#### IDO-EVB3020 DEMO BOARD

### specification



#### IDO-EVB3020

Smart motherboard specification

Shenzhen tactile Intelligent Technology Co., Ltd

www.industio. cn

#### Document revision history

| edition | Revision:        | revise | to examine | date       |
|---------|------------------|--------|------------|------------|
| V1. 0   | create documents |        |            | 2022/03/21 |
|         |                  |        |            |            |
|         |                  |        |            |            |
|         |                  |        |            |            |
|         |                  |        |            |            |

#### 1. Product overview

#### 1.1 Product Overview

Ido-evb3020 intelligent motherboard, equipped with Ruixin micro px30 / px30k (arm cortex-a35) quad core 64 bit CPU, equipped with Android / Linux system, with a main frequency of 1.5GHz. At the same time, the new generation and powerful GPU (mali-g31) embedded in the chip support dvalin-2ee, OpenGL Es11 / 2.0/3.2, Vulkan 1.0, OpenCL 2.0, embedded high-performance 2D hardware acceleration. Support 1080p 60fps video decoding in vc-1, h265 / h264, MPEG-1 / 2 / 4, VP8 and other multi formats.

Ido-evb3020 intelligent motherboard has strong multi-threaded computing ability, image and video decoding ability, and supports Android (7.1 and above), Ubuntu and Debian systems. It can be applied to industrial control, commercial display, advertising all-in-one machine, medical and health equipment, intelligent POS, face recognition terminal, Internet of things, smart city and other fields.

#### 1.2 product features

4-lane mipi-dsi, support to1080P@60Hz

- LVDS, support to 1080P@60HzLarge screen
- •1 independent Ethernet port
- WiFi wireless communication
- Onboard 6-way USB20
- •1-way can and 6-way serial port (RS232 / RS485)

