

Report No.: POCE240220002RL001

RF TEST REPORT

For

Dongguan DaXian Lighting Technology CO., LTD Product Name: LED TV STRIP LIGHT

Test Model(s).: DX23014

Report Reference No. : POCE240220002RL001

FCC ID : 2A82I-DX23014

Applicant's Name : Dongguan DaXian Lighting Technology CO., LTD

Address No. 72, Tai'an, Liyuan Road, Zhangmutou town, Dongguan

City.Guangdong Province

Testing Laboratory: Shenzhen POCE Technology Co., Ltd.

Address : 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,

Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : February 20, 2024

Date of Test : February 20, 2024 to March 1, 2024

Data of Issue : March 1, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE240220002RL001	March 1, 2024
			E
	200	200	
	PO		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:		
Bon Tang	Tomchen	Machoel Mrs		
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager		

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 2 of 52

V1.0

CONTENTS

1 TEST SUMMARY	5
1.1 TEST STANDARDS	5
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	6
2.2 DESCRIPTION OF DEVICE (EUT)	6
2.3 DESCRIPTION OF TEST MODES	7
2.4 DESCRIPTION OF SUPPORT UNITS	
2.5 EQUIPMENTS USED DURING THE TEST	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	11
3.1 Antenna requirement	11
3.1.1 Conclusion:	11
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	12
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation: 4.1.2 Test Setup Diagram:	
4.1.3 Test Data:	
4.2 Occupied Bandwidth	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 Power Spectral Density	
4.4.1 E.U.T. Operation:	18
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	18
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	19
4.5.1 E.U.T. Operation:	19
4.5.2 Test Setup Diagram:	19
4.5.3 Test Data:	19
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	27

V1.0

	4.8.2 Test Data:		27
5 T	EST SETUP PHOTOS	~ E	30
	PHOTOS OF THE EUT		
	PENDIX		
	16DB BANDWIDTH		42
	3. PEAK OUTPUT POWER		44
	4. POWER SPECTRAL DENSITY		46
	5. BANDEDGE		
	6. Spurious Emission		50

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

Report No.: POCE240220002RL001

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Dongguan DaXian Lighting Technology CO., LTD

Address : No. 72, Tai'an, Liyuan Road, Zhangmutou town, Dongguan City.Guangdong

Province

Manufacturer : Dongguan DaXian Lighting Technology CO., LTD

Address : No. 72, Tai'an, Liyuan Road, Zhangmutou town, Dongguan City.Guangdong

Province

2.2 Description of Device (EUT)

Product Name:	LED TV STRIP LIGHT
Model/Type reference:	DX23014
Series Model:	DX23014-1,DX23014-2,DX23014-3,DX23014-5,DX23014-6,DX23014-7, DX23014-8,DX23014-9,DX23014-10
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	AC120V60Hz
Power Adaptor:	MODEL NO:BI18G-120150-AdU INPUT:100-240V~50/60Hz 0.8A OUTPUT:DC12V/1.5A
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PCB
Antenna Gain:	-1.3dBi
Hardware Version:	V1.0
Software Version:	V1.0

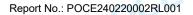
(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Took abannal	Frequency (MHz)
Test channel	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz


2.3 Description of Test Modes

No	Title	Description		
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
TM3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
Remark:Only the data of the worst mode would be recorded in this report.				

2.4 Description of Support Units

The EUT was tested as an independent device.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 52

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2023-12-12	2024-12-11	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	/	
Cable	SCHWARZ BECK	1	1	2023-12-27	2024-12-26	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	/	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11	

Occupied Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	1		
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	/		
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10		
DC power	HP	66311B	38444359	1			
Power Meter	Keysight	E4416A	MY5303506	2023-12-10	2024-12-09		
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1		
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12		
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08		
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08		
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11		

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 52

Report No.: POCE240220002RL001

Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Lillissions in hequein	y ballus (above 10	J1 12)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1	
Positioning Controller	1	MF-7802	1	1	1	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04	
Cable(LF)#2	Schwarzbeck	1	100	2024-02-19	2025-02-18	
Cable(LF)#1	Schwarzbeck	1	1	2024-02-19	2025-02-18	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-02-19	2025-02-18	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-02-19	2025-02-18	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20	
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12	

2.6 Statement Of The Measurement Uncertainty

Measurement Uncertainty
±3.41dB
±3.63%
±0.733dB
±0.234%
±1.98dB
±5.46dB
±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

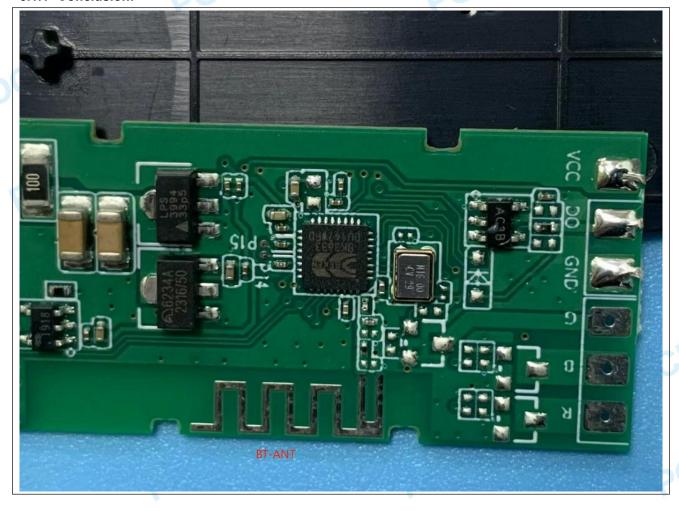
Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 10 of 52


