

FCC Test Report

Report No. : 1812C50157912502

Applicant : Shenzhen Qianyan Technology LTD

Address : No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen 518000 China

Product Name : Govee Floor Lamp 2/Govee Corner Floor Lamp 2

Report Date : 2025-05-12

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Tel:(86)0755-26066440 Email:service@anbotek.com

Hotline
400-003-0500
www.anbotek.com

Contents

1. General Information	5
1.1. Client Information.....	5
1.2. Description of Device (EUT).....	5
1.3. Auxiliary Equipment Used During Test.....	6
1.4. Description of Test Configuration	6
1.5. Description Of Test Setup	7
1.6. Test Equipment List.....	8
1.7. Measurement Uncertainty	9
1.8. Additional Instructions.....	9
1.9. Description of Test Facility	10
1.10. Disclaimer	10
2. Summary of Test Results	11
3. Conducted Emission Test	12
3.1. Test Standard and Limit.....	12
3.2. Test Setup.....	12
3.3. Test Procedure.....	12
3.4. Test Data.....	13
4. Radiation Spurious Emission and Band Edge	16
4.1. Test Standard and Limit.....	16
4.2. Test Setup.....	16
4.3. Test Procedure.....	17
4.4. Test Data.....	18
5. Maximum Conducted Output Power Test	24
5.1. Test Standard and Limit.....	24
5.2. Test Setup.....	24
5.3. Test Procedure.....	24
5.4. Test Data.....	25
6. Antenna Requirement	26
6.1. Test Standard and Requirement	26
6.2. Antenna Connected Construction	26
APPENDIX I -- TEST SETUP PHOTOGRAPH.....	27
APPENDIX II -- EXTERNAL PHOTOGRAPH.....	27
APPENDIX III -- INTERNAL PHOTOGRAPH	27

TEST REPORT

Applicant : Shenzhen Qiannyan Technology LTD
Manufacturer : Shenzhen Qiannyan Technology LTD
Product Name : Govee Floor Lamp 2/Govee Corner Floor Lamp 2
Model No. : H607C
Trade Mark : Govee
Rating(s) : Input: 24V=2A

Test Standard(s) : FCC Part15 Subpart C, Section 15.247

Test Method(s) : ANSI C63.10: 2020, KDB 558074 D01 15.247 Meas Guidance v05r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt

2025-04-11

Date of Test

2025-04-11 ~ 2025-04-21

Prepared By

(Cecilia Chen)

Approved & Authorized Signer

(Hugo Chen)

Revision History

Report Version	Description	Issued Date
R00	Original Issue.(Note 1.)	2025-05-12

Note 1:

This is a Class II application which was based on the original report 18220WC30276502. Test sample: Govee Floor Lamp 2, test model: H607C. The difference between the original device and current one described as following:

1. Change the Product Name to “Govee Floor Lamp 2/Govee Corner Floor Lamp 2”.
2. Add an adapter “YXTA48US-2402000”.
3. Update the Photograph of EUT.

The changes are not related with the other RF parameters, only conducted emission and radiation spurious emission were retested for adapter “YXTA48US-2402000”.

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Qiyan Technology LTD
Address	:	No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen 518000 China
Manufacturer	:	Shenzhen Qiyan Technology LTD
Address	:	No. 3301, Block C, Section 1, Chuangzhi Yuncheng Building, Liuxian Avenue, Xili Community, Xili Street, Nanshan District, Shenzhen 518000 China

1.2. Description of Device (EUT)

Product Name	:	Govee Floor Lamp 2/Govee Corner Floor Lamp 2
Model No.	:	H607C
Trade Mark	:	Govee
Test Power Supply	:	DC 24V from adapter input AC 120V/60Hz
Test Sample No.	:	1-1-1(Normal Sample)
Adapter	:	Manufacturer: Dong Guan Royal Intelligent Co., Ltd Model: BI48G-240200-AdU Input: 100-240V~, 50/60Hz, 1.4A Output: 24V=2A
Adapter	:	Manufacturer: SHENZHENLINKSOONER TECHNOLOGYCO LTD Model: YXTA48US-2402000 Input: 100-240V~, 50/60Hz, 1.5A Max Output: 24.0V=2.0A, 48.0W

RF Specification

Operation Mode	:	<input checked="" type="checkbox"/> 802.11b	<input checked="" type="checkbox"/> 802.11g	<input checked="" type="checkbox"/> 802.11n(HT20)	<input type="checkbox"/> 802.11n(HT40)
Operation Frequency	:	2412~2462MHz			
Number of Channel	:	11 Channel for 20MHz bandwidth (2412~2462MHz)			
Modulation Type	:	<input checked="" type="checkbox"/> 802.11b: DSSS (CCK, DQPSK, DBPSK) <input checked="" type="checkbox"/> 802.11g: OFDM (BPSK, QPSK, 16QAM, 64QAM) <input checked="" type="checkbox"/> 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM)			
Antenna Type	:	PCB Antenna			
Antenna Gain(Peak)	:	1.54dBi			

Remark: 1) All of the RF specification are provided by customer. 2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

