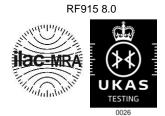


Report on the Radio Testing

For


Meggitt

on

WTPS PSD

Report no. TRA-055479-47-02A

26 April 2023

TRA-055479-47-02A Report Number:

Issue:

REPORT ON THE RADIO TESTING OF A Meggitt WTPS PSD WITH RESPECT TO SPECIFICATION FCC 47CFR 15.247

TEST DATE: 06/12/2022 to 08/12/2022

Tested by: Michael Else

Michael Else

Written by: Radio Test Engineer

Approved by: John Charters

Date: 26 April 2023

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

Issue Number	Issue Date	Revision History
Α	26 April 2023	Original

RF915 8.0 Page 3 of 37

2 Summary

TESTED BY:

TEST REPORT NUMBER: TRA-055479-47-02A WORKS ORDER NUMBER: TRA-055479-00 PURPOSE OF TEST: Certification TEST SPECIFICATION: 47CFR15.247 EQUIPMENT UNDER TEST (EUT): WTPS PSD FCC IDENTIFIER: 2A83B423420 **EUT SERIAL NUMBER:** AS34043 MANUFACTURER/AGENT: Meggitt ADDRESS: Route de Moncor 4 PO Box 1616 Fribourg 1701 Switzerland CLIENT CONTACT: Raphael Goutagny **2** 41264071297 ⊠ raphael.goutagny@ch.meggitt.com ORDER NUMBER: PO_4551035521 TEST DATE: 06/12/2022 to 08/12/2022

RF915 8.0 Page 4 of 37

Michael Else Element

2.1 Test Summary

Test Method and De	escription	Requirement Clause 47CFR15	Applicable to this equipment	Result / Note	
Radiated spurious emissions of operation and cabinet radia		15.247 (d)		Pass	
AC power line conducted em	ssions	15.207		Note 1	
Occupied bandwidth		15.247 (a) (2)	\boxtimes	Pass	
Conducted continues	Peak	45 247 (b) (2)		Dana	
Conducted carrier power	Max.	15.247 (b) (3)		Pass	
Out of band emissions		15.247 (d)		Pass	
Power spectral density		15.247 (e)	\boxtimes	Pass	
Calculation of duty correction		-		Note 2	

Specific Note:

- 1. The EUT is a battery powered device / The EUT has a non-replaceable and non-rechargeable 3.0V, 0.55 mAh Lithium battery.
- 2. The EUT is transmitting at 100% in test mode, so the Duty cycle is not required

General Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF915 8.0 Page 5 of 37

3 Contents

1		evision Record	
2	Sı	ummary	
	2.1	Test Summary	
3	Co	ontents	6
4	In [.]	troduction	7
5	Τe	est Specifications	
	5.1	Normative References	
	5.2	Deviations from Test Standards	
6	GI	lossary of Terms	9
7		quipment under Testquipment under Test	
	7.1	EUT Identification	.10
	7.2	System Equipment	
	7.3	EUT Mode of Operation	. 10
	7.4		
	7.	4.1 General	.10
	7.	4.2 Antennas	.11
	7.5	EUT Description	
8	M	odifications	. 12
9		UT Test Setup	
	9.1	Block Diagram	
	9.2	General Set-up Photograph	
	9.3	Measurement software	
10		General Technical Parameters	. 15
	10.1		
	10.2		
11		Radiated emissions	
	11.1		
	11.2		
	11.3		
	11.4		
	11.5		
	11.6		
12		Occupied Bandwidth	
	12.1		
	12.2		
	12.3		
	12.4		
	12.5		
	12.6		
13		Maximum peak conducted output power	
_	13.1		
	13.2		
	13.3		
		Test Method	
	13.5		
	13.6		
14		Out-of-band and conducted spurious emissions	
	14.1		
	14.1		
	14.2		
	14.3 14.4		
	14.4		-
	14.5 14.6		
15	_	Power spectral density	
_	15.1	·	
	15.1 15.2		
	-		
	15.3 15.4		
	-		
	15.5 15.6	• •	
16			
17		Measurement Uncertainty	
1/		IXI Ελρυουίσ	. 57

4 Introduction

This report TRA-055479-47-02A presents the results of the Radio testing on a Meggitt, WTPS PSD to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for Meggitt by Element, at the address detailed below.