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

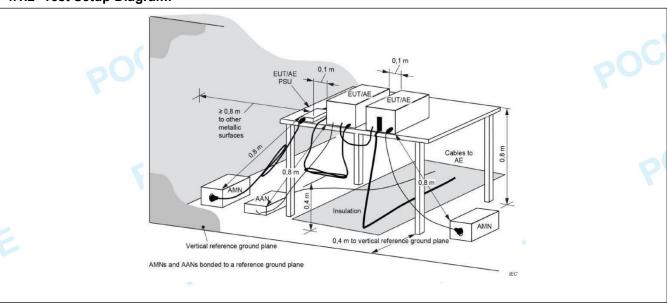
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 52

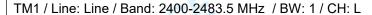
4 Radio Spectrum Matter Test Results (RF)

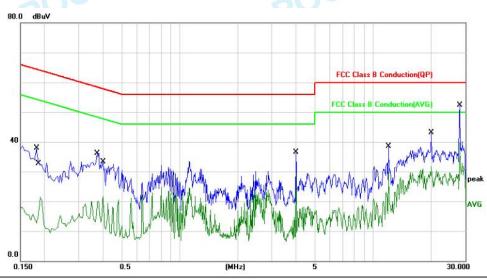

4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
CE	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the	frequency.				
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

4.1.1 E.U.T. Operation:

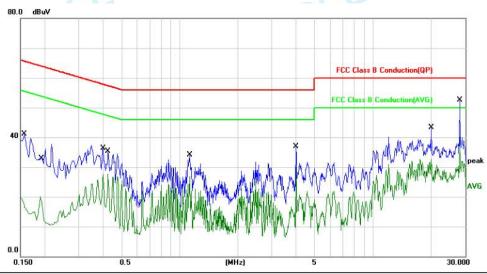
Operating Environment:						
Temperature:	22 °C		Humidity:	54.8 %	Atmospheric Pressure:	102 kPa
Pretest mode:	E	TM1		aC.		OCE
Final test mode:		TM1		000		POO


4.1.2 Test Setup Diagram:



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 52

4.1.3 Test Data:



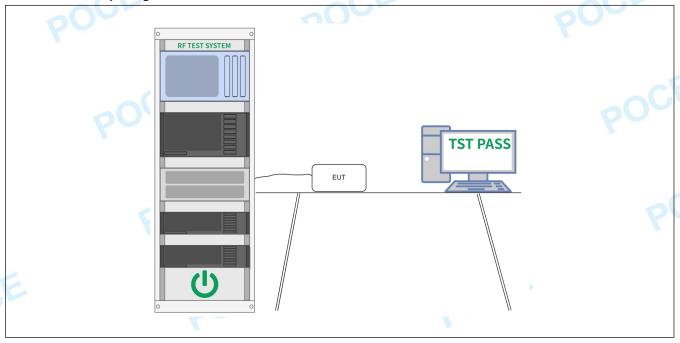
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1819	27.86	10.03	37.89	64.39	-26.50	QP	
2		0.1900	11.44	10.03	21.47	54.03	-32.56	AVG	
3		0.3740	26.06	10.00	36.06	58.41	-22.35	QP	
4		0.4020	11.60	10.00	21.60	47.81	-26.21	AVG	
5		4.0060	26.47	10.09	36.56	56.00	-19.44	QP	
6		4.0060	19.34	10.09	29.43	46.00	-16.57	AVG	
7		12.0140	28.11	10.44	38.55	60.00	-21.45	QP	
8		12.0140	19.29	10.44	29.73	50.00	-20.27	AVG	
9		20.0180	32.67	10.46	43.13	60.00	-16.87	QP	
10		20.0180	21.16	10.46	31.62	50.00	-18.38	AVG	
11	*	28.0180	41.64	10.58	52.22	60.00	-7.78	QP	
12		28.0180	29.21	10.58	39.79	50.00	-10.21	AVG	

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L

V1.0

Report No.: POCE240220002RL001

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1580	31.16	10.03	41.19	65.56	-24.37	QP	
2		0.1900	9.99	10.03	20.02	54.03	-34.01	AVG	
3		0.4020	26.33	10.00	36.33	57.81	-21.48	QP	
4		0.4260	17.74	9.99	27.73	47.33	-19.60	AVG	
5		1.1300	24.10	9.91	34.01	56.00	-21.99	QP	
6		1.1300	17.03	9.91	26.94	46.00	-19.06	AVG	
7		4.0020	26.84	10.09	36.93	56.00	-19.07	QP	
8		4.0020	19.75	10.09	29.84	46.00	-16.16	AVG	
9		20.0140	32.89	10.50	43.39	60.00	-16.61	QP	
10		20.0140	22.29	10.50	32.79	50.00	-17.21	AVG	
11	*	28.0260	41.82	10.65	52.47	60.00	-7.53	QP	
12		28.0260	29.51	10.65	40.16	50.00	-9.84	AVG	


4.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Envir	onment:			OCF		OCF	
Temperature:	22 °C		Humidity:	54.8 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3				
Final test mode: TM1,		TM2, TM3					

4.2.2 Test Setup Diagram:

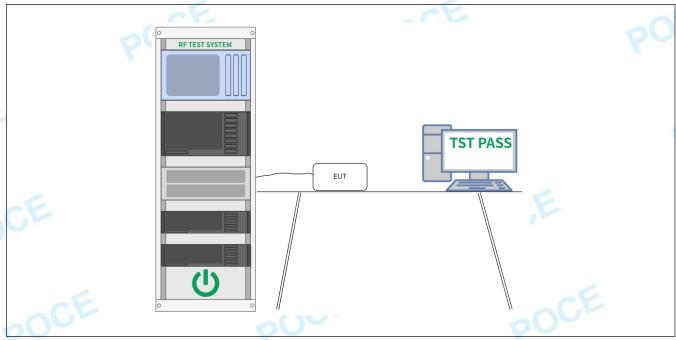
4.2.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 15 of 52