### 1.3 product appearance and size

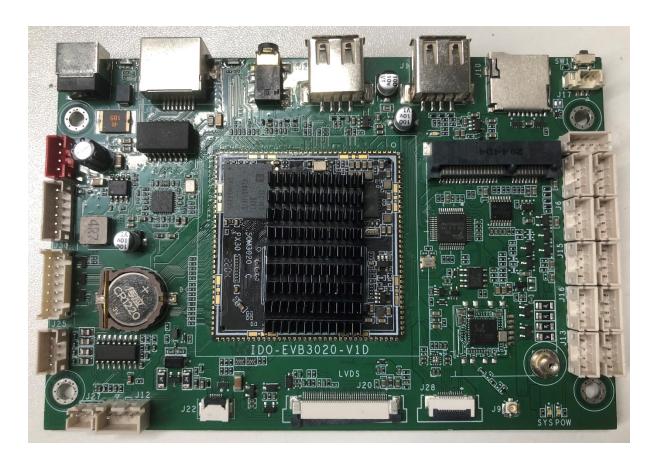



Figure 1Ido-evb3020-v1 front interface diagram



Figure 2Ido-evb3020-v1 reverse interface diagram

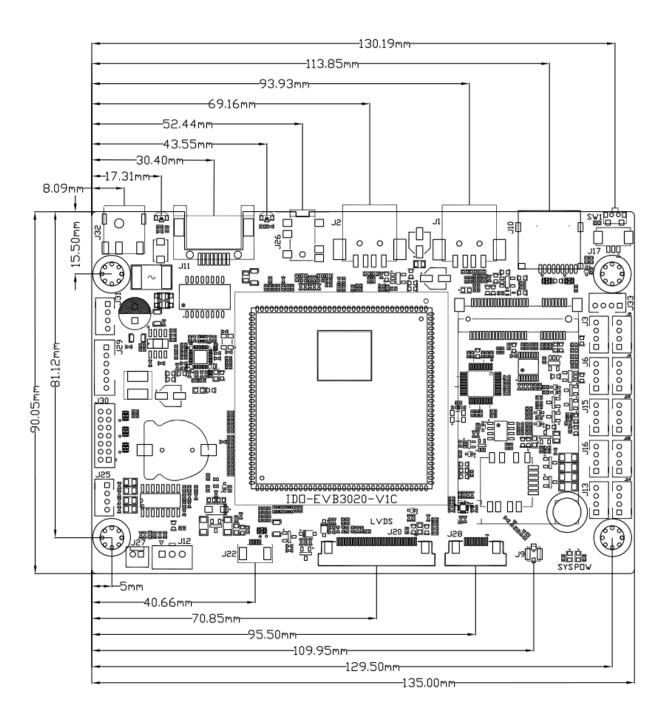
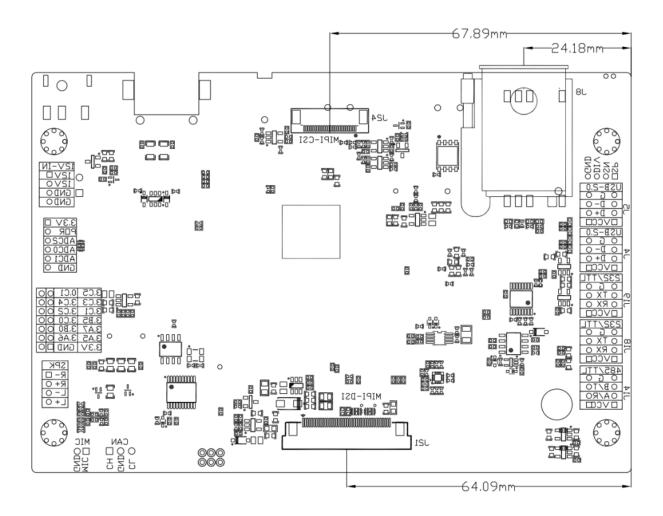
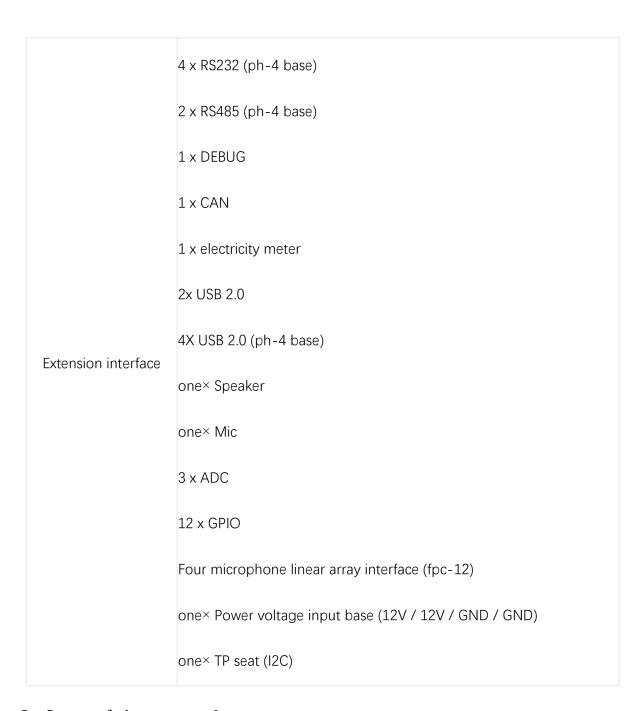



Figure 3Ido-evb3020-v1 front dimension drawing





Figure 4Ido-evb3020-v1 back dimension drawing

### 2. Technical parameters

#### 2.1 hardware parameters

| Basic parameters |                                                            |  |  |  |
|------------------|------------------------------------------------------------|--|--|--|
| SOC              | RockChip PX30                                              |  |  |  |
| CPU              | ARM® Cortex-a35 quad core processor, main frequency 1.5GHz |  |  |  |
| GPU              | Dvalin-2EE                                                 |  |  |  |

|                   | OpenGL ES1. 1/2.0/3.2, Vulkan 1.0, OpenCL 2.0                                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | High performance 2D hardware acceleration                                                                                                                |
| VPU               | Support 1080p 60fps MPEG-4, H.264, h.265/hevc, VP8, vc-1 video decoding Support 1080p 30fps H.264 video coding                                           |
| Memory            | DDR4 (1GB / 2GB optional)                                                                                                                                |
| storage           | 8GB / 16GB / 32GB / 64GB eMMC                                                                                                                            |
| ű                 | one× TF card slot X1 (can support TF card expansion)                                                                                                     |
|                   | Hardware parameters                                                                                                                                      |
| Ethernet          | 1-way adaptive 10 / 100Mbps Ethernet                                                                                                                     |
| wireless network  | Support single frequency 2.4G WiFi                                                                                                                       |
| Display interface | one× Mipi-dsi, support 1920*1080@60fpsoutput one× Single LVDS, support 1366*768@60fpsOutput (multiplexed with mipi-dsi)                                  |
| camera            | one× 4-Lane MIPI-CSI                                                                                                                                     |
| RTC               | Independent RTC clock chip, 1220 button battery, easy maintenance                                                                                        |
| audio interface   | <ul><li>1 x headphone output</li><li>1 x microphone on-board audio input</li><li>1 x left and right speaker speaker output, support4ohm@3Whorn</li></ul> |



#### 2.2 working environment

| work environment     |                           |  |  |  |
|----------------------|---------------------------|--|--|--|
| working temperature  | 0°C ~ 70°C                |  |  |  |
| Working humidity     | 5 ~ 90% RH non condensing |  |  |  |
| Storage temperature: | -40°C ~ 85°C              |  |  |  |

#### 2.3 system support

| Serial number | operating system | support | explain |
|---------------|------------------|---------|---------|
| 1             | Android8. one    | • •     |         |
| 2             | Debian9          | • •     |         |
| 3             | Ubuntu20 base    | • •     |         |
| 4             | Buildroot        | • •     |         |

