

FCC Test Report

Application No.: DNT2409040031R1439-02403

Applicant: Shenzhen Pengcheng Zhao Ming Co., Ltd.

Address of 3rd Floor, Third Industrial Park Nangang, Shiyan Street, Baoan District,

Applicant: Shenzhen, China

EUT Description: Alarm Clock Bluetooth Speaker with Ambient Light

Model No.: PX-03

FCC ID: 2A7DD-PX-031

Power Supply: DC 3.7V From Battery;DC 9 V From Adapter

Trade Mark: /

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/9/15

Date of Test: 2024/9/16 to 2024/9/23

Date of Issue: 2024/9/25

Test Result: PASS

Prepared By: Wayne . Lin (Testing Engineer)

Reviewed By: ______ (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date: September 25, 2024

Page: 2/66

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Sep.25, 2024	Valid	Original Report

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 3 / 66

1 Test Summary

1 Cot Gaillinary				
Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	<u> </u>	Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS
Radiated Spurious	15.247(d);	ANSI C63.10: 2020	Clause 3.9	PASS
emissions	15.205/15.209	ANSI C03.10. 2020	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	PASS

Note:

^{1. &}quot;N/A" denotes test is not applicable in this test report.

Date: September 25, 2024

Page: 4/66

Contents

1 Test S	Summary	3
2 Gener	eral Information	5
2.1	Test Location	5
2.2	General Description of EUT	6
2.3	Channel List	7
2.4	Test Environment and Mode	8
2.5	Power Setting of Test Software	9
2.6	Description of Support Units	9
2.7	Test Facility	9
2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
2.9	Equipment List	11
2.10	Assistant equipment used for test	12
3 Test r	results and Measurement Data	13
3.1	Antenna Requirement	13
3.2	20dB Emission Bandwidth	14
3.3	Conducted Output Power	15
3.4	Carrier Frequencies Separationy	16
3.5	Dwell Time	17
3.6	Hopping Channel Number	18
3.7	Band-edge for RF Conducted Emissions	19
3.8	RF Conducted Spurious Emissions	20
3.9	Radiated Spurious Emissions	21
3.10	Restricted bands around fundamental frequency	29
3.11	AC Power Line Conducted Emissions	33
4 Apper	endix	36
Apper	ndix A: 20dB Emission Bandwidth	36
Apper	ndix B: Maximum conducted output power	40
Apper	ndix C: Carrier frequency separation	44
Apper	ndix D: Dwell Time	46
Apper	ndix F: Number of hopping channels	47
	ndix F: Band edge measurements	
Apper	ndix F: Conducted Spurious Emission	

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 5 / 66

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 6 / 66

2.2 General Description of EUT

Manufacturer:	Shenzhen Pengcheng Zhao Ming Co., Ltd.
Address of Manufacturer:	3rd Floor, Third Industrial Park Nangang, Shiyan Street, Baoan District, Shenzhen, China
Test EUT Description:	Alarm Clock Bluetooth Speaker with Ambient Light
Model No.:	PX-03
Additional Model(s):	
Chip Type:	AC6965C
Serial number:	PR2409040031R1439
Power Supply:	DC 3.7V From Battery;DC 9V From Adapter
Trade Mark:	
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK
Sample Type:	☐ Portable Device, ☐ Module,⊠ Mobile Device
Antenna Type:	☐ External, ⊠ Integrated
Antenna Ports:	
Antonna Cain*	⊠ Provided by applicant
Antenna Gain*:	-0.58dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 7 / 66

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
_ 3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz), (

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: September 25, 2024 Page: 8 / 66

2.4 5Test Environment and Mode

Operating Environment:			
Temperature:	20~25.0 °C		
Humidity:	45~56 % RH		
Atmospheric Pressure:	101.0~101.30 KPa		
Test mode:			
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind data rate.			

Date: September 25, 2024 Page: 9 / 66

2.5 Power Setting of Test Software

Software Name	0, 0,	FCC_assist_1.0.2.2	\bigcirc , \bigcirc , \bigcirc ,
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

Date: September 25, 2024

Page: 10 / 66

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	4 - 4 - 4	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty		
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
		± 4.8dB (Below 1GHz)		
2	Dedicted Emission	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
		± 5.02dB (Above 18GHz)		

Date: September 25, 2024

Page: 11 / 66

2.9 Equipment List

Description	Manufacturer	Model	Serial Number	Cal date	Due date		
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24		
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24		
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24		
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24		
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24		
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA		
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA		
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24		
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24		
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24		

	Test Equipment for Conducted Emission										
Description	Description Manufacturer Model Serial Number Cal Date Due Da										
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23						
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23						
ISN	R&S	1309.8590.03	2023-10-24	2024-10-23							

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

N CONTRACTOR OF THE PARTY OF TH

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 12 / 66

Test E	quipment for F	Radiated Emi	ssion(Above	1000MHz	<u>z</u>)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 13 / 66

3 Test results and Measurement Data

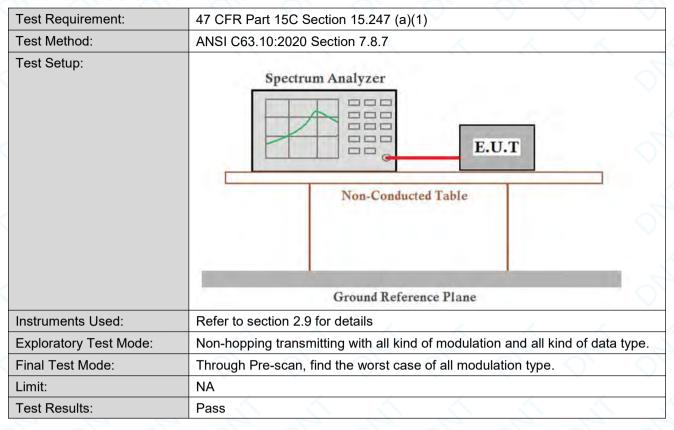
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