 \Box \boxtimes Element Hull Element Skelmersdale Unit E Unit 1 South Orbital Trading Park Pendle Place Hedon Road Skemersdale West Lancashire Hull HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

The test laboratory is accredited for the above sites under the US-UK MRA,

Designation number(s):

Element Hull UK2007 Element Skelmersdale UK2020

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 8.0 Page 7 of 37

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF915 8.0 Page 8 of 37

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment under Test

FCC Federal Communications Commission
FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen before Talk

m metre
max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format
Pt-mpt Point-to-multipoint

Pt-pt Point-to-point RF Radio Frequency RH Relative Humidity RMS Root Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF915 8.0 Page 9 of 37

7 Equipment under Test

7.1 EUT Identification

Name: WTPS PSDSerial Number: AS34043

Model Number: 423-420-099-022Software Revision: Not Applicable

Build Level / Revision Number: Not Applicable

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Laptop: HP Elitebook 840 G3 Serial Number: 5CG8290QDJ

7.3 EUT Mode of Operation

EUT was set to operate in test modes using customer supplied laptop running HCI Tester Version 3.0.0.37

7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	2402 MHz – 2480 MHz
Modulation type(s):	GFSK
Channel spacing:	1 MHz
Declared output power(s):	0 dBm
Nominal Supply Voltage:	3.0V, 0.55 mAh Lithium battery (Non-Rechargeable / Non-Replaceable)
Duty cycle:	100%

RF915 8.0 Page 10 of 37

7.4.2 Antennas

Type:	2.4 GHz Mini Antenna, SMT
Manufacturer:	Johanson Technology Inc.
Model number:	2450AT18B100
Frequency range:	2400 MHz -2500 MHz
Impedance:	50 Ohm
Gain:	0.5 dBi (Peak)
Length:	3.20 mm +- 0.2 mm
Mounting:	Surface mount

7.5 EUT Description

The EUT is a wireless tyre pressure sensor (WTPS) - Pressure sensor device (PSD) for aiercrafts. This report covers the testing of the Bluetooth Low Energy Radio only

RF915 8.0 Page 11 of 37

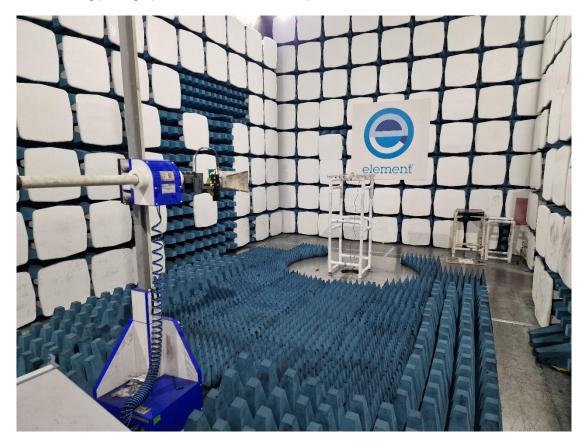
8 Modifications

No modifications were performed during this assessment.

RF915 8.0 Page 12 of 37

9 EUT Test Setup

9.1 Block Diagram


The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

EUT (Battery powered)

RF915 8.0 Page 13 of 37

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 Element Transmitter Bench Test ETS Lindgren EMPower V1.0.4.2

RF915 8.0 Page 14 of 37

10 General Technical Parameters

10.1 Normal Conditions

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 3 Vdc from internal non-replaceable, non-rechargeable lithium battery.

10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

	Category	Nominal	Variation
	Mains	110 Vac +/-2 %	85 % and 115 %
\boxtimes	Battery	New battery	N/A

RF915 8.0 Page 15 of 37

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: Radio Chamber 3

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6 EUT Frequencies Measured: 2402 MHz, 2440 MHz & 2480 MHz

Deviations from Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak; Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 38 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc Powered by USB cable during testing

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)	Field Strength (dBµV/m at 3 m)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

On frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function. On frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit.