#### 3. Main interface definition

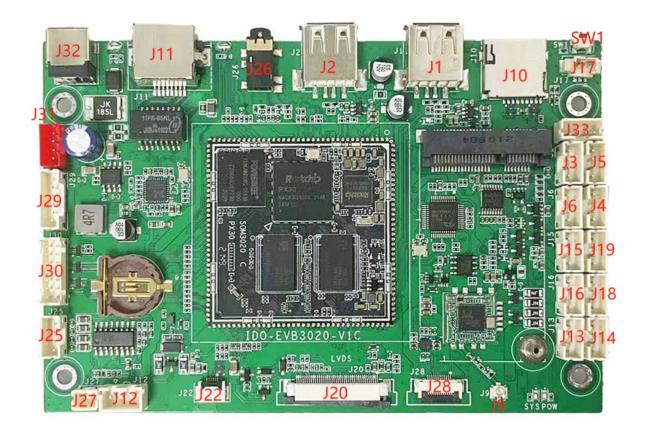



Figure 5Ido-evb3020-v1 front interface tag number diagram

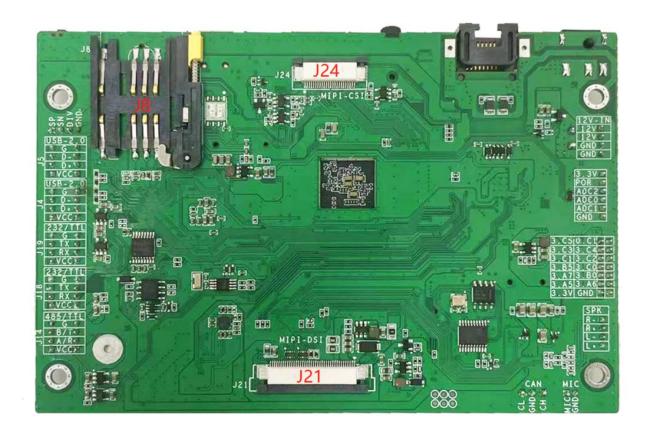



Figure 6ldo-evb3020-v1 reverse interface tag number diagram

#### 3.1 power interface

Rated voltage of main board: 12V.

Current requirement: > = 2A.

Note: the main board can adapt to the power supply voltage range: 9v-24v.

The main board provides two power supply methods.

- 1. 1.Connect the power adapter through J32 dc005 seat (inner diameter 2.1mm, outer diameter 5.5mm).
- 2. 2.Through J31 red pH20-4p seats.

J31 red pH20-4p base pin definition description



| Serial number | definition | Level / V | explain          |
|---------------|------------|-----------|------------------|
| 1             | 12V_IN     | 12V       | Power supply 12V |
| 2             | 12V_IN     | 12V       | input            |
| 3             | GND        | GND       |                  |
| 4             | GND        | GND       | Power ground     |

#### 3.2 serial port

- 1. 1.The evb3020 motherboard expands 6 serial ports in total (excluding debugging serial ports).
- 2. 2.6-channel serial port through 6 pH20-4p straight socket outlet.
- 3. 3.The default configuration of the 6-channel serial port is: 4-channel RS232 (j15, j16, J18 and J19) and 2-channel RS485 (j13 and J14).
- 4. 4.6-channel serial port can be customized and configured. The combination includes:
  - o o4 x RS232 + 2 x RS485 [default configuration]
  - o o4 x UART + 2 x RS485
  - o o2 x UART + 2 x RS232 + 2 x RS485

- o o2 x UART + 4 x RS232
- o o6 x UART

Detailed description of pin definition of serial port base (j13 / J14 / j15 / j16 / J18 / J19)



| Seat | Serial<br>number | definition        | Level / V | explain                                                                                                                                                             |
|------|------------------|-------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1                | VCC               | 5V        | Power supply 5V output                                                                                                                                              |
|      |                  | UART2_RXD_M1      | 3.3V      | 1. 1.UART2_M1 is configured as                                                                                                                                      |
|      | 2                | RS485-A (default) | /         | debug serial port by default  2. 2.UART2_When M1 is configured as                                                                                                   |
|      |                  | UART2_TXD_M1      | 3.3V      | a normal serial port, the                                                                                                                                           |
| J13  | 3                | RS485-B (default) | /         | corresponding device node is / dev / ttys2  3. 3.The default is RS485 level, and the UART TTL 3.3V level can be changed  4. 4.RS485 supports to 115200bps baud rate |
|      | 4                | GND               | GND       | Power ground                                                                                                                                                        |

|     | 1 | VCC                | 5V   | Power supply 5V output                                                                                        |
|-----|---|--------------------|------|---------------------------------------------------------------------------------------------------------------|
|     |   | UART3_RXD_M1       | 1.8V | 1. 1.UART3_M1 corresponds to the /                                                                            |
|     | 2 | RS485-A (default)  | /    | dev / ttys3 node  2. 2.The default is RS485 level, and the                                                    |
| J14 |   | UART3_TXD_M1       | 1.8V | UART TTL 1.8V level can be                                                                                    |
|     | 3 | RS485-B (default)  | /    | changed  3. 3.RS485 supports to 115200bps baud rate                                                           |
|     | 4 | GND                | GND  | Power ground                                                                                                  |
|     |   |                    |      |                                                                                                               |
|     | 1 | VCC                | 5V   | Power supply 5V output                                                                                        |
|     | 2 | UART1_RXD          | 3.3V | 1. 1.Uart1 corresponds to the / dev /                                                                         |
|     | 2 | RS232-RX (default) | /    | ttys1 node  2. 2.The default is RS232 level, and the                                                          |
| J15 |   | UART1_TXD          | 3.3V | UART TTL 3.3V level can be                                                                                    |
|     | 3 | RS232-TX (default) | /    | <ul><li>changed</li><li>3. 3.115200bps baud rate</li><li>4. 4.RS232 supports to 115200bps baud rate</li></ul> |
|     | 4 | GND                | GND  | Power ground                                                                                                  |