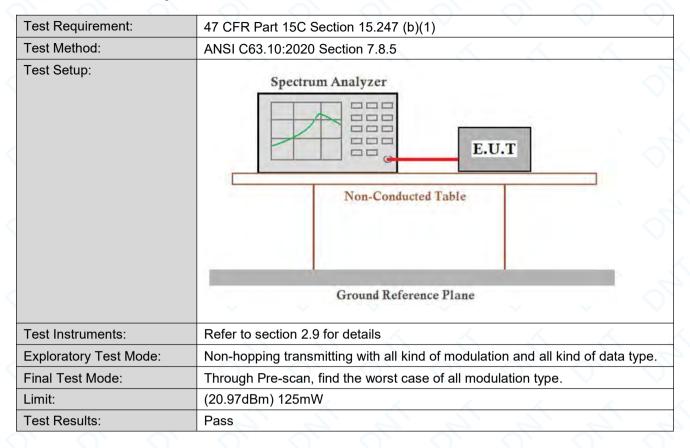
15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 14 / 66

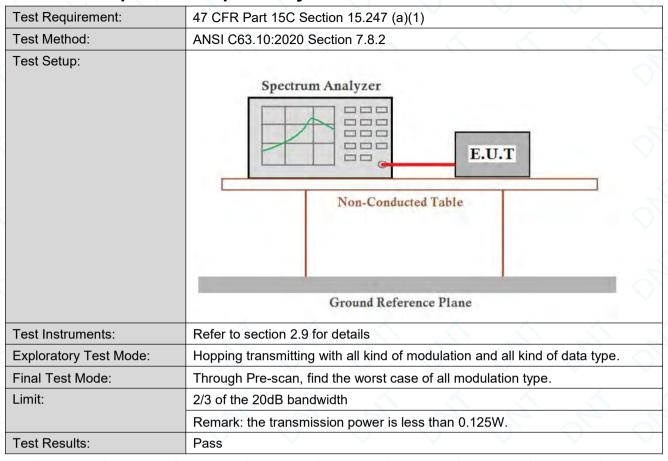
3.2 20dB Emission Bandwidth


The detailed test data see: Appendix A

Date: September 25, 2024

Page: 15/66

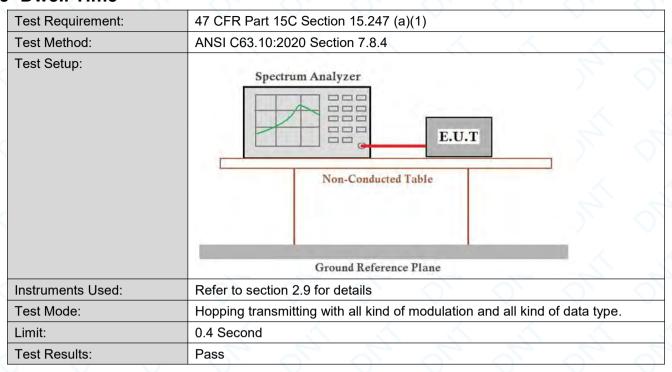
3.3 Conducted Output Power



The detailed test data see: Appendix B

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 16 / 66

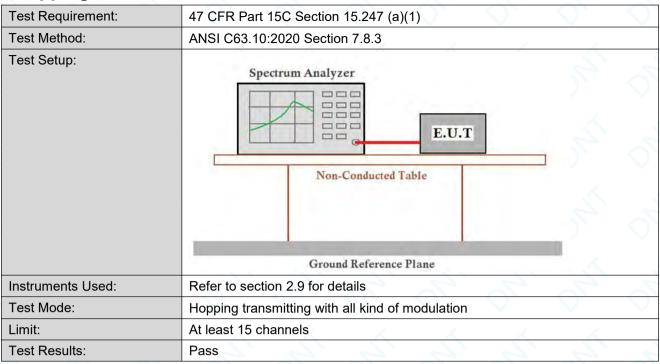
3.4 Carrier Frequencies Separationy



The detailed test data see: Appendix C

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 17 / 66

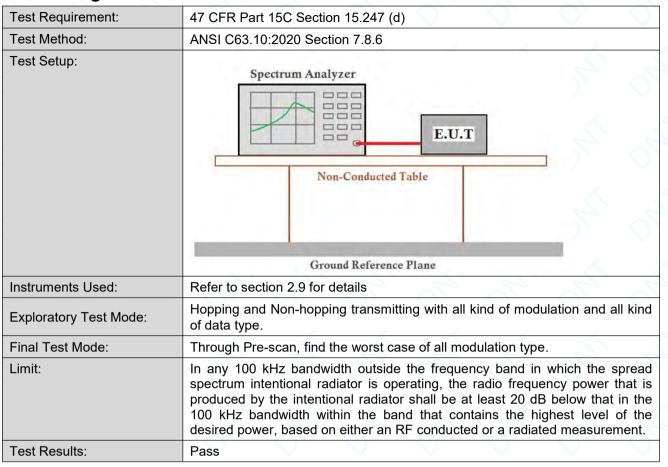
3.5 Dwell Time


The detailed test data see: Appendix D

Date: September 25, 2024

Page: 18 / 66

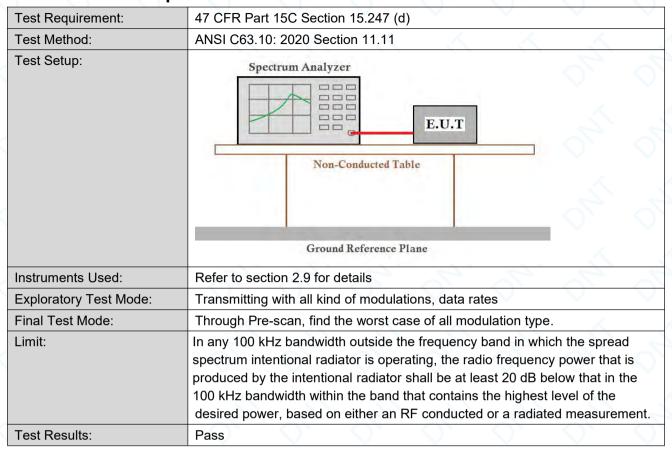
3.6 Hopping Channel Number



The detailed test data see: Appendix E

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 19 / 66

3.7 Band-edge for RF Conducted Emissions



The detailed test data see: Appendix F

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 20 / 66

3.8 RF Conducted Spurious Emissions

The detailed test data see: Appendix G

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 21 / 66

3.9 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20)5		V V
Test Method:	ANSI C63.10: 2020 Sect	ion 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-A	Anechoic Ch	amber)	6
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		/ Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average
				(DC<0.98)	
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- <	-<	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	6-7	30
	1.705MHz-30MHz	30	<u></u>	<u> </u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit

Date: September 25, 2024

Page: 22 /

66

Test Setup:

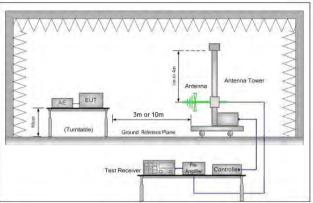


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

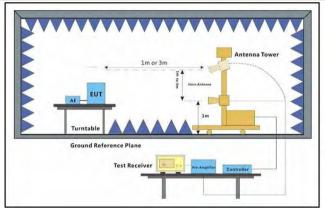


Figure 3. Above 1 GHz

Test Procedure:

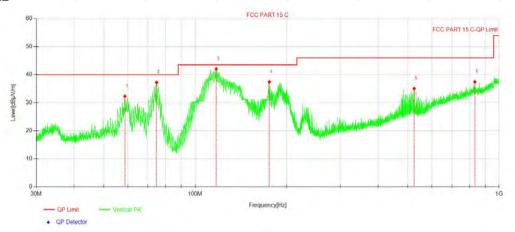
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- . The radiation measurements are performed in X, Y, Z axis positioning for

Dongguan DN Testing Co., Ltd.

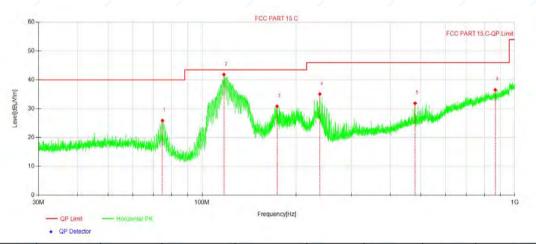
Date: September 25, 2024

Page: 23 /

	Transmitting mode, And found the X axis positioning which it is worse case. j. Repeat above procedures until all frequencies measured was complete.
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



Date: September 25, 2024

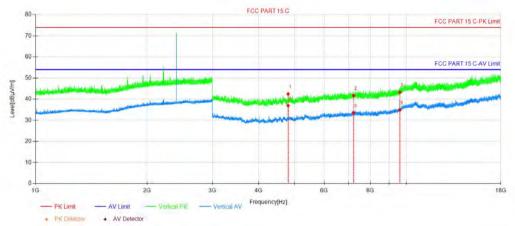

Page: 24 / 66

Test data

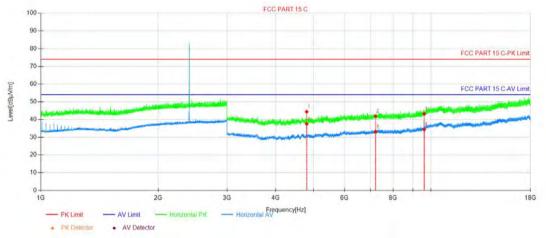
For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	58.73	40.90	-8.62	32.28	40.00	7.72	100	315	QP	Vertical
2	74.68	48.34	-11.11	37.23	40.00	2.77	100	262	QP	Vertical
3	117.27	52.52	-10.50	42.02	43.50	1.48	100	257	QP	Vertical
4	175.40	46.21	-8.79	37.42	43.50	6.08	100	56	QP	Vertical
5	525.47	36.20	-1.14	35.06	46.00	10.94	100	153	QP	Vertical
6	831.85	32.83	4.63	37.46	46.00	8.54	100	294	QP	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	74.6	36.98	-11.10	25.88	40.00	14.12	200	181	QP	Horizontal
2	117.44	52.34	-10.48	41.86	43.50	1.64	100	238	QP	Horizontal
3	173.63	39.46	-8.61	30.85	43.50	12.65	100	227	QP	Horizontal
4	237.89	44.49	-9.39	35.10	46.00	10.90	100	7	QP	Horizontal
5	479.85	34.12	-2.24	31.88	46.00	14.12	100	100	QP	Horizontal
6	865.78	31.99	4.57	36.56	46.00	9.44	100	154	QP	Horizontal



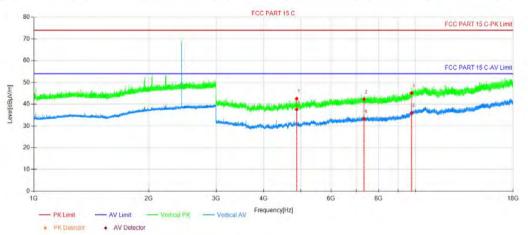
Report No.: DNT2409040031R1439-02403 Date:

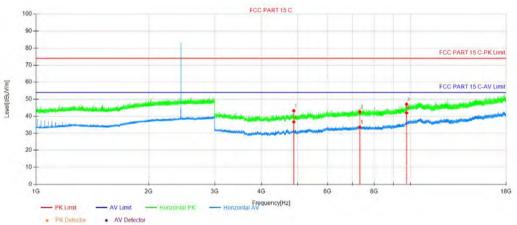

Date: September 25, 2024

Page: 25 / 66

For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4800.84	47.03	-4.60	42.43	74.00	31.57	150	62	Peak	Vertical
2	7206.21	43.42	-1.76	41.66	74.00	32.34	150	130	Peak	Vertical
3	9608.58	42.40	0.88	43.28	74.00	30.72	150	49	Peak	Vertical
4	4801.59	41.57	-4.60	36.97	54.00	17.03	150	62	AV	Vertical
5	7206.21	35.33	-1.76	33.57	54.00	20.43	150	251	AV	Vertical
6	9608.58	33.97	0.88	34.85	54.00	19.15	150	183	AV	Vertical

