

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuh Street, Bao'an District, Shenzhen, China

RF Exposure MPE

Report Reference No...... CTA25031800204

FCC ID.....: 2A7KU-SA3

Compiled by

(position+printed name+signature) .: File administrators Joan Wu

Supervised by

(position+printed name+signature) .: Project Engineer Zoey Cao

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Mar. 28, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Address...... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shen zhen jian pai mao yi you xian gong si

Room 404, De Zhong Dian Shang Chan Ye Yuan, Ban Tian, Long

Gang, Shenzhen, China

47CFR §1.1310

Standard 47CFR §2.1091

KDB447498 D01 General RF Exposure Guidance v06

CTATES

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purpses as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Weather Station

Manufacturer Shen zhen jian pai mao yi you xian gong si

Trade Mark N/A

Model/Type reference SA3

Rating DC 4.5V From battery

Result PASS

Shenzhen CTA Testing Technology Co., Ltd.

Report No.: CTA25031800204 Page 2 of 10

TEST REPORT

TEST

Equipment under Test : Weather Station

Model /Type : SA3

Listed Models : N/A

Applicant : Shen zhen jian pai mao yi you xian gong si

Address : Room 404, De Zhong Dian Shang Chan Ye Yuan, Ban Tian, Long

Gang, Shenzhen, China

Manufacturer : Shen zhen jian pai mao yi you xian gong si

Address : Room 404, De Zhong Dian Shang Chan Ye Yuan, Ban Tian, Long

Gang, Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

				. ago o oo
		Contents TEST STANDARDS		
		Contents		
	<u>1</u>	TEST STANDARDS		4_
	<u>2</u>	SUMMARY		5
	_		CIL	
	2.1	General Remarks		5 5 CTATE
	2.2	Product Description		5 5
	2.3	Special Accessories		6
	2.4	Modifications		6
TES!				
CTA	<u>3</u>	TEST ENVIRONMENT		7
	<u>5</u>	ILSI ENVIKONWENI		<u> </u>
		OLON CTATAL		_
	3.1	Address of the test laboratory Test Facility		7
	3.2			7 7
	3.3	Statement of the measurement uncertainty		STING
	<u>4</u>	TEST LIMIT	Tan to	8
	4.1	Requirement		8
	4.2	MPE Calculation Method		8
	4.3	Conducted Power Results		8
	4.4	Manufacturing tolerance		9
	4.5	Standalone MPE Result		9
	4.6	Simultaneous Transmission for MPE Result		10
		CTA		
	<u>5</u>	CONCLUSION	755111	10
		CAN (CTA	
			0.	
				CTATE!

Report No.: CTA25031800204 Page 4 of 10

1 TEST STANDARDS

The tests were performed according to following standards:

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device, RF Exposure, Equipment Authorization Procedures.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices

Report No.: CTA25031800204 Page 5 of 10

SUMMARY

General Remarks

C ,,			
2.1 General Remarks		ATE	
Date of receipt of test sample		Mar. 18, 2025	TESTIL
Testing commenced on	:	Mar. 18, 2025	CTA
Testing concluded on	:	Mar. 28, 2025	

2.2 Product Description

CTATESTING

Product Description:	Weather Station
Model/Type reference:	SA3
Power supply:	DC 4.5V From battery
Hardware version:	V1.0
Software version:	V1.0
Tooting cample ID:	CTA250318002-1# (Engineer sample)
Testing sample ID:	CTA250318002-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	3.57 dBi
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	3.57 dBi
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/ 802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7
Channel separation:	5MHz

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Report No.: CTA25031800204 Page 6 of 10

Antenna type:	PCB antenna		
Antenna gain:	3.57 dBi		

2.3 Special Accessories

The following is the EUT test of the auxiliary equipment provided by the laboratory:

	Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by	TE
Ī	/	/	/	1	/	1	CAL
0						-	100 martiness

2.4 Modifications

No modifications were implemented to meet testing criteria.