|      | 1 | VCC                | 5V   | Power supply 5V output                                                                         |
|------|---|--------------------|------|------------------------------------------------------------------------------------------------|
|      | 0 | UART5_RXD          | 3.3V | 1. 1.Uart5 corresponds to the / dev /                                                          |
|      | 2 | RS232-RX (default) | /    | ttys5 node                                                                                     |
| 11.0 |   | UART5_TXD          | 3.3V | <ol> <li>2. The default is RS232 level, and the</li> <li>UART TTL 3.3V level can be</li> </ol> |
| J16  | 3 | RS232-TX (default) | /    | changed  3. 3.115200bps baud rate  4. 4.RS232 supports to 115200bps baud rate                  |
|      | 4 | GND                | GND  | Power ground                                                                                   |
|      |   |                    |      |                                                                                                |
|      | 1 | VCC                | 5V   | Power supply 5V output                                                                         |
|      |   | UART4_RXD          | 3.3V | 1. 1.Uart4 corresponds to / dev / ttys4                                                        |
|      | 2 | RS232-RX (default) | /    | node  2. 2.The default is RS232 level, and the                                                 |
| J18  |   | UART4_TXD          | 3.3V | UART TTL 3.3V level can be                                                                     |
|      | 3 | RS232-TX (default) | /    | changed  3. 3.115200bps baud rate  4. 4.RS232 supports to 115200bps baud rate                  |

|     | 4 | GND                | GND  | Power ground                                                                                                  |
|-----|---|--------------------|------|---------------------------------------------------------------------------------------------------------------|
|     |   |                    |      |                                                                                                               |
|     | 1 | VCC                | 5V   | Power supply 5V output                                                                                        |
|     | 2 | UART0_RXD          | 3.3V | 1. 1.UARTO corresponds to the / dev /                                                                         |
|     | 2 | RS232-RX (default) | /    | ttys0 node  2. 2.The default is RS232 level, and the                                                          |
| J19 |   | UARTO_TXD          | 3.3V | UART TTL 3.3V level can be                                                                                    |
| 310 | 3 | RS232-TX (default) | /    | <ul><li>changed</li><li>3. 3.115200bps baud rate</li><li>4. 4.RS232 supports to 115200bps baud rate</li></ul> |
|     | 4 | GND                | GND  | Power ground                                                                                                  |

### 3.3 can interface (j12 ph2.54-3p in-line white)

- 1. 1.Support 1-way can bus.
- 2. 2.Support can20b protocol, up to 1Mbps.



| 1 | CAN_H | /   | CAN0         |
|---|-------|-----|--------------|
| 2 | GND   | GND | Power ground |
| 3 | CAN_L | /   | CAN0         |

## 3.4 electricity meter interface (j33 ph2.0-4p in-line white)



| Serial number | definition | Level / V | explain                                                        |
|---------------|------------|-----------|----------------------------------------------------------------|
| 1             | SNSP       | /         | Battery negative electrode sampling resistance terminal signal |
| 2             | SNSN       | /         | Battery negative electrode sampling resistance terminal signal |
| 3             | BATDIV     | /         | Battery voltage dividing input                                 |
| 4             | GND        | GND       | Power ground                                                   |

#### 3.5 Ethernet interface (j11)

Provide one 10 / 100Mbps adaptive Ethernet interface.

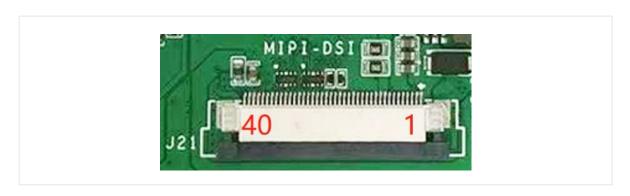


Figure 7Ido-evb3020 RJ45 interface

#### 3.6 LVDS/MIPI-DSI

- 1. 1.Support 1-way LVDS / mipi-dsi, 4-lane, support1080P@60HZ
- 2. 2.Mipi-dsi and LVDS share the same Mipi signal, and only one of them can be used at the same time.
- 3. 3.Mipi-dsi and LVDS share the same PWM backlight resource (pwm0 pin).
- 4. 4. The backlight current can be adjusted by changing the material. The default is 100mA.
- 5. 5.Mipi screen interface default screen model specification:

## 3.6.1 LVDS interface (J20 40pin FPC 0.5mm pull-out connection)




| Serial number | definition  | Level / V | explain               |
|---------------|-------------|-----------|-----------------------|
| 1             | VCOM        | 3.55V     |                       |
| 2             | LCD_VDD     | 3.3V      | Screen 3.3V power     |
| 3             | LCD_VDD     | 3.3V      | supply                |
| 4             | NC          | /         | In the air            |
| 5             | Panel RESET | /         | Reset signal          |
| 6             | STBYB       | /         |                       |
| 7             | GND         | GND       | Power ground          |
| 8             | MIPI_TDN0_  | /         | MIDL Tdp0 signal pair |
| 9             | MIPI_TDP0_  | /         | MIPI_Tdn0 signal pair |
| 10            | GND         | GND       | Power ground          |
| 11            | MIPI_TDN1_  | /         | MIPI_Tdn1 signal pair |

| 12 | MIPI_TDP1_ | /   |                       |
|----|------------|-----|-----------------------|
| 13 | GND        | GND | Power ground          |
| 14 | MIPI_TDN2_ | /   |                       |
| 15 | MIPI_TDP2_ | /   | MIPI_Tdn2 signal pair |
| 16 | GND        | GND | Power ground          |
| 17 | MIPI_TCN   | /   | MIDL TC signal pair   |
| 18 | MIPI_TCP   | /   | MIPI_TC signal pair   |
| 19 | GND        | GND | Power ground          |
| 20 | MIPI_TDN3_ | /   | MIDI Tdp2 signal pair |
| 21 | MIPI_TDP3_ | /   | MIPI_Tdn3 signal pair |
| 22 | GND        | GND | Power ground          |
| 23 | NC         | /   | lo the eig            |
| 24 | NC         | /   | In the air            |
| 25 | GND        | GND | Power ground          |
| 26 | NC         | /   | le de sis             |
| 27 | NC         | /   | In the air            |
| 28 | 6_8BSEL    | /   |                       |

| 29 | LCD_AVDD | 10.6V |                |
|----|----------|-------|----------------|
| 30 | GND      | GND   | Power ground   |
| 31 | V_LED-   | /     | LVDC backlight |
| 32 | V_LED-   | /     | LVDS backlight |
| 33 | SHLR     | /     |                |
| 34 | UPDN     | /     |                |
| 35 | VGL      | -7.5V |                |
| 36 | NC       | /     | In the air     |
| 37 | NC       | /     | iii tile ali   |
| 38 | VGH      | 16V   |                |
| 39 | V_LED+   | /     | LVDS backlight |
| 40 | V_LED+   | /     |                |

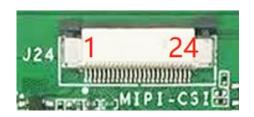
## 3.6.2 mipi-dsi interface (J21 40pin FPC 0.5mm pull-out connection)



| Serial number | definition | Level / V | explain        |
|---------------|------------|-----------|----------------|
| 1             | V_LED+     | /         |                |
| 2             | V_LED+     | /         | Mipi backlight |
| 3             | NC         | /         |                |
| 4             | NC         | /         |                |
| 5             | NC         | /         | NG             |
| 6             | NC         | /         | NC             |
| 7             | NC         | /         |                |
| 8             | NC         | /         |                |
| 9             | V_LED-     | /         | A.C. 11. 11. 1 |
| 10            | V_LED-     | /         | Mipi backlight |
| 11            | GND        | GND       | Power ground   |
| 12            | NC         | /         |                |
| 13            | NC         | /         | NC             |
| 14            | NC         | /         |                |
| 15            | NC         | /         |                |
| 16            | GND        | GND       | Power ground   |

| 17 | NC         | /   | No                    |
|----|------------|-----|-----------------------|
| 18 | NC         | /   | NC                    |
| 19 | GND        | GND | Power ground          |
| 20 | MIPI_TDP3_ | /   | MIDLT IO              |
| 21 | MIPI_TDN3_ | /   | MIPI_Td3 signal pair  |
| 22 | GND        | GND | Power ground          |
| 23 | MIPI_TDP2_ | /   | MIDL TD2 signal radio |
| 24 | MIPI_TDN2_ | /   | MIPI_TD2 signal pair  |
| 25 | GND        | GND | Power ground          |
| 26 | MIPI_TCP_  | /   | MIDL TC signal pair   |
| 27 | MIPI_TCN_  | /   | MIPI_TC signal pair   |
| 28 | GND        | GND | Power ground          |
| 29 | MIPI_TDP1_ | /   | MIDL TD1 signal pair  |
| 30 | MIPI_TDN1_ | /   | MIPI_TD1 signal pair  |
| 31 | GND        | GND | Power ground          |
| 32 | MIPI_TDP0_ | /   | MIPI_Td0 signal pair  |
| 33 | MIPI_TDN0_ | /   |                       |

| 34 | GND         | GND  | Power ground      |
|----|-------------|------|-------------------|
| 35 | NC          | /    | NC                |
| 36 | Panel RESET | /    | Reset signal      |
| 37 | GND         | GND  | Power ground      |
| 38 | LCD_VDD     | 3.3V | Screen 3.3V power |
| 39 | LCD_VDD     | 3.3V | supply            |
| 40 | NC          | /    | NC                |


