46.00	-19.80	QP	P	
5	431.0315	41.85	-13.65	28.20	46.00	-17.80	QP	P	
6	539.4775	42.56	-11.40	31.16	46.00	-14.84	QP	P	

Note: 1. Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

2. Any value more than 10dB below limit have not been specifically reported.

Above 1GHz

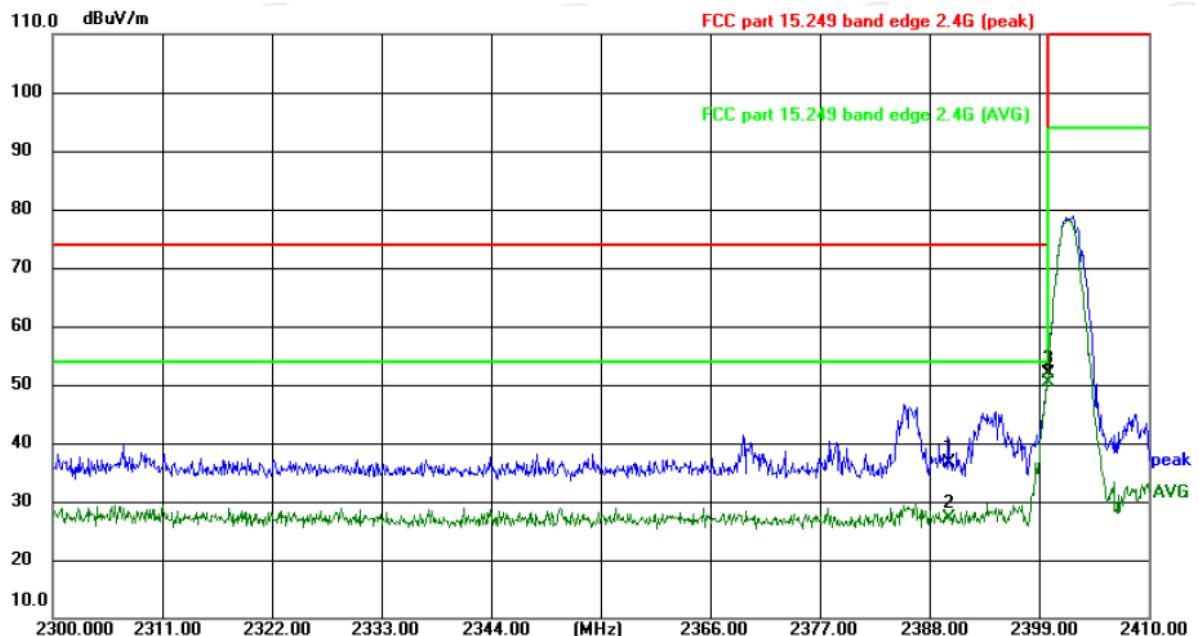
Low channel: 2402MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
4810	H	51.84	---	-3.94	47.90	---	74	54	-6.10
7215	H	46.11	---	0.52	46.63	---	74	54	-7.37
---	---	---	---	---	---	---	---	---	---
4810	V	49.33	---	-3.94	45.39	---	74	54	-8.61
7215	V	43.09	---	0.52	43.61	---	74	54	-10.39
---	---	---	---	---	---	---	---	---	---

Middle channel: 2440MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
4880	H	51.12	---	-3.98	47.14	---	74	54	-6.86
7320	H	45.27	---	0.57	45.84	---	74	54	-8.16
---	---	---	---	---	---	---	---	---	---
4880	V	51.24	---	-3.98	47.26	---	74	54	-6.74
7320	V	44.40	---	0.57	44.97	---	74	54	-9.03
---	---	---	---	---	---	---	---	---	---

High channel: 2480MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dB μ V)	AV reading (dB μ V)	Correction Factor (dB/m)	Emission Level		Peak limit (dB μ V/m)	AV limit (dB μ V/m)	Margin (dB)
					Peak (dB μ V/m)	AV (dB μ V/m)			
4960	H	52.28	---	-3.98	48.30	---	74	54	-5.70
7440	H	47.56	---	0.57	48.13	---	74	54	-5.87
---	---	---	---	---	---	---	---	---	---
4960	V	51.03	---	-3.98	47.05	---	74	54	-6.95
7440	V	45.32	---	0.57	45.89	---	74	54	-8.11
---	---	---	---	---	---	---	---	---	---


Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
3. The emission levels of other frequencies are very lower than the limit and not show in test report.
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
5. Data of measurement shown “--” in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
6. All the restriction bands are compliance with the limit of 15.209.