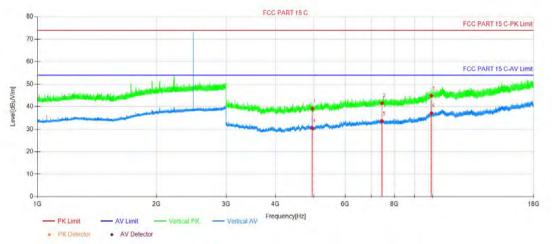

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
Ī	1	4800.84	49.03	-4.60	44.43	74.00	29.57	150	103	Peak	Horizon
	2	7206.21	43.71	-1.76	41.95	74.00	32.05	150	239	Peak	Horizon
Ī	3	9608.58	42.33	0.88	43.21	74.00	30.79	150	141	Peak	Horizon
	4	4801.59	42.19	-4.60	37.59	54.00	16.41	150	115	AV	Horizon
	5	7206.21	34.96	-1.76	33.20	54.00	20.80	150	115	AV	Horizon
	6	9608.58	33.49	0.88	34.37	54.00	19.63	150	333	AV	Horizon

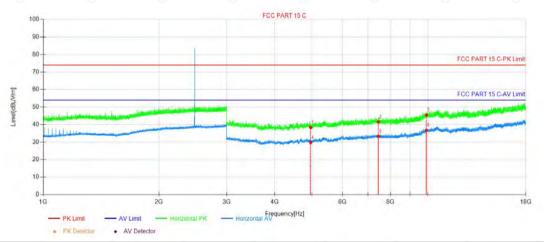

Date: September 25, 2024

Page: 26 / 66

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4878.84	47.23	-4.70	42.53	74.00	31.47	150	54	Peak	Vertical
2	7323.21	43.76	-1.49	42.27	74.00	31.73	150	164	Peak	Vertical
3	9764.58	43.47	1.64	45.11	74.00	28.89	150	291	Peak	Vertical
4	4879.59	42.25	-4.70	37.55	54.00	16.45	150	81	AV	Vertical
5	7323.21	34.74	-1.49	33.25	54.00	20.75	150	121	AV	Vertical
6	9764.58	34.46	1.64	36.10	54.00	17.90	150	164	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4878.84	47.87	-4.70	43.17	74.00	30.83	150	8	Peak	Horizon
2	7323.21	44.08	-1.49	42.59	74.00	31.41	150	357	Peak	Horizon
3	9757.83	45.45	1.61	47.06	74.00	26.94	150	224	Peak	Horizon
4	4879.59	41.40	-4.70	36.70	54.00	17.30	150	8	AV	Horizon
5	7323.21	34.98	-1.49	33.49	54.00	20.51	150	211	AV	Horizon
6	9758.58	40.35	1.62	41.97	54.00	12.03	150	224	AV	Horizon


Date: September 25, 2024

Page: 27 / 66

DH5 2480MHz

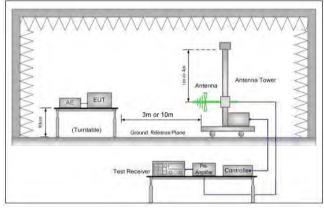
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4960.59	44.04	-4.86	39.18	74.00	34.82	150	210	Peak	Vertical
2	7440.22	42.88	-1.34	41.54	74.00	32.46	150	346	Peak	Vertical
3	9920.59	42.59	2.27	44.86	74.00	29.14	150	127	Peak	Vertical
4	4960.59	35.28	-4.86	30.42	54.00	23.58	150	29	AV	Vertical
5	7440.22	34.94	-1.34	33.60	54.00	20.40	150	84	AV	Vertical
6	9920.59	34.87	2.27	37.14	54.00	16.86	150	84	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4960.59	43.11	-4.86	38.25	74.00	35.75	150	46	Peak	Horizon
2	7440.22	42.75	-1.34	41.41	74.00	32.59	150	0	Peak	Horizon
3	9920.59	43.18	2.27	45.45	74.00	28.55	150	279	Peak	Horizon
4	4960.59	34.58	-4.86	29.72	54.00	24.28	150	238	AV	Horizon
5	7440.22	34.65	-1.34	33.31	54.00	20.69	150	250	AV	Horizon
6	9920.59	34.38	2.27	36.65	54.00	17.35	150	195	AV	Horizon

Date: September 25, 2024

Page: 28 / 66

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 29 / 66

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205						
Test Method:	ANSI C63.10: 2020 Section 11.12							
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)					
Limit:	Frequency	Limit (dBuV/m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak					
	88MHz-216MHz	43.5	Quasi-peak					
	216MHz-960MHz	46.0	Quasi-peak					
	960MHz-1GHz	54.0	Quasi-peak					
	Ab 4011-	54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								

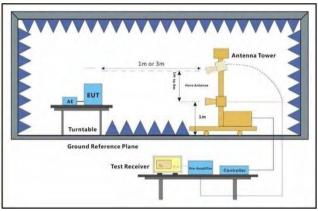


Figure 1. 30MHz to 1GHz

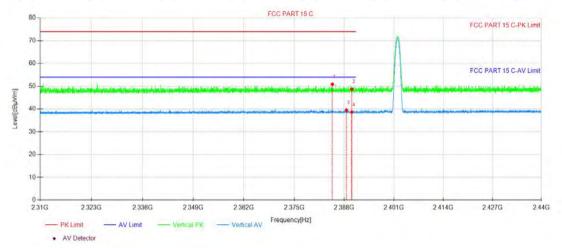
Figure 2. Above 1 GHz

Test Procedure:

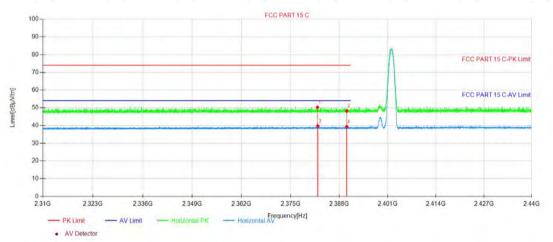
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz


Dongguan DN Testing Co., Ltd.