RF915 8.0 Page 16 of 37

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

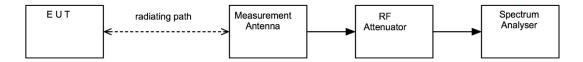
Factor = $CL + AF - PA$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF915 8.0 Page 17 of 37

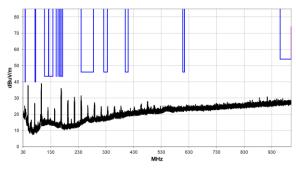
11.5 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Emissions R5	Element	Radiated Test Software	REF9000	Cal not required
Radio Chamber - PP	Rainford EMC	ATS	REF940	2023-11-06
FSU26	R&S	Spectrum Analyser	U405	2023-04-21
8449B	Agilent	Pre Amp	L572	2023-10-24
3115	EMCO	1-18GHz Horn	L139	2024-07-01
SN 4478	BSC	2.4G Band Stop Filter	U543	2023-02-03
AFH-07000	Atlantic Microwave	High Pass Filter	U558	2023-02-03
20240-20	Flann	Horn 18-26GHz (&U330)	L263A	2024-06-23
6201-69	Watkins Johnson	PreAmp	U372	2023-03-01
CBL6112B	Chase	Bilog	U093	2023-09-15
ESR7	R&S	EMI Receiver	U456	2023-01-25

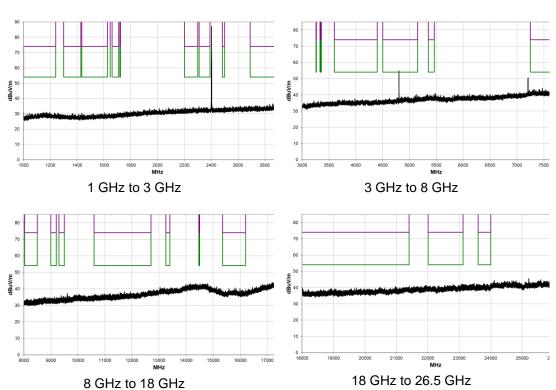
RF915 8.0 Page 18 of 37

Report Number: TRA-055479-47-02A

11.6 Test Results

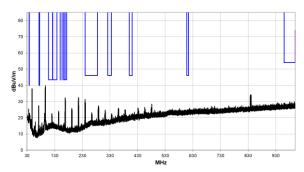

Common emissions, 30 MHz to 1 GHz

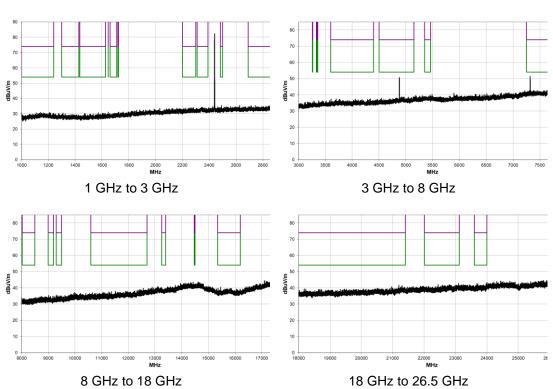
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
167.810	44.0	-11.6	2.32	277.9	3.0	0.0	Horz	QP	0.0	32.4	43.5	-11.1
168.019	42.4	-11.6	1.0	189.0	3.0	0.0	Vert	QP	0.0	30.8	43.5	-12.7
240.018	41.9	-9.4	1.06	79.1	3.0	0.0	Horz	QP	0.0	32.5	46.0	-13.5
38.223	28.3	-8.4	1.0	334.9	3.0	0.0	Vert	QP	0.0	19.9	40.0	-20.1
120.220	31.9	-9.4	1.0	146.1	3.0	0.0	Vert	QP	0.0	22.5	43.5	-21.0
240.127	33.8	-9.4	1.0	104.9	3.0	0.0	Vert	QP	0.0	24.4	46.0	-21.6


RF915 8.0 Page 19 of 37

Frequency: 2402 MHz; Power Setting: 0dBm; Modulation: GFSK;