4.3 Maximum Conducted Output Power

4.5 Maximum Cond	actor Catpari ener
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)


4.3.1 E.U.T. Operation:

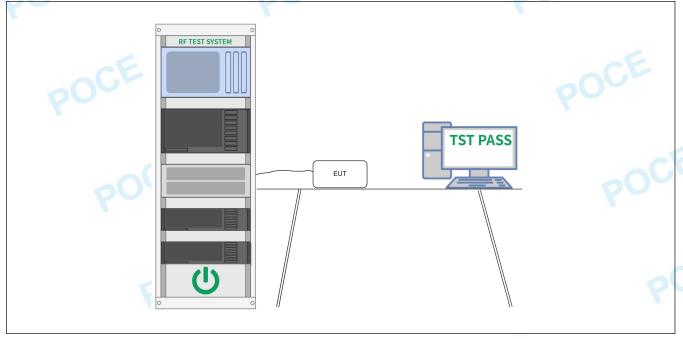
Operating Environment:								
Temperature:	22 °C		Humidity:	54.8 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1			TM2, TM3		000		0	
Final test mode:		TM1,	TM2, TM3					

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 52

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.


4.4 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

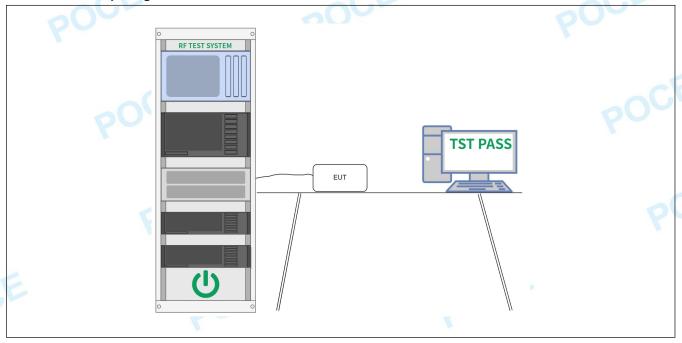
Operating Environment:						
Temperature:	22 °C		Humidity:	54.8 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM2, TM3			TM2, TM3			
Final test mode	•	TM1,	TM2, TM3	CE		CE

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

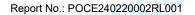
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 18 of 52


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

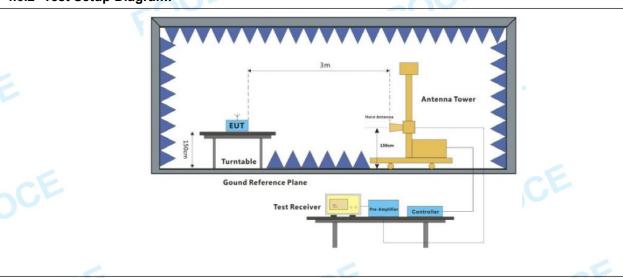
Operating Envir	onment:			OCF		OCF
Temperature:	22 °C		Humidity:	54.8 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode	:	TM1,	TM2, TM3			


4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 19 of 52


4.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as define	, In addition, radiated emissions who in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
CE	88-216	150 **	3
O P	216-960	200 **	3
	Above 960	500	3
POCE	radiators operating under t 54-72 MHz, 76-88 MHz, 17 these frequency bands is p and 15.241. In the emission table above The emission limits shown employing a CISPR quasi-110–490 kHz and above 10	aragraph (g), fundamental emission this section shall not be located in the 4-216 MHz or 470-806 MHz. Howevermitted under other sections of the sections of the section of	ne frequency bands ever, operation within is part, e.g., §§ 15.231 and edges. easurements ency bands 9–90 kHz,
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247 M		Po
Procedure:	ANSI C63.10-2013 section	6.10.5.2	

4.6.1 E.U.T. Operation:

•								
Operating Envir	onment:				0			000
Temperature:	22 °C		Humidity:	54.8 %		Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3					
Final test mode	:	TM1,	TM3					

4.6.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 20 of 52

Report No.: POCE240220002RL001

4.6.3 Test Data:

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	туре	M/V
			GFSKLow	/ Channel 2402MHz			
2310	58.78	-6.93	51.85	74	-22.15	peak	Н
2310	44.32	-6.93	37.39	54	-16.61	AVG	Н
2390	61.99	-6.72	55.27	74	-18.73	peak	Н
2390	48.17	-6.72	41.45	54	-12.55	AVG	Н
2310	58.08	-6.93	51.15	74	-22.85	peak	V
2310	45.76	-6.93	38.83	54	-15.17	AVG	V
2390	61.95	-6.72	55.23	74	-18.77	peak	V
2390	49.41	-6.72	42.69	54	-11.31	AVG	V

GFSK--High Channel: 2480MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.5	59.55	-6.47	53.08	74	-20.92	peak	Н
2483.5	46.08	-6.47	39.61	54	-14.39	AVG	Н
2500	65.77	-6.43	59.34	74	-14.66	peak	Н
2500	47.12	-6.43	40.69	54	-13.31	AVG	Н
2483.5	58.79	-6.47	52.32	74	-21.68	peak	V
2483.5	45.29	-6.47	38.82	54	-15.18	AVG	V
2500	62.30	-6.43	55.87	74	-18.13	peak	V
2500	47.51	-6.43	41.08	54	-12.92	AVG	V