# 3.7 TP interface (J22 6pin FPC 0.5mm front plug-in and rear press up)



| Serial number | definition | Level / V | explain             |
|---------------|------------|-----------|---------------------|
| 1             | GND        | GND       | Power ground        |
| 2             | TP_SDA     | 3.0V      | 19C hara signal     |
| 3             | TP_SCL     | 3.0V      | I2C bus signal      |
| 4             | TP_INT     | 3.0V      | TP interrupt signal |

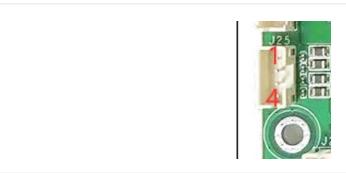
| 5 | TP_RST | 3.0V | TP reset signal        |
|---|--------|------|------------------------|
| 6 | TP_3V0 | 3.0V | 3V output power supply |

## 3.8 camera interface (J24 24pin FPC 0.5mm pull-out connection)



| Serial number | definition | Level / V | explain                          |
|---------------|------------|-----------|----------------------------------|
| 1             | VCC2V8_DVP | 2.8V      | 2.8V power output                |
| 2             | VCC2V8_DVP | 2.8V      | 2.8V power output                |
| 3             | VCC1V5_DVP | 1.5V      | 1.5V power output                |
| 4             | VCC1V8_DVP | 1.8V      | 1.8V power output                |
| 5             | CIF_RST    | 1.8V      | CIF reset signal, low valid      |
| 6             | CIF_PDN0   | 1.8V      | CIF enable signal, low effective |
| 7             | SCL_CAM    | 1.8V      | I2C bus signal                   |

| 8  | SDA_CAM       | 1.8V |                          |
|----|---------------|------|--------------------------|
| 9  | CIF_CLKO      | 1.8V | CIF clock signal         |
| 10 | GND           | GND  | Power ground             |
| 11 | MIPI_CSI_D0N  | /    | MIDL CCL DO signal mair  |
| 12 | MIPI_CSI_D0P  | /    | MIPI_CSI_D0 signal pair  |
| 13 | GND           | GND  | Power ground             |
| 14 | MIPI_CSI_D1N  | /    | MIDL CCL D1 signal mair  |
| 15 | MIPI_CSI_D1P  | /    | MIPI_CSI_D1 signal pair  |
| 16 | GND           | GND  | Power ground             |
| 17 | MIPI_CSI_CLKN | /    | MIDLOCLOLIC Signal asia  |
| 18 | MIPI_CSI_CLKP | /    | MIPI_CSI_CLK signal pair |
| 19 | GND           | GND  | Power ground             |
| 20 | MIPI_CSI_D2N  | /    | MIDL CCL DO sissed usin  |
| 21 | MIPI_CSI_D2P  | /    | MIPI_CSI_D2 signal pair  |
| 22 | GND           | GND  | Power ground             |
| 23 | MIPI_CSI_D3N  | /    | MIDL CCL Do signa al mui |
| 24 | MIPI_CSI_D3P  | /    | MIPI_CSI_D3 signal pair  |
|    |               |      |                          |


# 3.9 mic array interface (J28 12Pin FPC 0.5mm flip down)



| Serial number | definition | Level / V | explain          |
|---------------|------------|-----------|------------------|
| 1             | MIC_N1     | /         |                  |
| 2             | MIC_P1     | /         | MIC1             |
| 3             | VCC_DMIC   | 3.0V      | Mic power supply |
| 4             | MIC_P2     | /         | MIC2             |
| 5             | MIC_N2     | /         | IVIICZ           |
| 6             | AGND       | AGND      | Simulatively     |
| 7             | MIC_N3     | /         | MIC3             |
| 8             | MIC_P3     | /         | IVIICS           |
| 9             | VCC_DMIC   | 3.0V      | Mic power supply |
| 10            | MIC_N4     | /         | MICA             |
| 11            | MIC_P4     | /         | MIC4             |
| 12            | AGND       | AGND      | Simulatively     |

#### 3.10 speaker (J25 ph2.0-4p in-line white)

Dual channel speaker interface, each channel supports 40hm 3W output



| Serial number | definition | Level / V | explain                 |
|---------------|------------|-----------|-------------------------|
| 1             | VORN       | /         | Right channel horn      |
| 2             | VORP       | /         | drive output            |
| 3             | VOLN       | /         | Left channel horn drive |
| 4             | VOLP       | /         | output                  |

#### 3.11 mic interface (j27 ph2.0-2p in-line white)



| 1 | MICIN1N | GND  | Microphone negative input |
|---|---------|------|---------------------------|
| 2 | MICIN1P | 3.3V | Microphone positive input |

.

#### 3.12 headphone interface (J26)

Support one-way otmp standard four section headphone stand.



Figure 8Ido-evb3020 headphone connector



Figure 9Schematic diagram of ido-evb3020 earphone

1

#### 3.13 TF Card Holder (J10)

TF card holder supports SD30, supporting high-speed SD card.