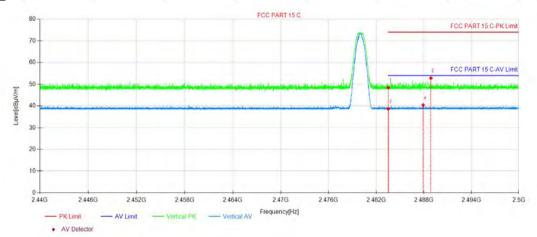
Report No.: DN7	Γ2409040031R1439-02403 Date: September 25, 2024 Page: 30 / 66
TREPORTING DIVI	• RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above 1000MHz • RBW = 1 MHz • VBW = 10 Hz, when duty cycle is no less than 98 percent. • VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of all modulation type. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

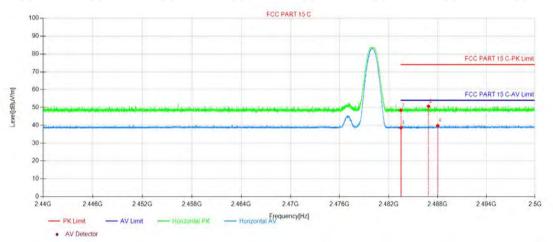


Date: September 25, 2024 Page: 31 / 66

Test Date DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2384.93	51.66	-0.82	50.84	74.00	23.16	150	259	Peak	Vertical
2	2390.01	49.53	-0.80	48.73	74.00	25.27	150	77	Peak	Vertical
3	2388.60	40.30	-0.80	39.50	54.00	14.50	150	36	AV	Vertical
4	2390.01	39.42	-0.80	38.62	54.00	15.38	150	357	AV	Vertical


	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
Ī	1	2382.17	51.20	-0.83	50.37	74.00	23.63	150	100	Peak	Horizon
	2	2390.01	49.07	-0.80	48.27	74.00	25.73	150	218	Peak	Horizon
	3	2382.26	40.60	-0.83	39.77	54.00	14.23	150	146	AV	Horizon
	4	2390.01	40.14	-0.80	39.34	54.00	14.66	150	314	AV	Horizon


Date: September 25, 2024

Page: 32 / 66

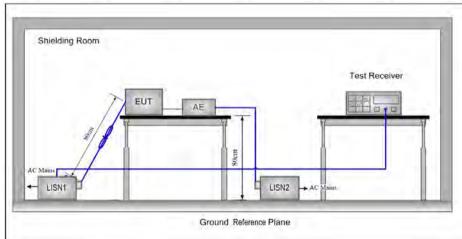
DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	48.73	-0.29	48.44	74.00	25.56	150	232	Peak	Vertical
2	2488.89	53.08	-0.24	52.84	74.00	21.16	150	162	Peak	Vertical
3	2483.51	38.96	-0.29	38.67	54.00	15.33	150	276	AV	Vertical
4	2487.91	40.67	-0.26	40.41	54.00	13.59	150	155	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.76	-0.29	48.47	74.00	25.53	150	360	Peak	Horizon
2	2486.89	50.92	-0.26	50.66	74.00	23.34	150	245	Peak	Horizon
3	2483.50	38.88	-0.29	38.59	54.00	15.41	150	170	AV	Horizon
4	2488.03	40.11	-0.26	39.85	54.00	14.15	150	138	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:


Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Date: September 25, 2024 Page: 33 / 66

3.11 AC Power Line Conducted Emissions

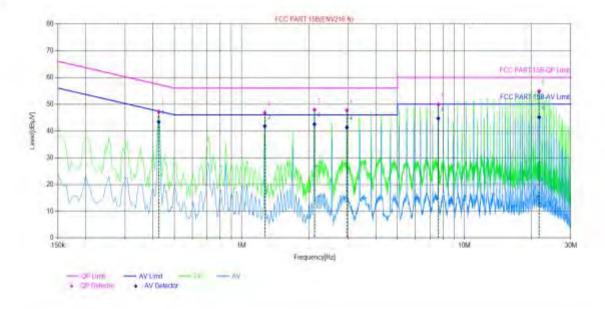
Test Requirement:	47 CFR Part 15C Section	15.207	
Test Method:	ANSI C63.10: 2020		
Test Frequency Range:	150kHz to 30MHz		
Limit:	Francisco (MIII)	Limit ((dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logar	ithm of the frequency.	
Test Procedure:	1) The mains terminal distroom. 2) The EUT was connected Impedance Stabilization Not impedance. The power call a second LISN 2, which was plane in the same way as multiple socket outlet strip single LISN provided the ready. 3) The tabletop EUT was ground reference plane. A placed on the horizontal ground.	ed to AC power source thretwork) which provides a coles of all other units of the as bonded to the ground rethe LISN 1 for the unit being was used to connect multiplicating of the LISN was not placed upon a non-metalled for floor-standing arrangetwork of the transfer of	ough a LISN 1 (Line 50Ω/50μH + 5Ω linear e EUT were connected to reference ng measured. A tiple power cables to a exceeded. ic table 0.8m above the
	4) The test was performed of the EUT shall be 0.4 m vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ender the control of the maximum equipment and all of the in ANSI C63.10 2013 on con	d with a vertical ground refrom the vertical ground refleane was bonded to the hand of the hand of the hand of the hand of the hand reference pland reference pland reference pland reference pland the EU puipment was at least 0.8 to memission, the relative paterface cables must be characteristical distribution.	eference plane. The norizontal ground the boundary of the ane for LISNs distance was JT. All other units of m from the LISN 2.
Test Setup:	7.2.5. 666.16 25.16 611 65.11	and the second s	

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

Dongguan DN Testing Co., Ltd.

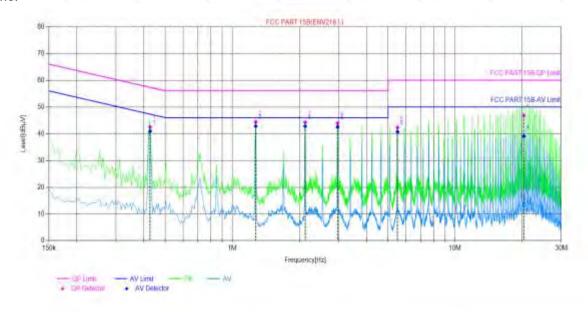

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 34 / 66

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Neutral Line:



Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBuV]	AV Margin [dB]	Verdict		
1	0.4245	9.83	47.09	57.36	10.27	43.39	47.36	3.97	PASS		
2	1.2705	9.71	46.75	56.00	9.25	41.76	46.00	4.24	PASS		
3	2.121	9.79	47.93	56.00	8.07	42.48	46.00	3.52	PASS		
4	2.967	9.87	47.73	56.00	8.27	41.27	46.00	4.73	PASS		
5	7.629	9.95	49.90	60.00	10.10	44.69	50.00	5.31	PASS		
6	21.624	10.09	54.85	60.00	5.15	45.11	50.00	4.89	PASS		