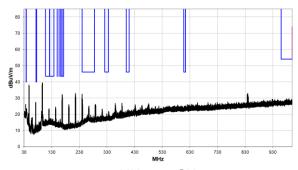
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4803.483	49.5	3.1	1.37	270.1	3.0	0.0	Horz	AV	0.0	52.6	54.0	-1.4
4803.475	45.8	3.1	1.22	134.1	3.0	0.0	Vert	AV	0.0	48.9	54.0	-5.1
4803.492	56.9	3.1	1.37	270.1	3.0	0.0	Horz	PK	0.0	60.0	74.0	-14.0
4803.367	54.6	3.1	1.22	134.1	3.0	0.0	Vert	PK	0.0	57.7	74.0	-16.3

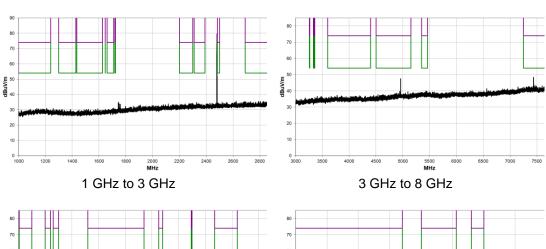

30 MHz to 1 GHz

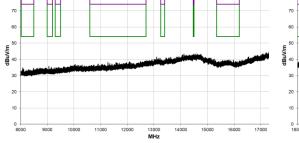

RF915 8.0 Page 20 of 37

Frequency: 2440 MHz; Power Setting: 0dBm; Modulation: GFSK;

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4880.458	46.4	3.3	1.25	222.9	3.0	0.0	Horz	AV	0.0	49.7	54.0	-4.3
7319.200	41.4	7.7	1.14	124.9	3.0	0.0	Horz	AV	0.0	49.1	54.0	-4.9
7320.683	40.8	7.7	1.4	334.0	3.0	0.0	Vert	AV	0.0	48.5	54.0	-5.5
4879.450	40.8	3.3	1.14	134.9	3.0	0.0	Vert	AV	0.0	44.1	54.0	-9.9
7320.692	52.3	7.7	1.14	124.9	3.0	0.0	Horz	PK	0.0	60.0	74.0	-14.0
7320.883	51.5	7.7	1.4	334.0	3.0	0.0	Vert	PK	0.0	59.2	74.0	-14.8
4879.517	54.5	3.3	1.25	222.9	3.0	0.0	Horz	PK	0.0	57.8	74.0	-16.2
4879.350	51.1	3.3	1.14	134.9	3.0	0.0	Vert	PK	0.0	54.4	74.0	-19.6

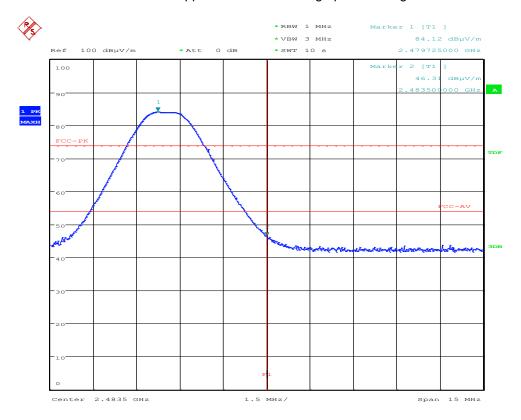

30 MHz to 1 GHz


RF915 8.0 Page 21 of 37


Frequency: 2480 MHz; Power Setting: 0 dBm; Modulation: GFSK;

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
7440.817	40.5	7.7	1.32	130.0	3.0	0.0	Horz	AV	0.0	48.2	54.0	-5.8
4959.558	44.0	3.5	1.26	221.9	3.0	0.0	Horz	AV	0.0	47.5	54.0	-6.5
7440.742	39.8	7.7	1.26	314.0	3.0	0.0	Vert	AV	0.0	47.5	54.0	-6.5
4959.550	39.6	3.5	1.25	137.0	3.0	0.0	Vert	AV	0.0	43.1	54.0	-10.9
7441.042	51.3	7.7	1.32	130.0	3.0	0.0	Horz	PK	0.0	59.0	74.0	-15.0
7439.158	50.6	7.7	1.26	314.0	3.0	0.0	Vert	PK	0.0	58.3	74.0	-15.7
4959.567	52.9	3.5	1.26	221.9	3.0	0.0	Horz	PK	0.0	56.4	74.0	-17.6
4959.567	50.0	3.5	1.25	137.0	3.0	0.0	Vert	PK	0.0	53.5	74.0	-20.5

30 MHz to 1 GHz



8 GHz to 18 GHz 18 GHz to 26.5 GHz

RF915 8.0 Page 22 of 37

Upper radiated band edge peak/average

Date: 7.DEC.2022 10:46:05

Peak levels meet the Average limit

RF915 8.0 Page 23 of 37

12 Occupied Bandwidth

12.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

The 99% emission bandwidth is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained.