Band Edge Requirement

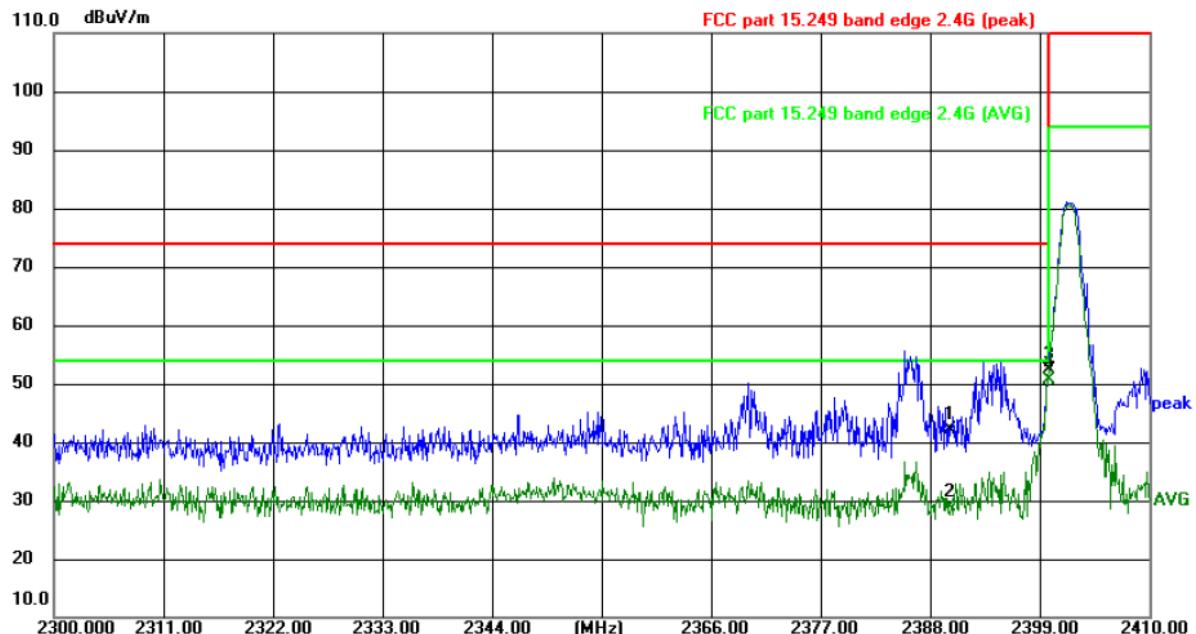
Lowest channel 2402:

Horizontal:

Site: 3m Anechoic Chamber

Polarization: **Horizontal**

Temperature: 26.3(°C)


Humidity: 49 %

Limit: FCC part 15.249 band edge 2.4G (peak)

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	53.18	-16.64	36.54	74.00	-37.46	peak	P	
2	2390.000	43.68	-16.64	27.04	54.00	-26.96	AVG	P	
3	2400.000	68.55	-16.62	51.93	74.00	-22.07	peak	P	
4 *	2400.000	66.96	-16.62	50.34	54.00	-3.66	AVG	P	