Figure 10Ido-evb3020 TF card interface

3.14 USB interface

Provide 6-way USB20 interface, 4 of which are pH20-4p in-line socket, the other 2 channels adopt standard USB type-A motherboard, each USB software independently controls the external power supply, and the external power supply capacity of each USB is5V@500mA.

## 3.14.1 USB2. 0 interface (J1 + J2 USB2.0 type-A female base white)

- Two standard USB20 type-A motherboard, which can support standard USB memory disk and other devices;
- • The system firmware passes the standard USB20 type-A base J1 burning.



Figure 11Ido-evb3020 USB interface

## 3.14.2 USB2. 0 interface (J3 + J4 + J5 + J6 ph2.0-4p straight plug white)



The main board connects four USB20 interface is extended through four 4-pin 2.0mm-apart wafer seats (J3, J4, J5, J6). Each seat provides5V@500mAPower supply capacity.

| Serial number | definition | Level / V | explain                |
|---------------|------------|-----------|------------------------|
| 1             | 5V         | 5V        | Power supply 5V output |
| 2             | USB-D-     | /         | LICD data cable        |
| 3             | USB_D+     | /         | USB data cable         |
| 4             | GND        | GND       | Power ground           |

ı

### 3.15 ADC expansion interface (j29 ph2.0-6p inline white)



| Serial number | definition  | Level / V | explain                            |
|---------------|-------------|-----------|------------------------------------|
| 1             | EXT_3V3     | 3.3V      | 3.3V output power supply           |
| 2             | RK809_PWRON | 1.8V      | Power button                       |
| 3             | SARADC_VIN2 | 1.8V      | ADC input, sampling range [0-1.8v] |
| 4             | SARADC_VIN0 | 1.8V      | ADC input, sampling range [0-1.8v] |
| 5             | SARADC_VIN1 | 1.8V      | ADC input, sampling range [0-1.8v] |
| 6             | GND         | GND       | Power ground                       |

ı

# 3.16 IO expansion interface (J30 ph2.0-2x7p direct plug 180 degrees)



| Serial number | definition | Level / V | explain                           |
|---------------|------------|-----------|-----------------------------------|
| 1             | EXT_3V3    | 3.3V      | Power supply: 3.3V output         |
| 2             | GND        | GND       | Power ground                      |
| 3             | GPIO3_A5_d | 3.3V      | The default configuration is GPIO |
| 4             | GPIO3_A6_d | 3.3V      | The default configuration is GPIO |
| 5             | GPIO3_A7_d | 3.3V      | The default configuration is GPIO |
| 6             | GPIO3_B0_d | 3.3V      | The default configuration is GPIO |
| 7             | GPIO3_B5_d | 3.3V      | The default configuration is GPIO |

| 8  | GPIO3_C0_d      | 3.3V | The default configuration is GPIO |
|----|-----------------|------|-----------------------------------|
| 9  | GPIO3_C1_d      | 3.3V | The default configuration is GPIO |
| 10 | GPIO3_C2_d      | 3.3V | The default configuration is GPIO |
| 11 | GPIO3_C3_d      | 3.3V | The default configuration is GPIO |
| 12 | GPIO3_C4_d      | 3.3V | The default configuration is GPIO |
| 13 | GPIO3_C5_d      | 3.3V | The default configuration is GPIO |
| 14 | PWM3/GPIO0_C1_d | 3.3V | The default configuration is GPIO |

# 3.17 RTC battery (rtc1 cr1220 chip battery holder)



The main board is reserved with an RTC battery interface, which uses a 1.25mm 2p socket. Ensure that the motherboard can operate normally for a long time in case of power failure.

| Serial number | definition | Level / V | explain                   |
|---------------|------------|-----------|---------------------------|
| 1             | RTC-3.3V   | 3.3V      | Power supply: 3.3V output |
| 2             | GND        | GND       | Power ground              |

# 3.18 debugging serial port (J17 1.25t 3P vertical paste)



| Serial number | definition  | Level / V | explain              |  |
|---------------|-------------|-----------|----------------------|--|
| 1             | UART2_RX_M0 | 3.3V      | Default 1.5mbps baud |  |
| 2             | UART2_TX_M0 | 3.3V      | rate                 |  |
| 3             | GND         | GND       | Power ground         |  |

ı

#### 3.19 LED indicator



| Serial number | definition | Level / V | explain                                                                          |
|---------------|------------|-----------|----------------------------------------------------------------------------------|
| Power_LED     | POW        | 3.3V      | Normally on when powered on                                                      |
| System_LED    | SYS        | 3.3V      | System operation<br>status indicator,<br>frequency indicates<br>current CPU load |

#### 3.20 burn button (SW1)

The burn button is used to upgrade the firmware of the burn system through USB. When the power is off, press and hold the burn button, connect the J1 interface of the motherboard (USB2.0 type-A motherboard) through the computer, and then power on the motherboard. The motherboard enters the USB burn mode, and uses the burn tool to burn the system.