12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Chamber 3

Test Standard and Clause: 6 dB Bandwidth: ANSI C63.10-2013, Clause 11.8

EUT Channels / Frequencies Measured: 2402 MHz / 2440 MHz / 2480 MHz

EUT Channel Bandwidths: 2 MHz
EUT Test Modulations: GFSK
Deviations From Standard: None
Measurement BW: 100 kHz

Spectrum Analyzer Video BW: 300 kHz

(requirement at least 3x RBW)

Measurement Span: 3 MHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

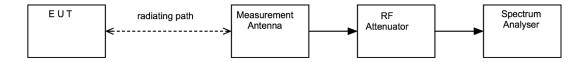
Temperature: 20 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc (as declared)

12.3 Test Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.


RF915 8.0 Page 24 of 37

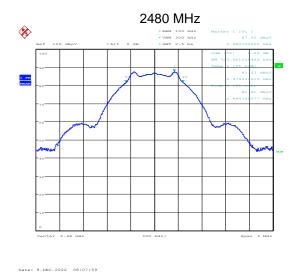
12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup


12.5 Test Equipment


Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Radiated Test Software	Element	Emissions R5	REF9000	Cal not required
Radio Chamber - PP	Rainford EMC	ATS	REF940	2023-11-06
Spectrum Analyser	R&S	FSU26	U405	2023-04-21
1-18GHz Horn	EMCO	3115	L139	2024-07-01
Pre Amp	Agilent	8449B	L572	2023-10-24

RF915 8.0 Page 25 of 37

12.6 Test Results

Bandwidth Type: 6 dB; Modulation: GFSK; Data rate: 1 Mbps						
Frequency (MHz)	r r					
2402	2401.639423	2402.346154	706.731	PASS		
2440	2439.634615	2440.355769	721.154	PASS		
2480	2479.634615	2480.360577	725.962	PASS		

RF915 8.0 Page 26 of 37

13 Maximum peak conducted output power

13.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

13.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: Radio Chamber 3

Test Standard and Clause: ANSI C63.10-2013, Clause 11.9.1 EUT Channels / Frequencies Measured: 2402 MHz / 2440 MHz / 2480 MHz

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW: 3 MHz

Spectrum Analyzer Video BW: 10 MHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Voltage Extreme Environment Test Range: Battery Power = new battery.

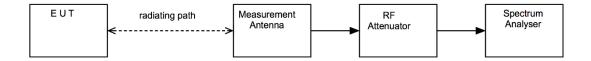
Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 38 % RH 20 % RH to 75 % RH (as declared)

RF915 8.0 Page 27 of 37

13.3 Test Limit


For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup

13.5 Test Equipment

Equipment		Equipment	Element	Due For
Type	Manufacturer	Description	No	Calibration
Emissions R5	Element	Radiated Test Software	REF9000	Cal not required
ATS	Rainford EMC	Radio Chamber - PP	REF940	2023-11-06
FSU26	R&S	Spectrum Analyser	U405	2023-04-21
8449B	Agilent	Pre Amp	L572	2023-10-24
3115	EMCO	1-18GHz Horn	L139	2024-07-01

RF915 8.0 Page 28 of 37

13.6 Test Results

The following formula was used to convert field strength (E) in volts/metre to conducted output power in watts:

Conducted Output Power = $(E \times d)^2 / (30 \times G)$

Where,

E is the electric field strength in V/m

d is the measurement distance in meters (m)

G is the antenna numerical gain referenced to isotropic gain of 0.5 dBi

Modulation: GFSK; Data rate: 1 Mbps; Power setting: 0 dBm						
Frequency (MHz)	Peak Field Strength (dBµV/m)	Peak Field Strength (V/m)	Distance (m)	Maximum peak conducted output power (W)	Result	
2402	90.06	0.03	3.00	0.000271	PASS	
2440	86.70	0.02	3.00	0.000125	PASS	
2480	82.75	0.01	3.00	0.000050	PASS	