Date: September 25, 2024

Live Line:

Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QF Value [dByV]	QP Limit [dByV]	QP Margin [dB]	AV Value [dBμV]	AV Limit [dBpV]	AV Margin [dB]	Verdict	
1	0.4266	9.80	42.55	57.32	14.77	40.85	47.32	6.47	PASS	
2	1.2723	9.73	44.39	56.00	11.61	42.81	46.00	3.19	PASS	
3	2.1202	9.74	44.27	56.00	11.73	42.77	46.00	3.23	PASS	
4	2.9689	9.74	43.96	56.00	12.04	42.49	46.00	3.51	PASS	
5	5.5140	9.81	42.33	60.00	17.67	40.67	50.00	9.33	PASS	
6	20.3574	10.12	46.84	60.00	13.16	39.09	50.00	10.91	PASS	

Rema

Page: 35 / 66

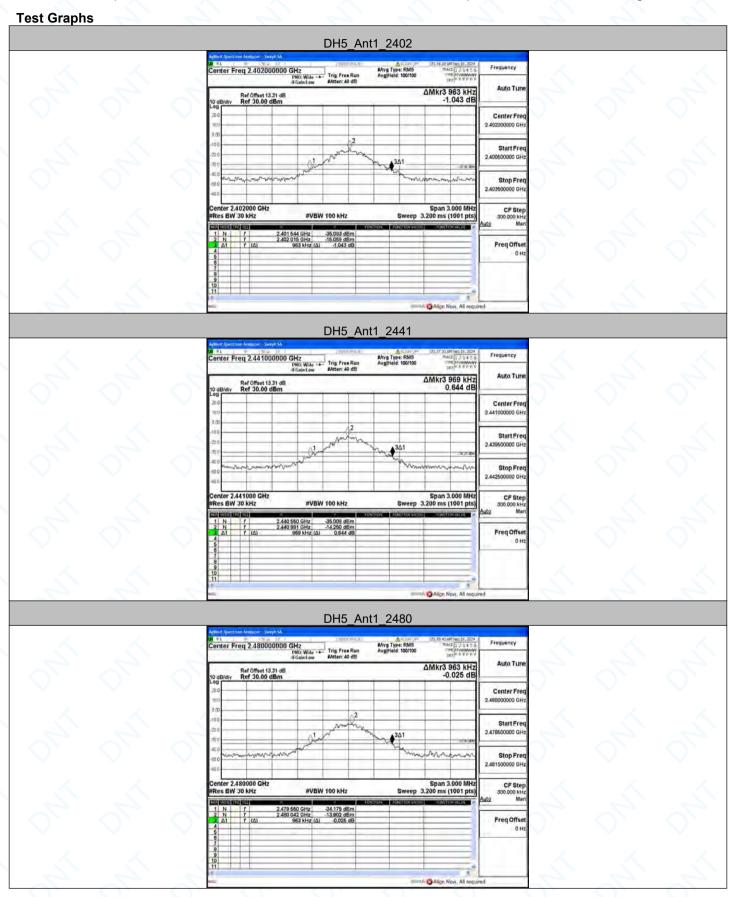
rk:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 36 / 66

4 Appendix


Appendix A: 20dB Emission Bandwidth

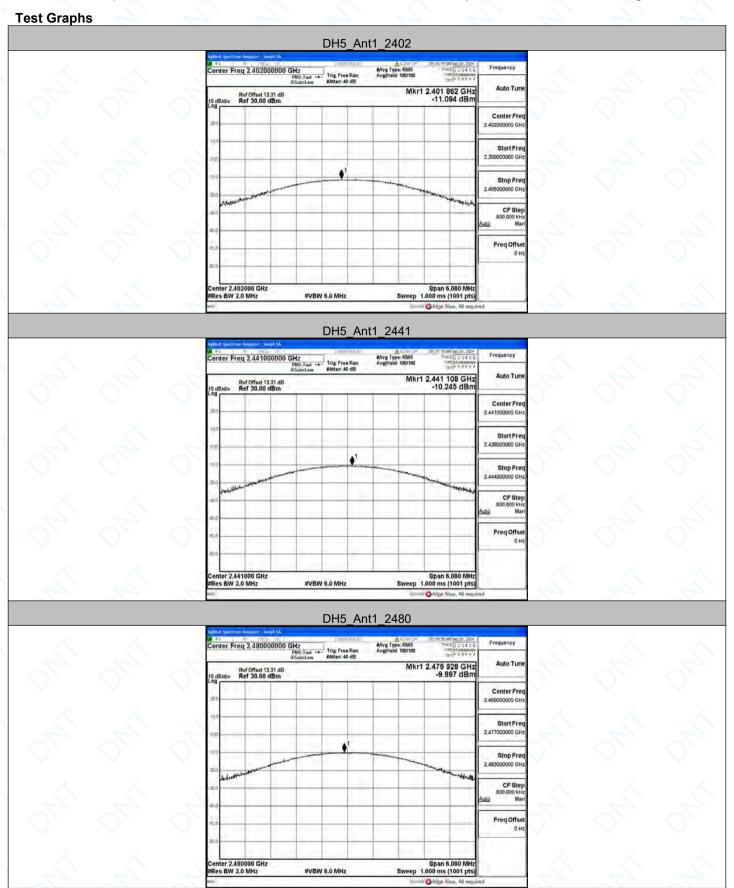
Test Result

Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant1	2402	0.963	2401.544	2402.507		
		2441	0.969	2440.550	2441.519		
		2480	0.963	2479.550	2480.513		
2DH5	Ant1	2402	1.272	2401.409	2402.681		
		2441	1.338	2440.352	2441.690		
		2480	1.356	2479.346	2480.702		
3DH5	Ant1	2402	1.314	2401.364	2402.678		
		2441	1.317	2440.364	2441.681		
		2480	1.308	2479.373	2480.681		