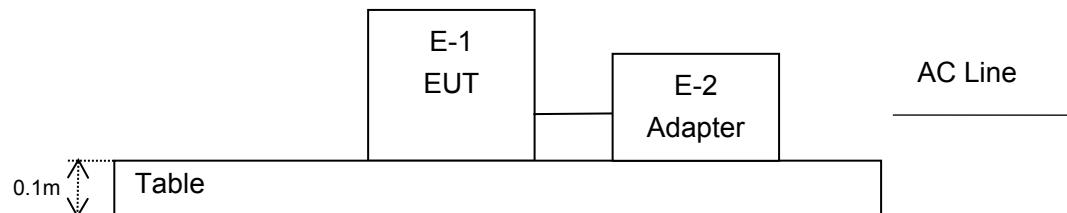
1.3. Auxiliary Equipment Used During Test

Description	Rating(s)
--	--

1.4. Description of Test Configuration


Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
2. For 802.11b, 802.11g, and 802.11n(HT20) modes were test with channel 1, 6, 11.

1.5. Description Of Test Setup

CE

RE

1.6. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	1 Year
2.	Three Phase V-type Artificial Power Network	CYBERTEK	EM5040DT	E215040DT00 1	2025-01-13	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2025-01-13	1 Year
4.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2025-01-14	1 Year
5.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	2024-09-09	1 Year
6.	EMI Preamplifier	SKET Electronic	LNPA-0118G- 45	SKET-PA-002	2025-01-13	1 Year
7.	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	3 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	3 Year
9.	Loop Antenna(9K-30M)	Schwarzbeck	FMZB1519B	00053	2024-09-12	1 Year
10.	Horn Antenna	A-INFO	LB-180400-KF	J211060628	2024-01-22	3 Year
11.	Pre-amplifier	SONOMA	310N	186860	2025-01-14	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY53280032	2024-09-09	1 Year
14.	MXG RF Vector Signal Generator	Agilent	N5182A	MY47420822	2025-02-21	1 Year
15.	Signal Generator	Agilent	E4421B	MY41000743	2025-02-21	1 Year
16.	DC Power Supply	IVYTECH	IV3605	1804D360510	2024-09-09	1 Year
17.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	2024-10-14	1 Year
18.	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2025-05-06	1 Year

1.7. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.8dB
Conducted Output Power	0.76dB
Radiated spurious emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Additional Instructions

Power level setup in software: AmebaZ2_mptool_1v3

Operation Band:

Mode	Power level	Transmitting type
802.11b	default	data pack TX
802.11g	default	data pack TX
802.11n(HT20)	default	data pack TX

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

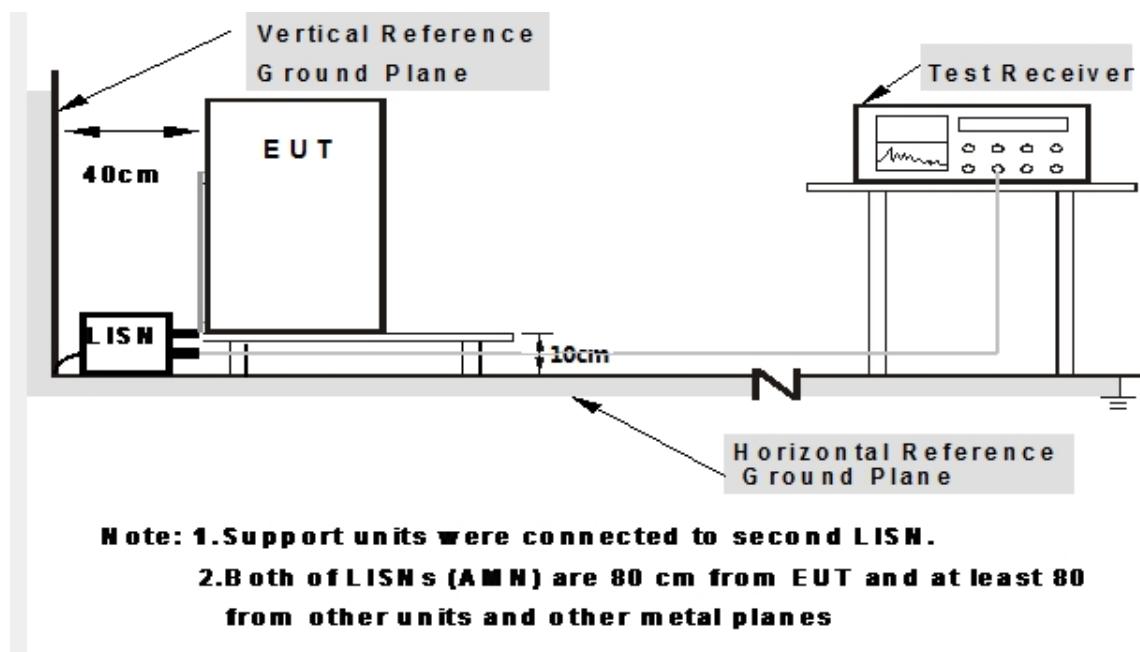
1.10. Disclaimer

1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
2. The test report is invalid if there is any evidence and/or falsification.
3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.
7. The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Maximum Conducted Output Power	PASS
Remark: "N/A" is an abbreviation for Not Applicable.		