RF915 8.0 Page 29 of 37

14 Out-of-band and conducted spurious emissions

14.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

14.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: Radio Chamber 3

Test Standard and Clause: ANSI C63.10-2013, Clause 11.11 EUT Channels / Frequencies Measured: 2402 MHz, 2440 MHz & 2480 MHz

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

None

100 kHz

300 kHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 30 MHz to 26.5 GHz

Environmental Conditions (Normal Environment)

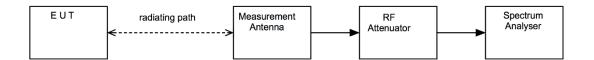
Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 32 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc 230 V ac ±10 % (as declared)

RF915 8.0 Page 30 of 37

14.3 Test Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions from the EUT were measured on a spectrum analyser.

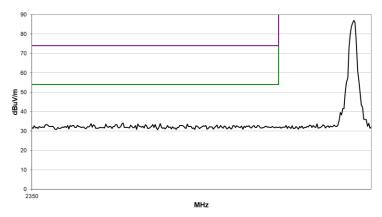
The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure v Test Setup

14.5 Test Equipment

Equipment		Equipment	Element	Due For
Type	Manufacturer	Description	No	Calibration
Emissions R5	Element	Radiated Test Software	REF9000	Cal not required
ATS	Rainford EMC	Radio Chamber - PP	REF940	2023-11-06
FSU26	R&S	Spectrum Analyser	U405	2023-04-21
8449B	Agilent	Pre Amp	L572	2023-10-24
3115	EMCO	1-18GHz Horn	L139	2024-07-01

RF915 8.0 Page 31 of 37


14.6 Test Results

Frequency: 2402 MHz; Modulation: GFSK; Data rate: 1Mbps; Power setting: 0 dBm;						
Emission Frequency (MHz)	ency Peak Field Strength Limit Margin Resulted Resulted					
2402	90.06	N/A	N/A	REF		
7205.100	58.3	70.06	11.6	Pass		

Frequency: 2440 MHz; Modulation: GFSK; Data rate: 1Mbps; Power setting: 0 dBm;				
Emission Field Distance Power Limit Margin Result (MHz) (MHz) (dBµV/m) (dBm) (dBm) (dBm)				
No emissions within 20 dB of the limit.				PASS

Frequency: 2480 MHz; Modulation: GFSK; Data rate: 1Mbps; Power setting: 0 dBm;					
Emission Field Distance Power Limit Margin Result (MHz) $(dB\mu V/m)$					
No emissions within 20 dB of the limit.				PASS	

Lower Band Edge

Note: See radiated spurious emissions section 11, for plots covering the out of band emissions frequency range

RF915 8.0 Page 32 of 37

15 Power spectral density

15.1 Definition

The power per unit bandwidth.

15.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio chamber 3

Test Standard and Clause: ANSI C63.10-2013, Clause 11.10 EUT Channels / Frequencies Measured: 2402 MHz / 2440 MHz / 2480 MHz

EUT Channel Bandwidths: 1 MHz
Deviations From Standard: None
Measurement BW: 3 kHz
Spectrum Analyzer Video BW: 10 kHz

(requirement at least 3x RBW)

Measurement Span:

(requirement 1.5 times Channel BW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

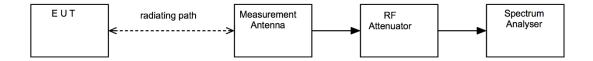
Humidity: 31.6 % RH 20 % RH to 75 % RH (as declared)

Supply: 3.0 Vdc (as declared)

15.3 Test Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

1.5 MHz


RF915 8.0 Page 33 of 37

15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure vi Test Setup

15.5 Test Equipment

Equipment		Equipment	Element	Due For
Type	Manufacturer	Description	No	Calibration
Emissions R5	Element	Radiated Test Software	REF9000	Cal not required
ATS	Rainford EMC	Radio Chamber - PP	REF940	2023-11-06
FSU26	R&S	Spectrum Analyser	U405	2023-04-21
8449B	Agilent	Pre Amp	L572	2023-10-24
3115	EMCO	1-18GHz Horn	L139	2024-07-01