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 37 / 66

Report No.: DNT2409040031R1439-02403 Page: 38 / 66 Date: September 25, 2024 2DH5_Ant1_2402 nter Freq 2.402000000 GHz #Avg Type: RMS Availed: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre Freq Offs 2DH5_Ant1_2441 enter Freq 2.441000000 GHz #Avg Type: RMS Avg|Hold: 100/100 Center Fre Λ2 Start Fre 2DH5_Ant1_2480 Center Fre Stop Fre-2.481500000 GH CF Ste 300,000 kH Freq Offsi

Report No.: DNT2409040031R1439-02403 Page: 39 / 66 Date: September 25, 2024 3DH5_Ant1_2402 nter Freq 2.402000000 GHz #Avg Type: RMS Availed: 100/100 Auto Tun ΔMkr3 1.314 MHz -0.120 dB Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre enter 2,402000 GHz Res BW 30 kHz Freq Offs 3DH5 Ant1 2441 enter Freq 2.441000000 GHz #Avg Type: RMS Avg|Hold: 100/100 Center Fre Start Fre 3DH5_Ant1_2480 Center Fre Stop Fre-2.481500000 GH CF Ste 300,000 kH Freq Offsi


Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 40 / 66

Appendix B: Maximum conducted output power

i est i tesuit					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
9, 9		2402	-11.09	≤20.97	PASS
DH5	Ant1	2441	-10.25	≤20.97	PASS
		2480	-9.90	≤20.97	PASS
	Ant1	2402	-10.65	≤20.97	PASS
2DH5		2441	-10.02	≤20.97	PASS
9, 9		2480	-9.37	≤20.97	PASS
		2402	-10.43	≤20.97	PASS
3DH5	Ant1	2441	-9.58	≤20.97	PASS
		2480	-9.48	≤20.97	PASS

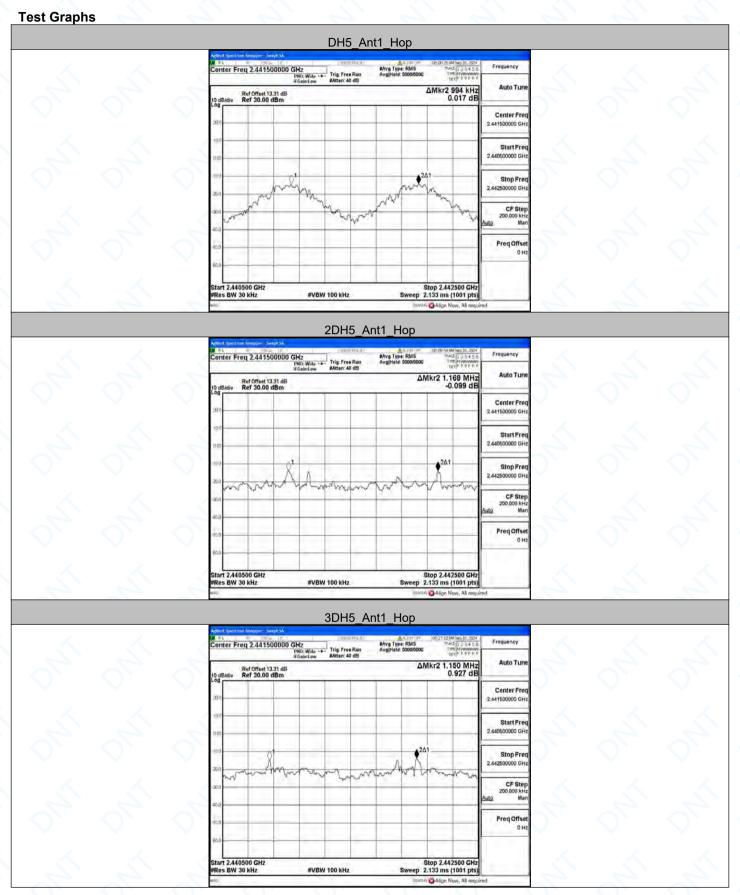
Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 41 / 66

Report No.: DNT2409040031R1439-02403 Page: 42/66 Date: September 25, 2024 2DH5_Ant1_2402 #Avg Type: RMS Availedd: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre StartFre Freq Offs nter 2.402000 GHz es BW 2.0 MHz #VBW 6.0 MHz 2DH5 Ant1 2441 enter Freq 2.441000000 GHz #Avg Type: RM5 Avg|Held: 100/100 Mkr1 2.440 616 GHz -10.024 dBm Center Fre Start Fre enter 2.441000 GHz Res BW 2.0 MHz #VBW 6.0 MHz 2DH5_Ant1_2480 enter Freq 2.480000000 GHz

PHO: Fee Run

| Calind our | Fatter: 40 dB #Avg Type: RMS AvgiHeld: 100/100 Mkr1 2.480 096 GHz -9.368 dBm Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre 2.477000000 GH Stop Fre 2.483000000 GH CF Ste 500,000 kH Freq Offse Span 6,000 MHz Sweep 1,000 ms (1001 pts) enter 2.480000 GHz les BW 2.0 MHz #VBW 6.0 MHz