Report No.: CTA25031800204 Page 7 of 10

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	TING
Radiated Emission	18-40GHz	5.38 dB	(1)	ES!
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	
Output Peak power	30MHz~18GHz	0.55 dB	(1)	
Power spectral density	/	0.57 dB	(1)	
Spectrum bandwidth	/	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	
GW.	G	CTATEST		

Page 8 of 10 Report No.: CTA25031800204

Test limit

4.1 Requirement

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

					7.0	_
	Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm²)	Averaging Time (minute)	TATES
		Limits for Occ	cupational/Contro	lled Exposure		of Carlo
CTATESTING	0.3 - 3.0 3.0 - 30 30 - 300 300 - 1500 1500 - 100,000	614 1842/f 61.4 /	1.63 4.89/f 0.163 /	(100) * (900/f²)* 1.0 f/300 5	6 6 6 6	

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm²)	Averaging Time (minute)			
	Limits for Occ	cupational/Control	led Exposure	The state of the s			
0.3 - 3.0 3.0 - 30 30 - 300 300 - 1500 1500 - 100,000	614 824/f 27.5 /	1.63 2.19/f 0.073 /	(100) * (180/f ²)* 0.2 f/1500 1.0	30 30 30 30 30			
F=frequency in MHz *=Plane-wave equivalent power density							

F=frequency in MHz

4.2 MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density P=power input to antenna

CTA TESTING G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

Conducted Power Results

Туре	Channel	Output power (dBm)
TATE	00 NG	-1.78
GFSK 1Mbps	19	-3.68
	39	-3.47

Type Chann	el Output power (dBm)
------------	-----------------------

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

^{*=}Plane-wave equivalent power density

CTATES

Report No.: CTA25031800204

	STING	00	-2.26
	GFSK	39	-0.60
	, , ,	78	-0.25
		00	-3.22
	π/4DQPSK	39	-1.53
		78	-1.11
		00	-2.59
	8DPSK	39	-0.94
CTATESTING		78	-0.55
C	TESTI	N	
<u>'</u>			

			_
Туре	Channel	Output power PK (dBm)	STING
	01	14.67	5711
802.11b	06	13.82	
	11	14.23	
a)G	01	13.33	
802.11g	06	12.93	
802.11g	11 _{CIN} G	12.87	
	01	13.16	
802.11n(HT20)	06	12.69	
	11	12.64	40
	03	12.63	CTATES
802.11n(HT40)	06	12.15	CTATES
7	09	13.47	The second secon
l .			

Manufacturing tolerance

4.4	Manufacturing	g tolerance	TESTING		
	Mode	Max. Peak Conducted Output Power (dBm)	Max. tune-up		
	ВТ	-0.25	0.0±1		
	BLE	-1.78	-1.0±1		
	2.4GWIF	14.67	14.0±1		

4.5 Standalone MPE Result

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r = 20cm, as well as the gain of the used antenna is refer to section 2.2, the RF power density can be obtained.

Report No.: CTA25031800204 Page 10 of 10

	Modulation Type	Output power		Antenna	Antenna	MPE	MPE				
		dBm	mW	Gain	Gain	(mW/cm ²)	Limits				
				(dBi)	(linear)		(mW/cm ²)				
	ВТ	1.0	1.2589	3.57	2.2751	0.0006	1.0000				
	BLE	0.0	1.0000	3.57	2.2751	0.0005	1.0000				
	2.4GWIFI	15.0	31.6228	3.57	2.2751	0.0143	1.0000				

Remark:

- 1. Output power (Peak) including turn-up tolerance;
- שות שות שות שות שות user manual provide by manufacturer.

 שות שות wulder in the same time, but only with interleaving of pactive at the same time, but only with interleaving of pactive at they cannot transmit at the same time.

 4.6 Simultaneous Terms 3. BT and WLAN can be active at the same time, but only with interleaving of packages

N/A

5 Conclusion

ed ESTING The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device Threshold per KDB 447498 D01v06