4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as defir	d), In addition, radiated emission ned in § 15.205(a), must also con in § 15.209(a)(see § 15.205(c)).`	nply with the radiated					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	The emission limits show employing a CISPR qua- 110–490 kHz and above	ove, the tighter limit applies at the on in the above table are based o si-peak detector except for the fre 1000 MHz. Radiated emission lir ents employing an average detec	n measurements equency bands 9–90 kHz, mits in these three bands					
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the labove the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on tid. The antenna height is determine the maximum polarizations of the antenee. For each suspected ethe antenna was tuned to	EUT was placed on the top of a roor 10 meter semi-anechoic chame the position of the highest radia EUT was placed on the top of a rometer fully-anechoic chamber. The position of the highest radiation. 10 meters away from the interfer he top of a variable-height antenrivaried from one meter to four measured from the field strength. Both the place is to make the measured mission, the EUT was arranged to heights from 1 meter to 4 meter	ber. The table was rotated ation. potating table 1.5 meters are table was rotated 360. ence-receiving antenna, as tower. eters above the ground to norizontal and vertical ment. to its worst case and then as (for the test frequency of the strong at tower).					
	below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-							
	reported in a data sheet. h. Test the EUT in the lov i. The radiation measure Transmitting mode, and j. Repeat above procedu Remark:	west channel, the middle channel ments are performed in X, Y, Z ax found the X axis positioning whicl res until all frequencies measure	, the Highest channel. kis positioning for h it is the worst case. d was complete.					
	1) For emission below 10	GHz, through pre-scan found the	worst case is the lowest					

Report No.: POCE240220002RL001

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 22 of 52

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: POCE240220002RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:

Operating Envir	Operating Environment:								
Temperature:	Temperature: 22 °C Humidity: 54.8 % Atmospheric Pressure: 102 kPa								
Pretest mode:		TM1	DO		PO.				
Final test mode:		TM1							

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 52

4.7.2 Test Data:

400.4318

801.7862

6

39.49

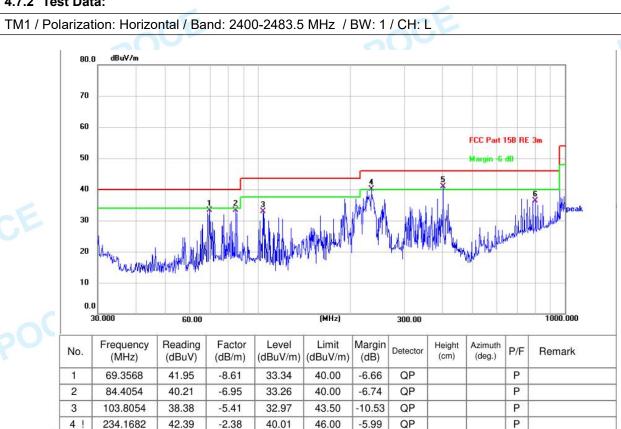
30.38

1.37

5.98

40.86

36.36

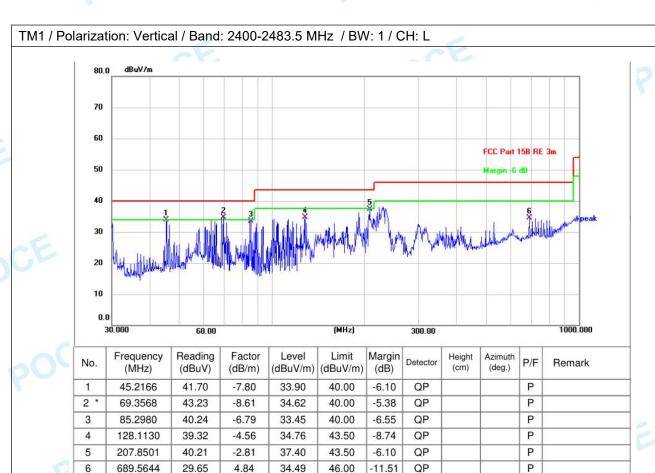

46.00

46.00

-5.14

-9.64

QP


Report No.: POCE240220002RL001

Р

Р

V1.0

.0 Report No.: POCE240220002RL001

4.8 Emissions in frequency bands (above 1GHz)

(microvolts/meter) distance (meters) 0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30-88 100** 33 30-88 100** 33 30-88 100** 33 216-960 200** 3 Above 960 500 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15-23* and 15-241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 10-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63-10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 and of the highest radiation. c. The EUT was self 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters shove the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was tur	Test Requirement:		sions which fall in the restricted baply with the radiated emission limes)).`						
0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 30 30-88 100*** 3 88-216 150*** 3 216-960 200*** 3 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15-23* and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4 KDB 558074 DD1 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the position of the antenna was turned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights from 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights from 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights from 4 meters (for the test frequency o below 30MHz, the ante	Test Limit:	Frequency (MHz)		distance					
1.705-30.0 30 30 30 30 30 30 30 30 30-88 8-216 150 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 3 216-960 200 *** 200 *** 3 216-960 200 *** 200		0.009-0.490	2400/F(kHz)	300					
30-88 100 ** 3 88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15-23 and 15-241. In the emission itable above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.4 4 KDB 558074 DD1 15:247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to 161 dh he maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the E		0.490-1.705	24000/F(kHz)	30					
88-216		1.705-30.0	30	30					
Above 960 200 ** Above 960 3 **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23' and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Test Method: ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB		30-88	100 **	3					
Above 960 500 1500 3 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23′ and 15.24¹. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.		88-216	150 **	3					
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23′ and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Test Method: ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission l		216-960	200 **	3					
radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23′ and 15.241. In the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. Test Method: ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, t		Above 960	500	3					
ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency o below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. J. Repeat above procedures until all frequencies measured was complete.		In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above	n in the above table are based or i-peak detector except for the free 1000 MHz. Radiated emission lim	n measurements quency bands 9–90 kHz, nits in these three bands					
above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency or below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.	Test Method:	ANSI C63.10-2013 section 6.6.4							
Remark:		above the ground at a 3 of 360 degrees to determine b. For above 1GHz, the E above the ground at a 3 of degrees to determine the c. The EUT was set 3 or which was mounted on the d. The antenna height is determine the maximum polarizations of the antenne e. For each suspected enthe antenna was tuned to below 30MHz, the antenne was turned from 0 degreef. The test-receiver system Bandwidth with Maximum g. If the emission level of specified, then testing coreported. Otherwise the ested one by one using preported in a data sheet. h. Test the EUT in the low i. The radiation measurer Transmitting mode, and for the steep of the s	or 10 meter semi-anechoic chamble the position of the highest radiate. EUT was placed on the top of a rometer fully-anechoic chamber. The position of the highest radiation. The position of the highest radiation. The position of the highest radiation. The top of a variable-height antennation of the field strength. Both he had are set to make the measurent inssion, the EUT was arranged to the heights from 1 meter to 4 meters as was tuned to heights 1 meter) as to 360 degrees to find the maxim was set to Peak Detect Function Hold Mode. The EUT in peak mode was 10dB and be stopped and the peak value emissions that did not have 10dB areak, quasi-peak or average method west channel, the middle channel, ments are performed in X, Y, Z axiound the X axis positioning which	per. The table was rotated tion. Itating table 1.5 meters the table was rotated 360 ence-receiving antenna, a tower. Iters above the ground to prizontal and vertical ment. It its worst case and then its worst case and then its worst case and then its frequency of and the rotatable table imum reading. In and Specified I lower than the limit the softhe EUT would be margin would be remod as specified and then the Highest channel. Its positioning for it is the worst case.					
1) For emission below 1GHz, through pre-scan found the worst case is the lowest		Remark:							