3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.207		
Test Limit	Frequency	Maximum RF Line Voltage (dBuV)	
		Quasi-peak Level	Average Level
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	60	50

Remark: (1) *Decreasing linearly with logarithm of the frequency.
(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

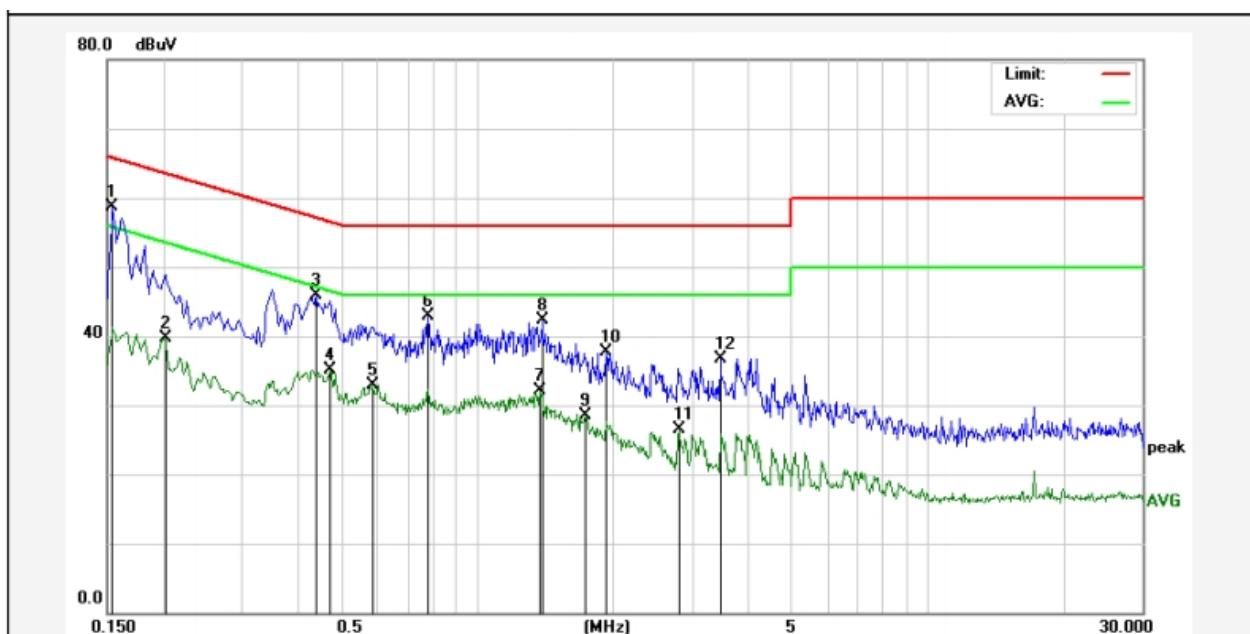
3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10: 2020 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