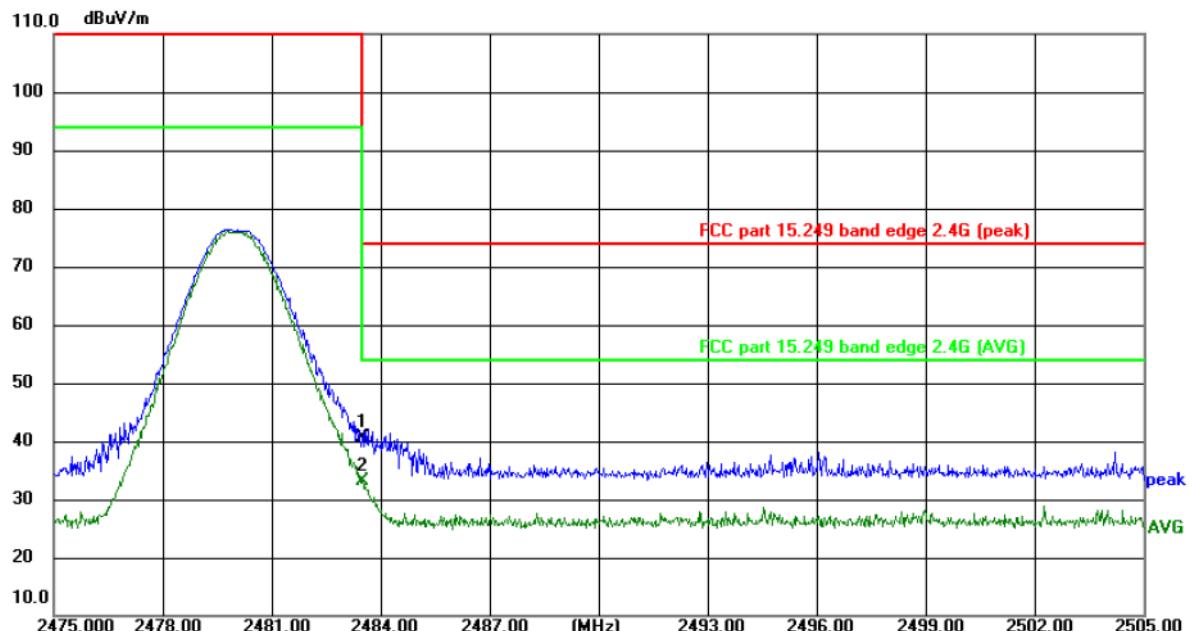
Vertical:

Site: 3m Anechoic Chamber

 Polarization: **Vertical**

Temperature: 26.3(°C)

Humidity: 49 %


Limit: FCC part 15.249 band edge 2.4G (peak)

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	58.75	-16.64	42.11	74.00	-31.89	peak	P	
2	2390.000	45.62	-16.64	28.98	54.00	-25.02	AVG	P	
3	2400.000	69.08	-16.62	52.46	74.00	-21.54	peak	P	
4 *	2400.000	67.34	-16.62	50.72	54.00	-3.28	AVG	P	

Highest channel 2480:

Horizontal:

Site: 3m Anechoic Chamber

Polarization: **Horizontal**

Temperature: 26.3(°C)

Humidity: 49 %

Limit: FCC part 15.249 band edge 2.4G (peak)

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	57.11	-16.60	40.51	74.00	-33.49	peak	P	
2 *	2483.500	49.71	-16.60	33.11	54.00	-20.89	AVG	P	

Vertical:

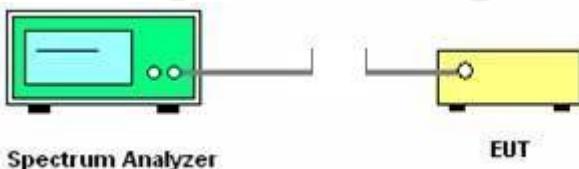
Site: 3m Anechoic Chamber

 Polarization: **Vertical**

Temperature: 26.3(°C)

Humidity: 49 %

Limit: FCC part 15.249 band edge 2.4G (peak)


Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	65.34	-16.60	48.74	74.00	-25.26	peak	P	
2 *	2483.500	60.37	-16.60	43.77	54.00	-10.23	AVG	P	
3	2483.613	69.56	-16.60	52.96	74.00	-21.04	peak	P	

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

5.4. 20dB Occupied Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	N/A
	<ol style="list-style-type: none"> 1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW\geq1% of the 20 dB bandwidth; VBW\geqRBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Test setup:	<p>The diagram illustrates the test setup. A green 'Spectrum Analyzer' is connected to a yellow 'EUT' (Equipment Under Test) via a grey cable. The analyzer has a screen and two control knobs. The EUT is a simple yellow rectangular device with a circular port for connection.</p>
Test Mode:	Transmitting mode with modulation
Test results:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025

5.4.3. Test data

Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion
Lowest	1176.00	---	PASS
Middle	1185.00	---	PASS
Highest	1205.00	---	PASS

Test plots as follows:

Lowest channel

Middle channel

Highest channel

Appendix A: Photographs of Test Setup

Refer to the test report No. TCT240612E056

Appendix B: Photographs of EUT

Refer to the test report No. TCT240612E056

*******END OF REPORT*******