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 26 of 52

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

Report No.: POCE240220002RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22 °C		Humidity:	54.8 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1, TM2, TM3							
Final test mode:		TM1,	TM2, TM3				

4.8.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	36.16	-0.90	35.26	74.00	-38.74	peak			Р	
2	4804.000	26.34	-0.90	25.44	54.00	-28.56	AVG			Р	
3	7206.000	35.20	4.13	39.33	74.00	-34.67	peak			Р	
4	7206.000	24.99	4.13	29.12	54.00	-24.88	AVG			Р	
5	9608.000	34.23	8.09	42.32	74.00	-31.68	peak	2		Р	ľ
6 *	9608.000	24.43	8.09	32.52	54.00	-21.48	AVG			Р	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	36.75	-0.28	36.47	74.00	-37.53	peak	100		Р	
2	4804.000	26.77	-0.28	26.49	54.00	-27.51	AVG	100		Р	
3	7206.000	35.44	4.09	39.53	74.00	-34.47	peak	100		Р	
4	7206.000	25.13	4.09	29.22	54.00	-24.78	AVG	100		Р	
5	9608.000	35.11	8.02	43.13	74.00	-30.87	peak	100		Р	
6 *	9608.000	24.59	8.02	32.61	54.00	-21.39	AVG	100		Р	

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 27 of 52

Report No.: POCE240220002RL001

TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4880.000	36.88	-0.03	36.85	74.00	-37.15	peak	100		Р	
2	4880.000	26.60	-0.03	26.57	54.00	-27.43	AVG	100		Р	
3	7320.000	34.82	4.36	39.18	74.00	-34.82	peak	100		Р	
4	7320.000	24.82	4.36	29.18	54.00	-24.82	AVG	100		Р	
5	9760.000	35.01	8.12	43.13	74.00	-30.87	peak	100		Р	
6 *	9760.000	24.35	8.12	32.47	54.00	-21.53	AVG	100		Р	

TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

4880.000 4880.000	36.72 26.59	-0.65 -0.65	36.07	74.00	-37.93	peak	100		Р	
4880.000	26.59	-0.65	0504			100000000000000000000000000000000000000	100			
		0.00	25.94	54.00	-28.06	AVG	100		Р	
7320.000	34.78	4.31	39.09	74.00	-34.91	peak	100		Р	
7320.000	24.76	4.31	29.07	54.00	-24.93	AVG	100		Р	
9760.000	34.51	8.09	42.60	74.00	-31.40	peak	100		Р	
9760.000	24.49	8.09	32.58	54.00	-21.42	AVG	100		Р	
20,000	9760.000	9760.000 34.51	9760.000 34.51 8.09	9760.000 34.51 8.09 42.60	9760.000 34.51 8.09 42.60 74.00	9760.000 34.51 8.09 42.60 74.00 -31.40	9760.000 34.51 8.09 42.60 74.00 -31.40 peak	9760.000 34.51 8.09 42.60 74.00 -31.40 peak 100	9760.000 34.51 8.09 42.60 74.00 -31.40 peak 100	9760.000 34.51 8.09 42.60 74.00 -31.40 peak 100 P