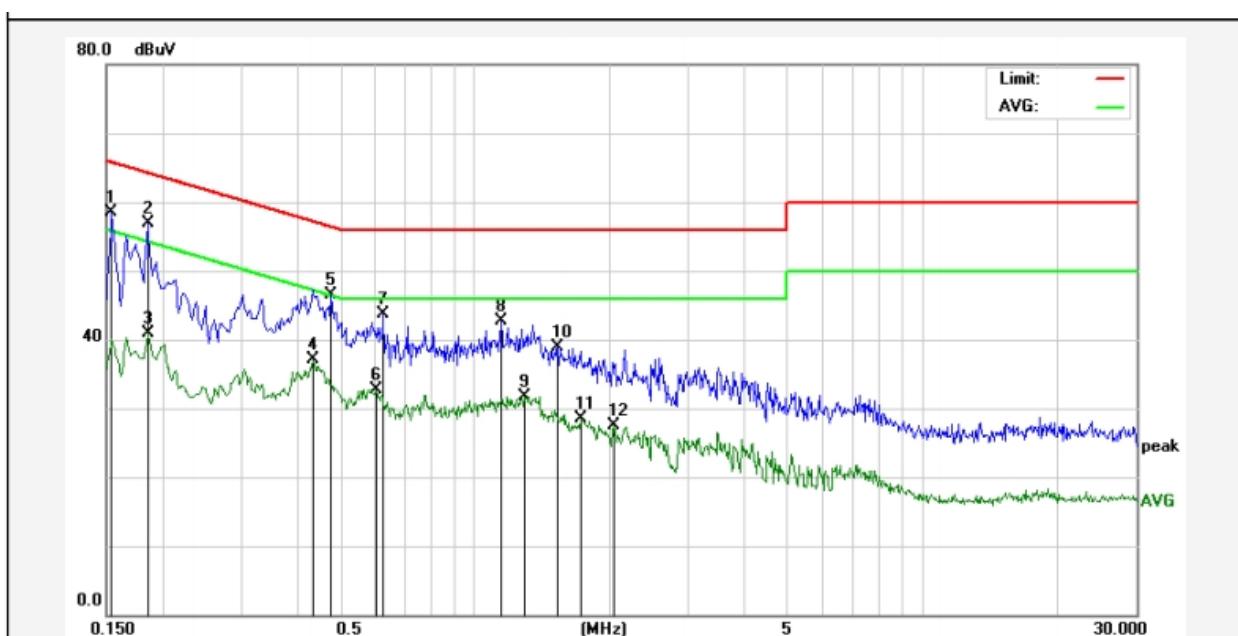
3.4. Test Data


During the test, pre-scan all modes, only the worst case is recorded in the report.

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/60Hz modes, recorded worst case AC 120V/60Hz.

Please to see the following pages.

Conducted Emission Test Data


Test Site: 1# Shielded Room
 Operating Condition: 802.11b 2462MHz
 Test Specification: DC 24V from adapter input AC 120V/60Hz
 Comment: Live Line
 Temp.(°C)/Hum.(%RH): 22.1°C/50%RH

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Over Limit (dB)	Detector	Remark
1	0.1539	40.94	17.83	58.77	65.78	-7.01	QP	
2	0.2020	21.81	17.82	39.63	53.52	-13.89	AVG	
3	0.4380	28.14	17.83	45.97	57.10	-11.13	QP	
4	0.4700	17.19	17.85	35.04	46.51	-11.47	AVG	
5	0.5860	14.98	17.86	32.84	46.00	-13.16	AVG	
6	0.7780	25.08	17.87	42.95	56.00	-13.05	QP	
7	1.3740	14.18	17.86	32.04	46.00	-13.96	AVG	
8	1.3900	24.35	17.86	42.21	56.00	-13.79	QP	
9	1.7420	10.56	17.85	28.41	46.00	-17.59	AVG	
10	1.9380	19.77	17.85	37.62	56.00	-18.38	QP	
11	2.7980	8.63	17.85	26.48	46.00	-19.52	AVG	
12	3.4660	18.95	17.85	36.80	56.00	-19.20	QP	

Conducted Emission Test Data

Test Site: 1# Shielded Room
 Operating Condition: 802.11b 2462MHz
 Test Specification: DC 24V from adapter input AC 120V/60Hz
 Comment: Neutral Line
 Temp.(°C)/Hum.(%RH): 22.1°C/50%RH

No.	Freq. (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Over Limit (dB)	Detector	Remark
1	0.1539	40.63	17.83	58.46	65.78	-7.32	QP	
2	0.1860	39.04	17.82	56.86	64.21	-7.35	QP	
3	0.1860	23.08	17.82	40.90	54.21	-13.31	AVG	
4	0.4340	19.19	17.82	37.01	47.18	-10.17	AVG	
5	0.4780	28.65	17.85	46.50	56.37	-9.87	QP	
6	0.6020	14.87	17.87	32.74	46.00	-13.26	AVG	
7	0.6260	25.74	17.87	43.61	56.00	-12.39	QP	
8	1.1460	24.89	17.86	42.75	56.00	-13.25	QP	
9	1.2940	13.90	17.86	31.76	46.00	-14.24	AVG	
10	1.5339	20.97	17.85	38.82	56.00	-17.18	QP	
11	1.7180	10.62	17.85	28.47	46.00	-17.53	AVG	
12	2.0340	9.60	17.85	27.45	46.00	-18.55	AVG	

Note:

Result(dB μ V) = Reading(dB μ V) + Factor(dB);
 Over Limit(dB) = Result(dB μ V) - Limit(dB μ V)

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.209 and 15.205				
Test Limit	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz~1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz~30MHz	30	-	-	30
	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3
	216MHz~960MHz	200	46.0	Quasi-peak	3
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Above 1000MHz	500	54.0	Average	3
		-	74.0	Peak	3

Remark:

(1)The lower limit shall apply at the transition frequency.