15.6 Test Results

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

FS is the electric field strength in V/m

D is the measurement distance in meters (m)

G is the antenna numerical gain referenced to isotropic gain of 0.5 dBi

Modulation: GFSK; Data rate: 1Mbps;							
Channel Frequency (MHz)	Frequency Strength Distance Antenna Max. Power Res						
2402	80.65	3.00	1.12	-15.08	PASS		
2440	77.10	3.00	1.12	-18.63	PASS		
2480	72.19	3.00	1.12	-23.54	PASS		

RF915 8.0 Page 34 of 37

16 Measurement Uncertainty

Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and		_
Spurious emissions		
Absolute RF power (via antenna connecter) Dare RPR3006W Power Head	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	0.9 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MILAGOO	2 7 dD
	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz	MU4037	4.7 dB
Radiated Spurious Emissions 1-18 GHz	MU4032	4.5 dB
E Field Emissions 18GHz to 26 GHz	MU4024	3.2 dB
E Field Emissions 26GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75GHz to 110 GHz	MU4028	3.6 dB
Radiated Magnetic Field Emissions	MU4031	2.3 dB
Francisco Managements		
Frequency Measurements	MILAGOO	0.246 kH=
Frequency Deviation	MU4022	0.316 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
Bandwidth/Spectral Mask Measurements		
Channel Bandwidth	MU4005	3.87 %
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59 %
Time Domain Measurements		
Transmission Time	MU4038	4.40 %
TRAINSTRIBUTE TRAINSTRIBUTE	14104000	7.70 /0
Dynamic Frequency Selection (DFS) Parameters)		
DFS Analyser - Measurement Time	MU4006	679 µs
DFS Generator - Frequency Error	MU4007	92 Hz
	MILIAGOG	1.3 dB
DFS Threshold Conducted DFS Threshold Radiated	MU4008 MU4009	3.2 dB

RF915 8.0 Page 35 of 37

Test/Measurement	Budget Number	MU
Receiver Parameters		
EN300328 Receiver Blocking	MU4010	1.1 dB
EN301893 Receiver Blocking	MU4011	1.1 dB
EN303340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN303340 Overloading	MU4013	1.1 dB
EN303340 Receiver Blocking	MU4014	1.1 dB
EN303340 Receiver Sensitivity	MU4015	0.9 dB
EN303372-1 Image Rejection	MU4016	1.4 dB
EN303372-1 Receiver Blocking	MU4017	1.1 dB
EN303372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN303372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

RF915 8.0 Page 36 of 37

17 RF Exposure

General SAR test reduction and exclusion guidance

KDB 447498

Section 4.3 General SAR test reduction and exclusion guidance

For Standalone SAR exclusion consideration, when SAR Exclusion Threshold requirement in KDB 447498 is satisfied, standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

In the frequency range below 100 MHz to 6 GHz and test separation distance of 50mm, the SAR Test Exclusion Threshold for operation in the 2400 – 2483.5 MHz band will be determined as follows

SAR Exclusion Threshold (SARET)

The SAR Test Exclusion Threshold for frequencies in the range 100 MHz to 6 GHz, and for test separation distance of \leq 50 mm, is determined as follows.

SAR Exclusion Threshold (SARET) = $(NT \times TSD_A) / \sqrt{f_{GHz}}$

Where,

NT = Numeric Threshold (3.0 for 1-g SAR and 7.5 for 10-g SAR) TSDA = Minimum Test separation distance or 50 mm (whichever is lower) $f_{GHz} = Transmit frequency in GHz$

Evaluation Frequency	2402 MHz	2440 MHz	2480 MHz	
SAR Exclusion Threshold	9.7	9.6	9.5	mW
Radiated Field Strength	96.06	86.70	82.75	dBuV/m (@3m)
Antenna Gain	0.5	0.5	0.5	dBi
Conducted Power	0.27	0.13	0.05	mW
SAR Evaluation	Exempt			

Therefore standalone SAR evaluation for general population exposure conditions by measurement or numerical simulation is not required.

RF915 8.0 Page 37 of 37