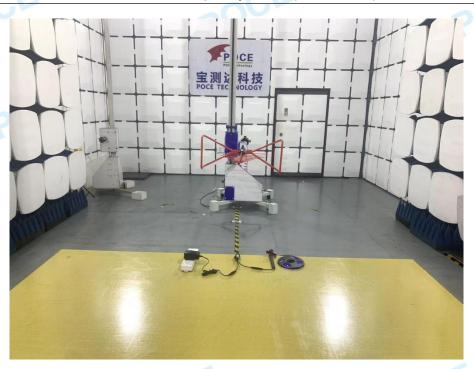
Report No.: POCE240220002RL001

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

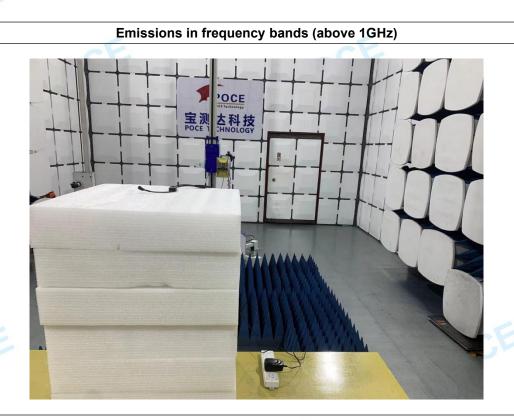
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	36.88	-0.37	36.51	74.00	-37.49	peak	100		Р	
2	4960.000	26.59	-0.37	26.22	54.00	-27.78	AVG	100		Р	
3	7440.000	35.15	4.49	39.64	74.00	-34.36	peak	100		Р	
4	7440.000	24.82	4.49	29.31	54.00	-24.69	AVG	100		Р	
5	9920.000	34.96	8.08	43.04	74.00	-30.96	peak	100		Р	
6 *	9920.000	24.93	8.08	33.01	54.00	-20.99	AVG	100		Р	

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	36.70	0.23	36.93	74.00	-37.07	peak	100		Р	
2	4960.000	26.48	0.23	26.71	54.00	-27.29	AVG	100		Р	
3	7440.000	34.84	4.64	39.48	74.00	-34.52	peak	100		Р	
4	7440.000	24.85	4.64	29.49	54.00	-24.51	AVG	100		Р	
5	9920.000	35.35	8.23	43.58	74.00	-30.42	peak	100		Р	
6 *	9920.000	25.29	8.23	33.52	54.00	-20.48	AVG	100		Р	
				-			-		-1		



5 TEST SETUP PHOTOS


Emissions in frequency bands (below 1GHz)

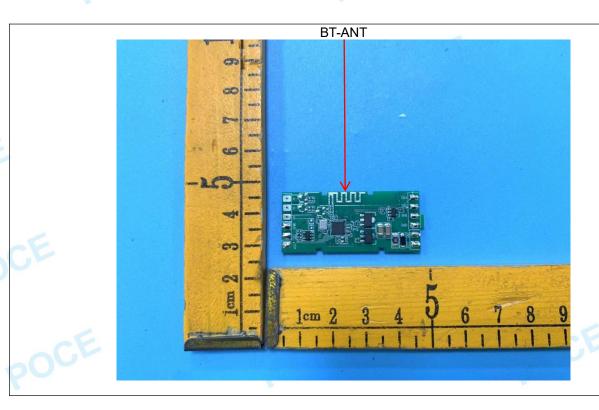
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 30 of 52

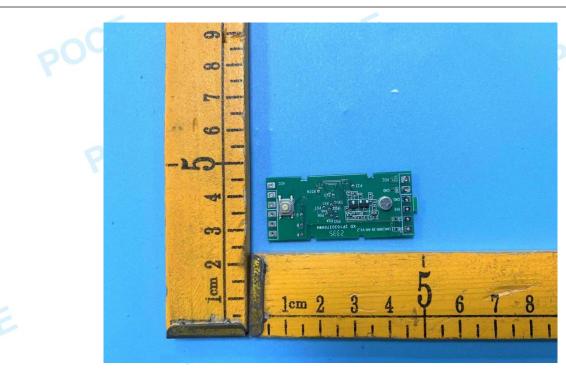
V1.0

6 PHOTOS OF THE EUT

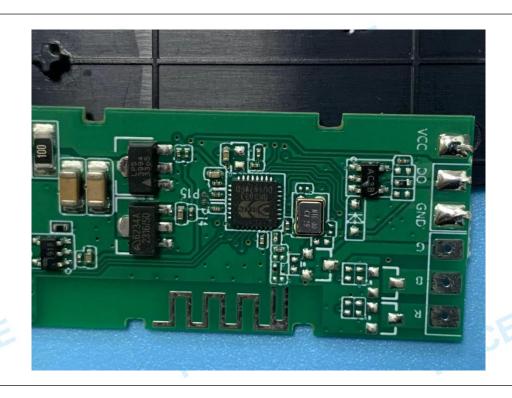
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 32 of 52