(2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

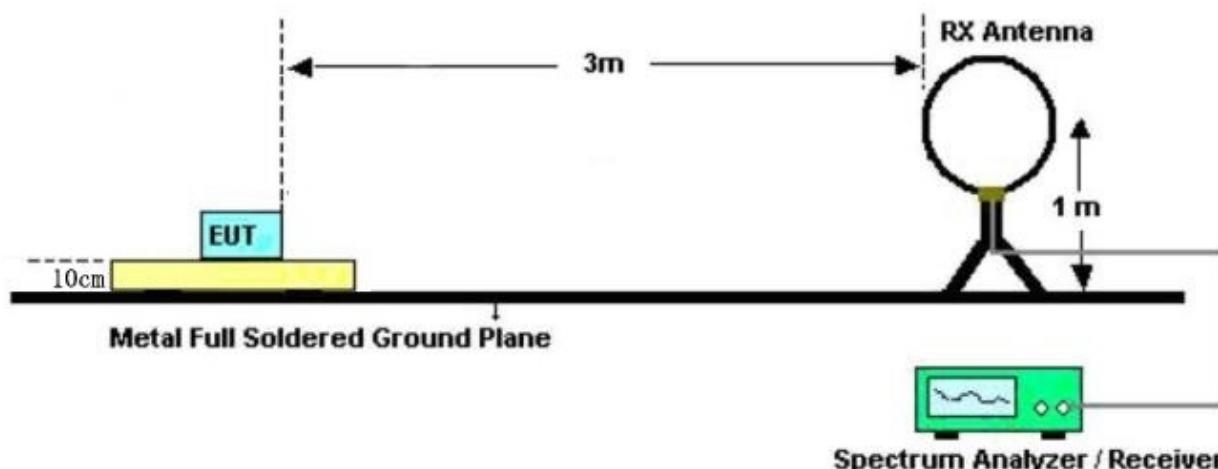


Figure 1. Below 30MHz

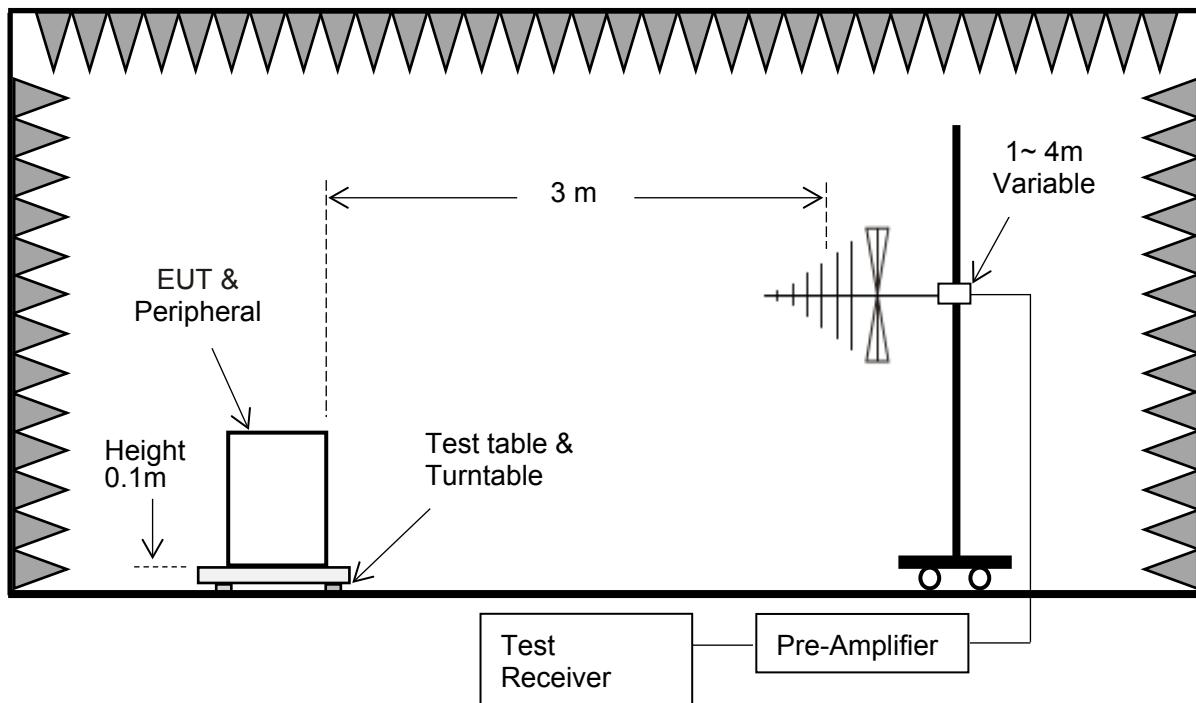


Figure 2. 30MHz to 1GHz

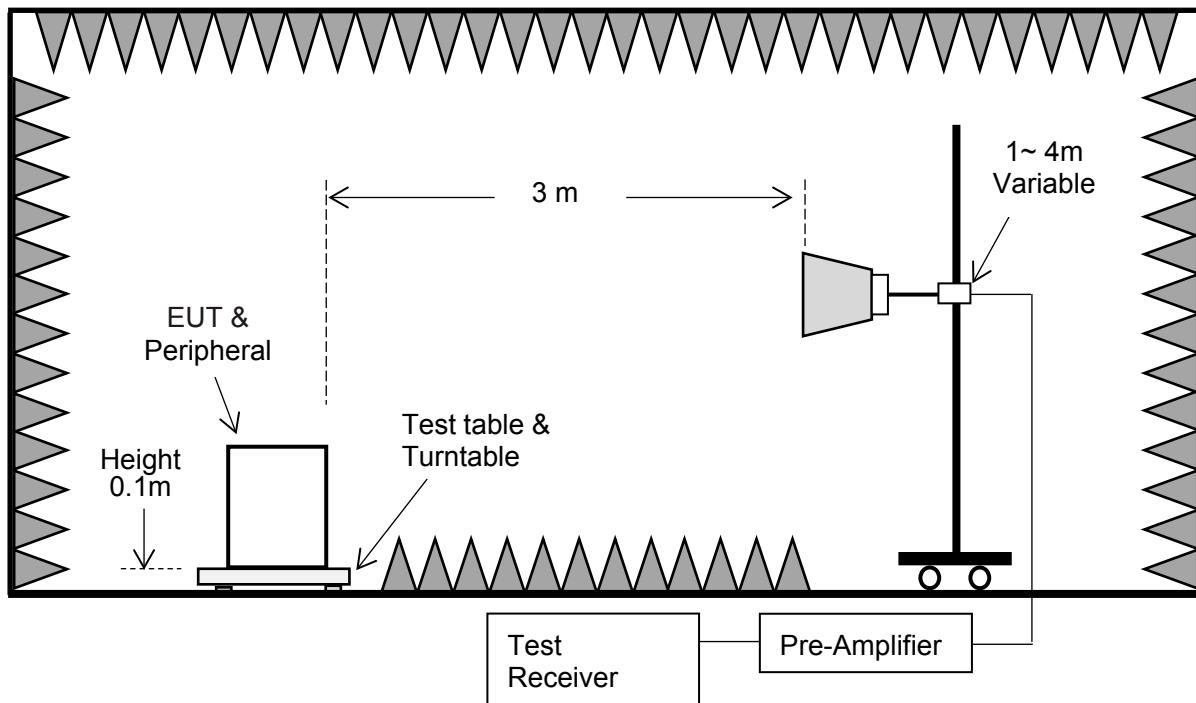


Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.1m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 