Figure 12Ido-evb3020 burning button

I

#### 3.21 WiFi

On board WiFi module,

The wifi antenna adopts IPEX generation 1 pedestal.



Figure 14Ido-evb3020 IPEX first generation seat

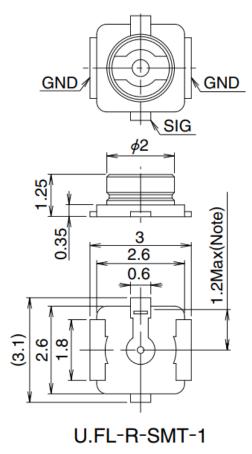



Figure 15Schematic diagram of ido-evb3020 IPEX generation 1 seat

### 4. Electrical performance

### 4.1 standard power supply

| attrik                | oute             | minimum | typical | maximum |
|-----------------------|------------------|---------|---------|---------|
|                       | Voltage          | 9V      | 12V     | 24V     |
| Standard power supply | Ripple           | /       | /       | 50mV    |
|                       | electric current | 2A      | /       | /       |

## 4.2 working current without any external devices

| attr                  | ibute            | minimum | typical    | maximum |
|-----------------------|------------------|---------|------------|---------|
|                       | Working current  | /       | 0.5A (12V) | /       |
| Standard power supply | Standby current  | /       | 25mA (12V) | /       |
|                       | ShutDown Current | /       | <1mA       | /       |

#### 4.3 USB power supply

| attril                | oute    | Voltage | Typical current | Maximum current |
|-----------------------|---------|---------|-----------------|-----------------|
| Standard power supply | USB2. 0 | /       | /               | 500mA           |

Note: it is recommended that the total current of USB peripherals should not exceed 2000mA, otherwise the machine will not operate normally.

#### 4.4 working current of LVDS panel

| attribute                        |                      | minimum | typical | maximum |
|----------------------------------|----------------------|---------|---------|---------|
| Working current<br>of LVDS panel | 3.3V working current | /       | 400mA   | 800mA   |
|                                  | 5V working current   | /       | /       | /       |

| 12V operating current | / | / | / |
|-----------------------|---|---|---|
|-----------------------|---|---|---|

#### 4.5 working current of Mipi panel

| attribute                         |                       | minimum | typical | maximum |
|-----------------------------------|-----------------------|---------|---------|---------|
| Working current<br>of Mipi screen | 3.3V working current  | /       | 400mA   | 800mA   |
|                                   | 5V working current    | /       | /       | /       |
|                                   | 12V operating current | /       | /       | /       |

#### 5. Precautions for use

When using the motherboard, please pay special attention to the following:

- 1. After removing the motherboard from the packaging box, please make sure that there are no pins or other short circuits caused by transportation before powering on.
- 2. Electronic products are very sensitive to static electricity. Before taking the motherboard, please wear an electrostatic bracelet or electrostatic gloves to guide the static electricity away from you.
- 3. Please plug and unplug the components under the condition of power failure. Before connecting the power connector to the motherboard, please confirm that the power is turned off to avoid damage to sensitive components caused by instantaneous power shock.

- 4. When connecting peripherals with wires, please ensure that the pin definition of each peripheral corresponds to the interface of the main board, so as to avoid short circuit and board burning due to wrong wire sequence.
- 5. When fixing the motherboard with screws, pay attention to avoid PCB open circuit or component falling off due to board deformation.
- 6. When connecting peripheral devices such as USB expansion stand, pay attention to the current limit.
- 7. When connecting the serial port and the can port, pay attention to whether the serial port level matches, and avoid connecting the UART to the RS232 or RS485 level. UART / RS232 pay attention to rx-tx interconnection. RS485 / can interface shall pay attention to A-A / B-B and H-H / I-I.
- 8. When selecting the power supply, pay attention that the voltage and current meet the power requirements of the main board and peripherals.
- When designing the complete product, the heat dissipation and height limitation of the main board shall be considered.
- 10. When you do not use the motherboard at ordinary times, please place the motherboard in an electrostatic table mat or electrostatic bag for sealing and storage.

Manufacturer's Name: Shenzhen Tactile Intelligent Technology Co., Ltd.

**Address:** Room 801-803, 8th Floor, Block A, Building 6, International Innovation Valley, Nanshan District, Shenzhen, PRC. Post Code: 518000

**EU Compliance statement:** Shenzhen Tactile Intelligent Technology Co., Ltd. Hereby declares this device in compliance with the essential requirements and other relevant provisions of Directive 2014/53/EU.

A copy of the EU Declaration of conformity is available online at http://www.industio.cn/euro-compliance

To comply with RF exposure requirements, this equipment should be installed and operated with minimum distance 20cm between the radiator and your body.

#### **RF Specification**

WIFI: 2412-2472MHz (EU Band)

Transmission power: 16.71dbm (eirp)

Antenna designation: FPC antenna (Antenna Gain: 2.22 dBi)

#### Federal Communication Commission Statement (FCC, U.S.)

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

#### **FCC Caution:**

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

#### **FCC Radiation Exposure Statement:**

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.