V1.0





Internal



POCE POCE POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

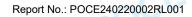
POCE

POCE

POCE

POCE

POCE


POCE

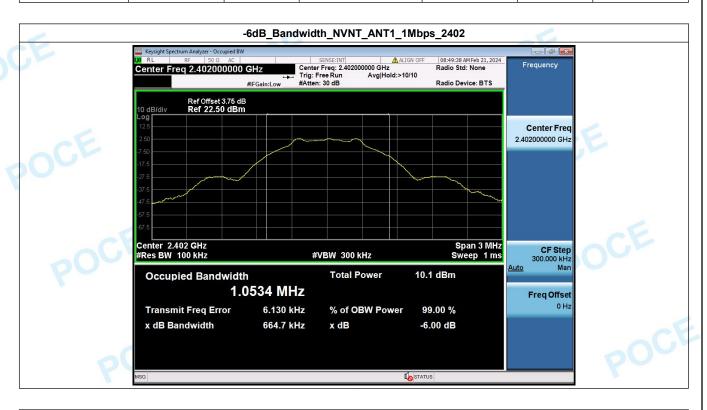
POCE

POCE

POCE

PO

Appendix



HT240220001--DX23014--BLE--FCC FCC_BLE (Part15.247) Test Data

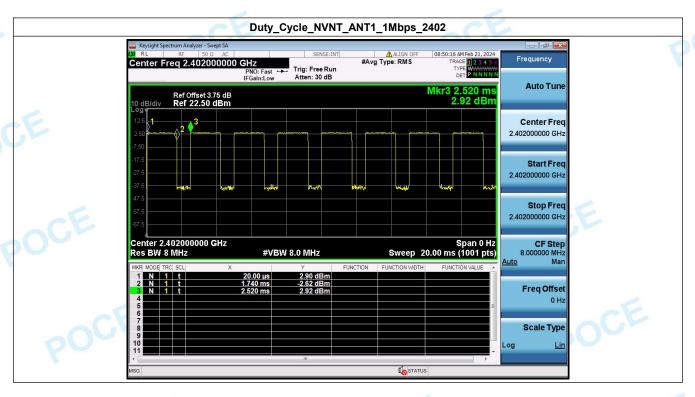
1. -6dB Bandwidth

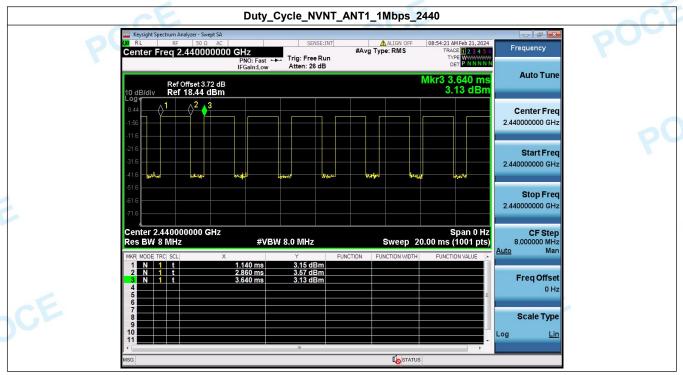
V1.0

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402	664.75	500	Pass
NVNT	ANT1	1Mbps	2440.00	810.68	500	Pass
NVNT	ANT1	1Mbps	2480	915.07	500	Pass

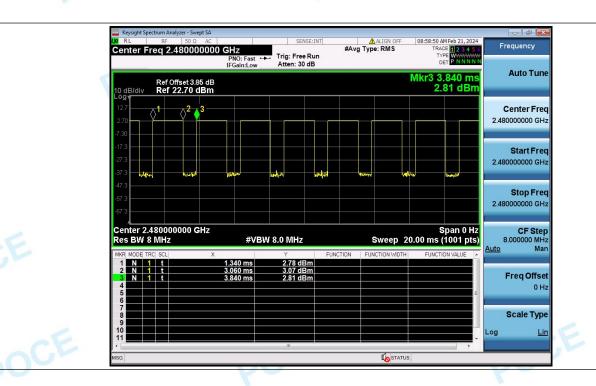
-6dB_Bandwidth_NVNT_ANT1_1Mbps_2440

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 40 of 52

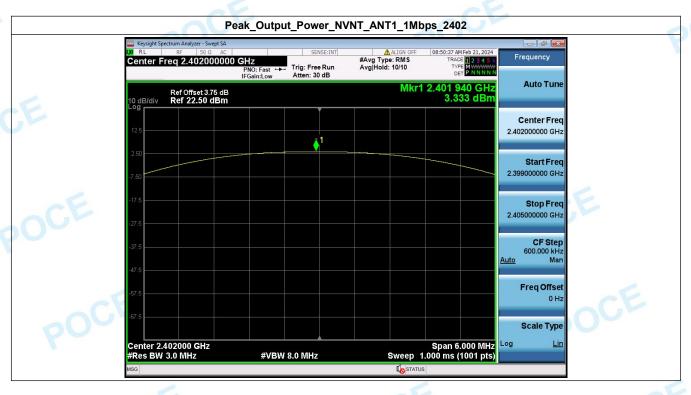


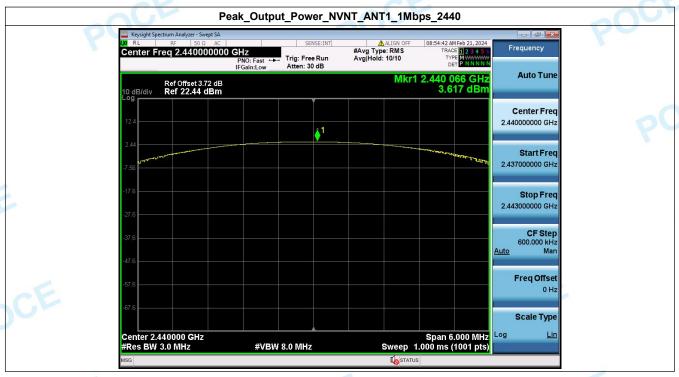


2. Duty Cycle

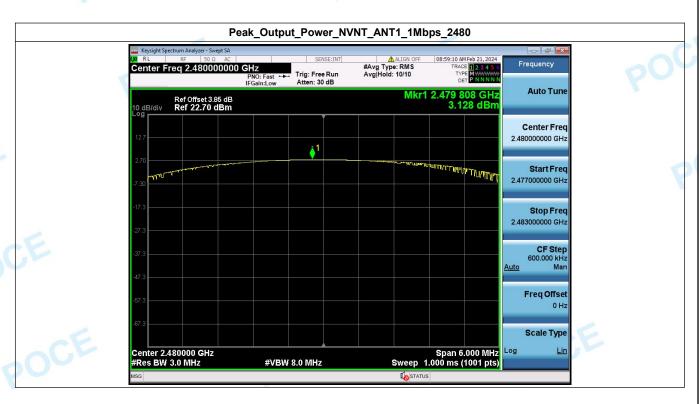

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402	68.80	1.62
NVNT	ANT1	1Mbps	2440.00	69.60	1.57
NVNT	ANT1	1Mbps	2480	69.60	1.57