0.1m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The

EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

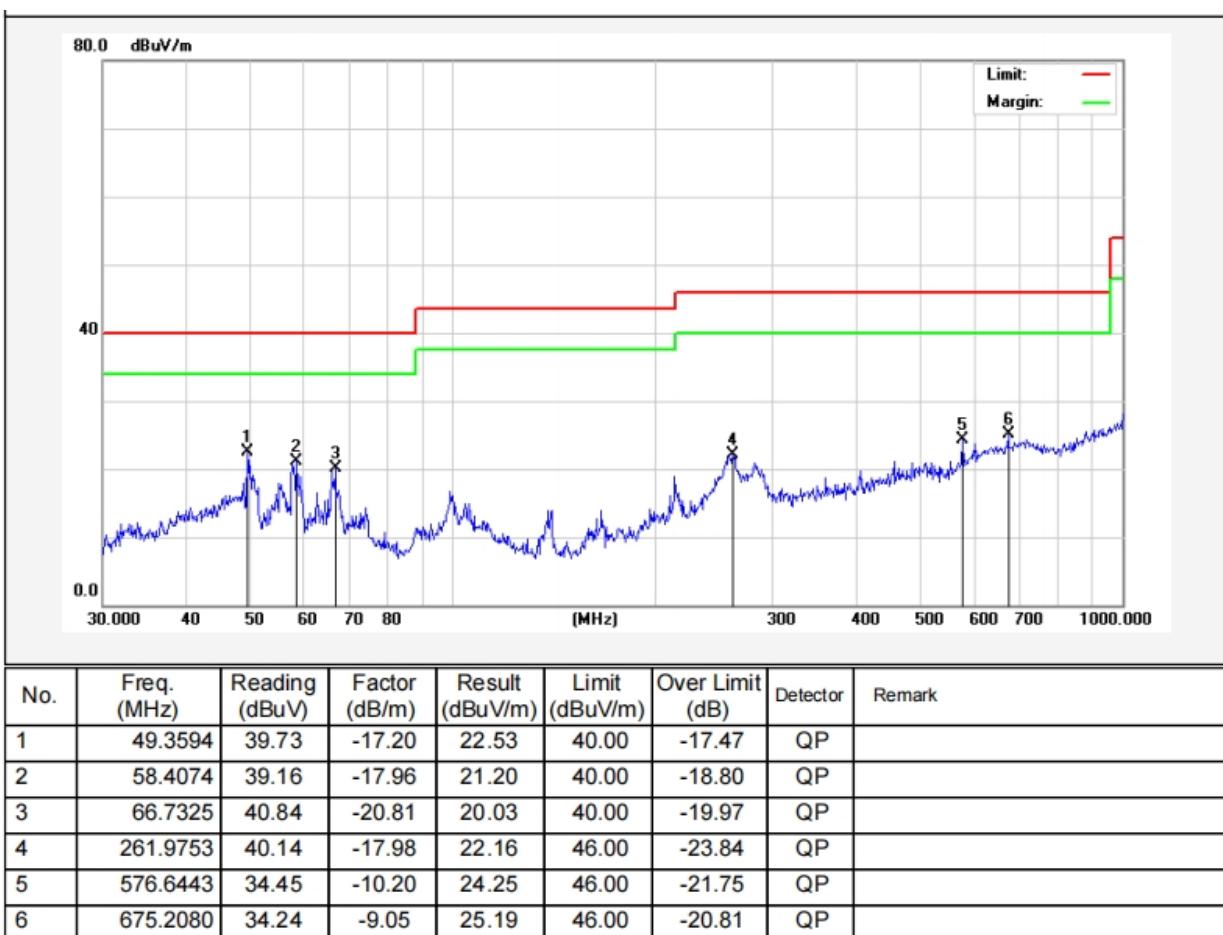
For average measurement:

-VBW=10Hz, When duty cycle is no less than 98 percent

- $VBW \geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clause 5.4 duty cycle.

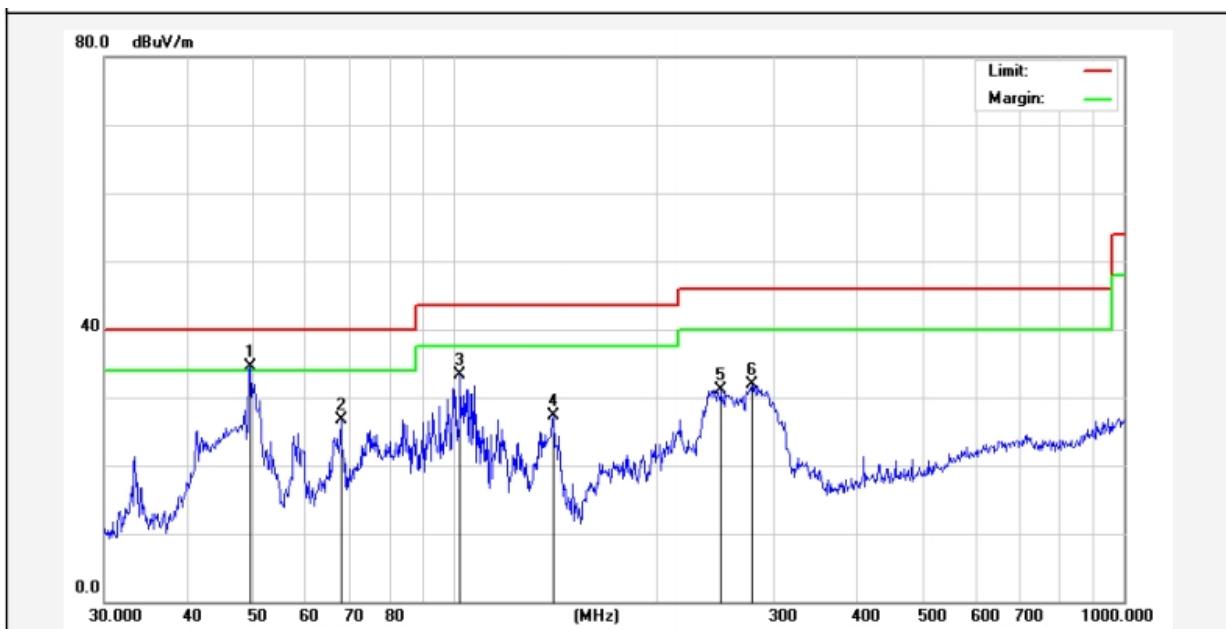
4.4. Test Data

PASS


During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

During the test, pre-scan all modes, only the worst case is recorded in the report.


Test Results (30~1000MHz)

Test Mode: 802.11b 2462MHz
 Power Source: DC 24V from adapter input AC 120V/60Hz
 Polarization: Horizontal
 Temp.(°C)/Hum.(%RH): 22.5°C/55%RH

Test Results (30~1000MHz)

Test Mode: 802.11b 2462MHz
 Power Source: DC 24V from adapter input AC 120V/60Hz
 Polarization: Vertical
 Temp.(°C)/Hum.(%RH): 22.5°C/55%RH

No.	Freq. (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Detector	Remark
1	49.5328	51.70	-17.22	34.48	40.00	-5.52	QP	
2	67.6751	48.02	-21.26	26.76	40.00	-13.24	QP	
3	102.0014	51.96	-18.67	33.29	43.50	-10.21	QP	
4	140.3420	50.20	-22.85	27.35	43.50	-16.15	QP	
5	250.3011	49.40	-18.34	31.06	46.00	-14.94	QP	
6	278.0668	49.28	-17.43	31.85	46.00	-14.15	QP	

Note:

Result(dB μ V/m) = Reading(dB μ V) + Factor(dB/m);
 Over Limit(dB) = Result(dB μ V/m) - Limit(dB μ V/m)

Test Results (Above 1000MHz)

Test Mode: 802.11b Mode			Test channel: Lowest			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.13	15.31	44.44	74.00	-29.56	Vertical
7236.00	30.54	18.06	48.60	74.00	-25.40	Vertical
9648.00	30.73	23.77	54.50	74.00	-19.50	Vertical
12060.00	*			74.00		Vertical
14472.00	*			74.00		Vertical
4824.00	28.50	15.31	43.81	74.00	-30.19	Horizontal
7236.00	31.06	18.06	49.12	74.00	-24.88	Horizontal
9648.00	28.49	23.77	52.26	74.00	-21.74	Horizontal
12060.00	*			74.00		Horizontal
14472.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	21.15	15.31	36.46	54.00	-17.54	Vertical
7236.00	22.32	18.06	40.38	54.00	-13.62	Vertical
9648.00	22.63	23.77	46.40	54.00	-7.60	Vertical
12060.00	*			54.00		Vertical
14472.00	*			54.00		Vertical
4824.00	21.01	15.31	36.32	54.00	-17.68	Horizontal
7236.00	23.63	18.06	41.69	54.00	-12.31	Horizontal
9648.00	20.23	23.77	44.00	54.00	-10.00	Horizontal
12060.00	*			54.00		Horizontal
14472.00	*			54.00		Horizontal