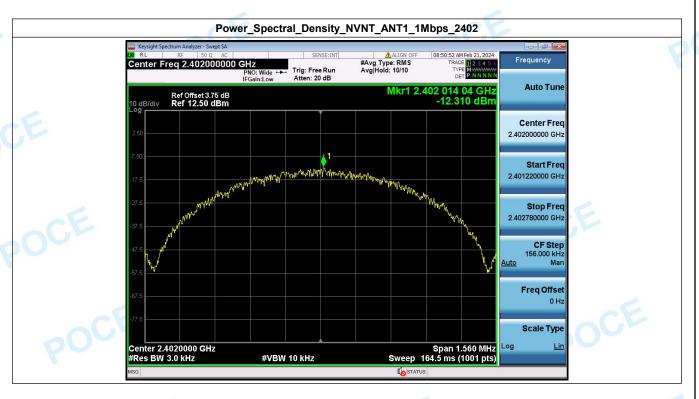

Duty_Cycle_NVNT_ANT1_1Mbps_2480



3. Peak Output Power


Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402	3.33	2.15	1000	Pass
NVNT	ANT1	1Mbps	2440.00	3.62	2.30	1000	Pass
NVNT	ANT1	1Mbps	2480	3.13	2.05	1000	Pass

Report No.: POCE240220002RL001

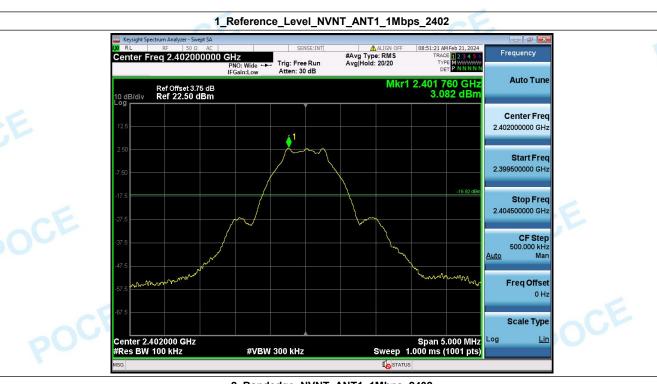


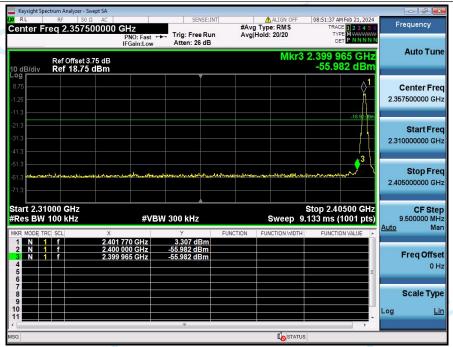
4. Power Spectral Density

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402	-12.31	8	Pass
NVNT	ANT1	1Mbps	2440.00	-11.68	8	Pass
NVNT	ANT1	1Mbps	2480	-11.81	8	Pass

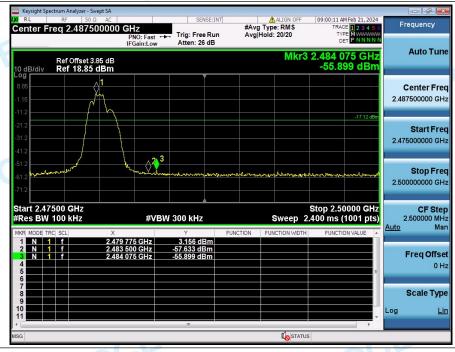
Power_Spectral_Density_NVNT_ANT1_1Mbps_2480




5. Bandedge

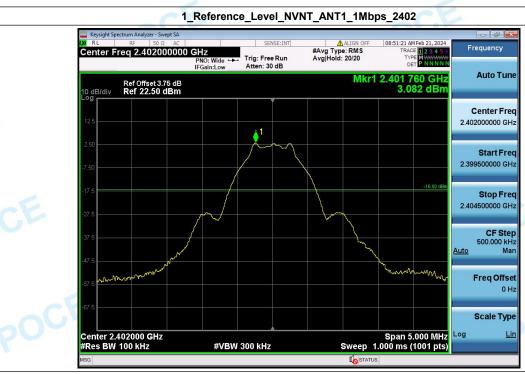
V1.0

Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402	2399.965	-55.982	-16.918	Pass
NVNT	ANT1	1Mbps	2480	2484.075	-55.899	-17.121	Pass


2_Bandedge_NVNT_ANT1_1Mbps_2402

1_Reference_Level_NVNT_ANT1_1Mbps_2480

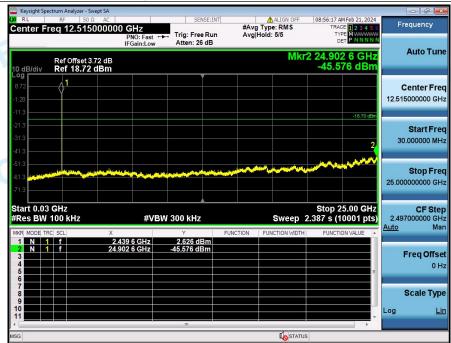
2_Bandedge_NVNT_ANT1_1Mbps_2480



6. Spurious Emission

V1.0

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402	-45.262	-16.918	Pass
NVNT	ANT1	1Mbps	2440.00	-45.576	-16.703	Pass
NVNT	ANT1	1Mbps	2480	-45.187	-17.121	Pass


2_Spurious_Emission_NVNT_ANT1_1Mbps_2402

1_Reference_Level_NVNT_ANT1_1Mbps_2440

2_Spurious_Emission_NVNT_ANT1_1Mbps_2440



1_Reference_Level_NVNT_ANT1_1Mbps_2480

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 51 of 52

2_Spurious_Emission_NVNT_ANT1_1Mbps_2480

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 52 of 52