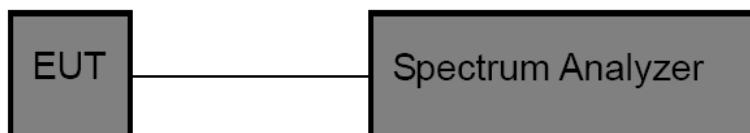
Test Results (Above 1000MHz)

Test Mode: 802.11b Mode			Test channel: Middle			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.08	15.41	44.49	74.00	-29.51	Vertical
7311.00	28.89	18.01	46.90	74.00	-27.10	Vertical
9748.00	30.67	23.79	54.46	74.00	-19.54	Vertical
12185.00	*			74.00		Vertical
14622.00	*			74.00		Vertical
4874.00	28.30	15.41	43.71	74.00	-30.29	Horizontal
7311.00	29.98	18.01	47.99	74.00	-26.01	Horizontal
9748.00	28.79	23.79	52.58	74.00	-21.42	Horizontal
12185.00	*			74.00		Horizontal
14622.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	19.90	15.41	35.31	54.00	-18.69	Vertical
7311.00	19.79	18.01	37.80	54.00	-16.20	Vertical
9748.00	20.92	23.79	44.71	54.00	-9.29	Vertical
12185.00	*			54.00		Vertical
14622.00	*			54.00		Vertical
4874.00	19.40	15.41	34.81	54.00	-19.19	Horizontal
7311.00	20.06	18.01	38.07	54.00	-15.93	Horizontal
9748.00	19.50	23.79	43.29	54.00	-10.71	Horizontal
12185.00	*			54.00		Horizontal
14622.00	*			54.00		Horizontal

Test Results (Above 1000MHz)

Test Mode: 802.11b Mode			Test channel: Highest			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	28.94	15.51	44.45	74.00	-29.55	Vertical
7386.00	28.83	17.97	46.80	74.00	-27.20	Vertical
9848.00	30.11	23.82	53.93	74.00	-20.07	Vertical
12310.00	*			74.00		Vertical
14772.00	*			74.00		Vertical
4924.00	28.96	15.51	44.47	74.00	-29.53	Horizontal
7386.00	30.33	17.97	48.30	74.00	-25.70	Horizontal
9848.00	29.29	23.82	53.11	74.00	-20.89	Horizontal
12310.00	*			74.00		Horizontal
14772.00	*			74.00		Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	19.73	15.51	35.24	54.00	-18.76	Vertical
7386.00	19.23	17.97	37.20	54.00	-16.80	Vertical
9848.00	21.36	23.82	45.18	54.00	-8.82	Vertical
12310.00	*			54.00		Vertical
14772.00	*			54.00		Vertical
4924.00	19.21	15.51	34.72	54.00	-19.28	Horizontal
7386.00	20.44	17.97	38.41	54.00	-15.59	Horizontal
9848.00	19.73	23.82	43.55	54.00	-10.45	Horizontal
12310.00	*			54.00		Horizontal
14772.00	*			54.00		Horizontal

Remark:


1. During the test, pre-scan the 802.11b,g,n(HT20) mode, and found the 802.11b mode is worse case , the report only record this mode.
2. Result=Reading + Factor
3. “*” means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

5. Maximum Conducted Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (b)(3)
Test Limit	1W (30dBm)

5.2. Test Setup

5.3. Test Procedure

1. Measure the duty cycle D of the transmitter output signal.
2. Set span to at least 1.5 times the OBW.
3. Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
4. Set VBW $\geq [3 \times \text{RBW}]$.
5. Number of points in sweep $\geq [2 \times \text{span} / \text{RBW}]$.
6. Sweep time = auto.
7. Detector = RMS
8. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
10. Add $[10 \log (1 / D)]$, where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.4. Test Data

Pass.

TestMode	Antenna	Frequency[MHz]	Average Output Power[dBm]	Conducted Limit[dBm]
11B	Ant1	2412	12.72	≤30.00
		2437	12.93	≤30.00
		2462	13.17	≤30.00
11G	Ant1	2412	12.45	≤30.00
		2437	12.59	≤30.00
		2462	12.83	≤30.00
11N20SISO	Ant1	2412	12.26	≤30.00
		2437	12.58	≤30.00
		2462	12.68	≤30.00

Note: For pre-scan, the result is equal to original, so the original data is referenced.

horatory limit

6. Antenna Requirement

6.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	<p>1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.</p> <p>2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.</p>

6.2. Antenna Connected Construction

The antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 1.54dBi It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----