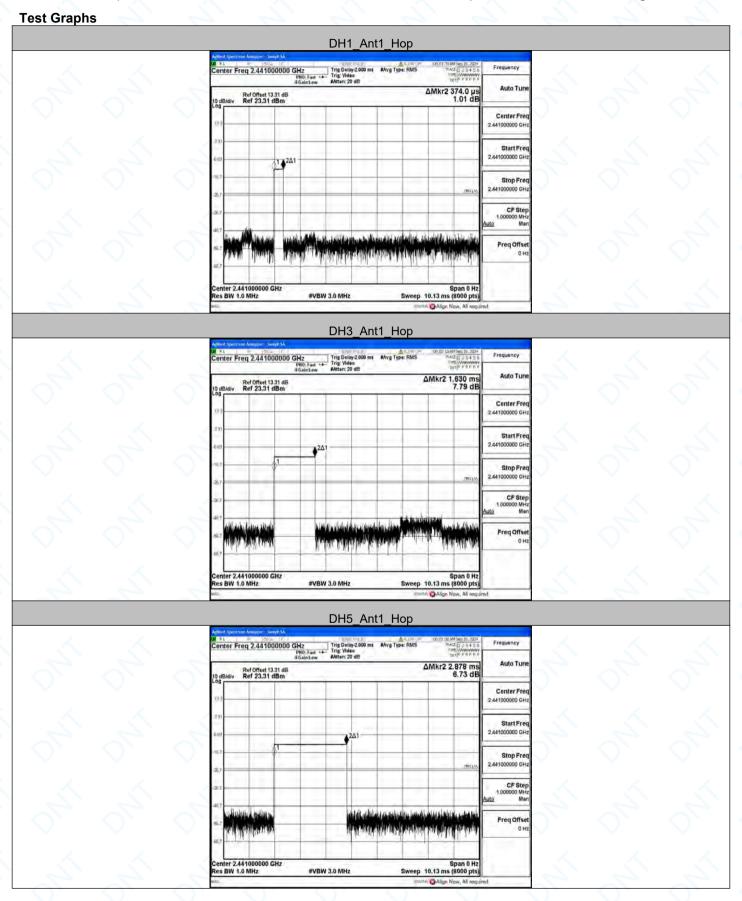
Report No.: DNT2409040031R1439-02403 Page: 43/66 Date: September 25, 2024 3DH5_Ant1_2402 #Avg Type: RMS Availedd 100/100 Auto Tur Mkr1 2.402 108 GHz -10.429 dBm Ref Offset 13.31 dB Ref 30.00 dBm Center Fre StartFre Freq Offs nter 2.402000 GHz es BW 2.0 MHz #VBW 6.0 MHz 3DH5 Ant1 2441 enter Freq 2.441000000 GHz #Avg Type: RMS Avg|Held 100/100 Mkr1 2.440 808 GHz -9.580 dBm Center Fre Start Fre enter 2.441000 GHz Res BW 2.0 MHz #VBW 6.0 MHz 3DH5_Ant1_2480 enter Freq 2.480000000 GHz #Avg Type: RMS AvgiHeld 100/100 Mkr1 2.480 198 GHz -9.482 dBm Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre 2.477000000 GH Stop Fre 2.483000000 GH CF Ste 500,000 kH Freq Offse Span 6,000 MHz Sweep 1,000 ms (1001 pts) enter 2.480000 GHz les BW 2.0 MHz #VBW 6.0 MHz


Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 44 / 66

Appendix C: Carrier frequency separation

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	0.994	≥0.969	PASS
2DH5	Ant1	Нор	1.168	≥0.904	PASS
3DH5	Ant1	Нор	1.15	≥0.878	PASS

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 45 / 66


Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 46 / 66

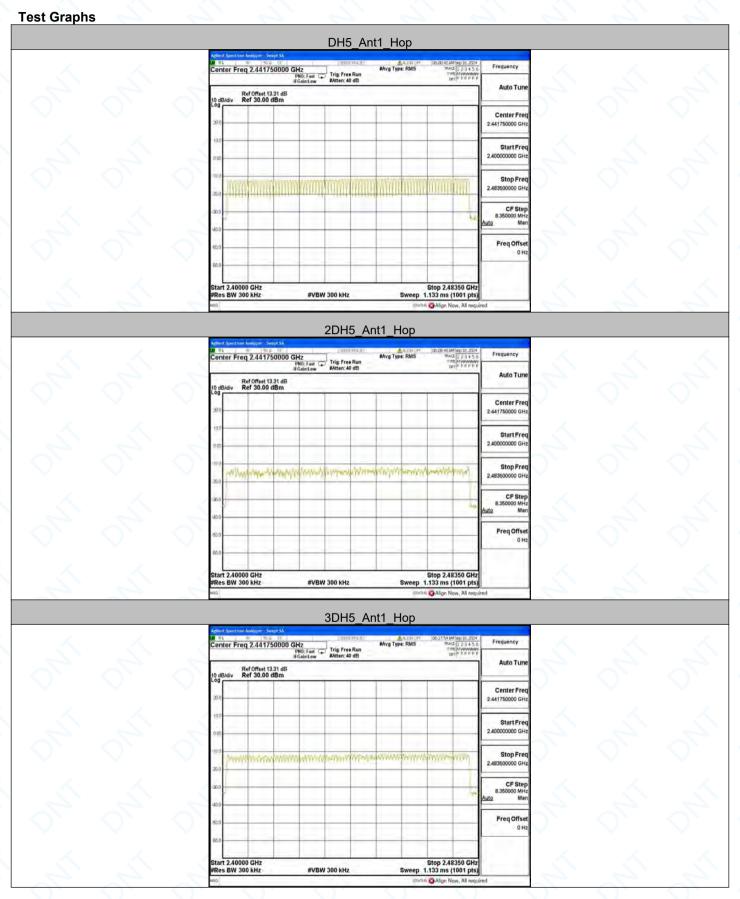
Appendix D: Dwell Time

i cot i toouit							
Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.374	320	0.12	≤0.4	PASS
DH3	Ant1	Нор	1.630	160	0.261	≤0.4	PASS
DH5	Ant1	Нор	2.878	106.67	0.307	≤0.4	PASS
2DH1	Ant1	Нор	0.385	320	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.637	160	0.262	≤0.4	PASS
2DH5	Ant1	Hop	2.884	106.67	0.308	≤0.4	PASS
3DH1	Ant1	Нор	0.385	320	0.123	≤0.4	PASS
3DH3	Ant1	Нор	1.635	160	0.262	≤0.4	PASS
3DH5	Ant1	Нор	2.887	106.67	0.308	≤0.4	PASS

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 47 / 66

Report No.: DNT2409040031R1439-02403 Page: 48 / 66 Date: September 25, 2024 2DH1_Ant1_Hop Ref Offset 13.31 dB Ref 23.31 dBm Center Fre Start Fre #VBW 3.0 MHz 2DH3 Ant1 Hop First - Trig Delay-2,000 ms BAvg Type: RM5 enter Freq 2.441000000 GHz ΔMkr2 1.637 ms 14.07 dB Ref Offset 13.31 dB Ref 23.31 dBm Center Fre #VBW 3.0 MHz 2DH5_Ant1_Hop Ref Offset 13.31 dB Ref 23.31 dBm Center Fre Stop Fre 2.441000000 GH CFSte #VBW 3.0 MHz

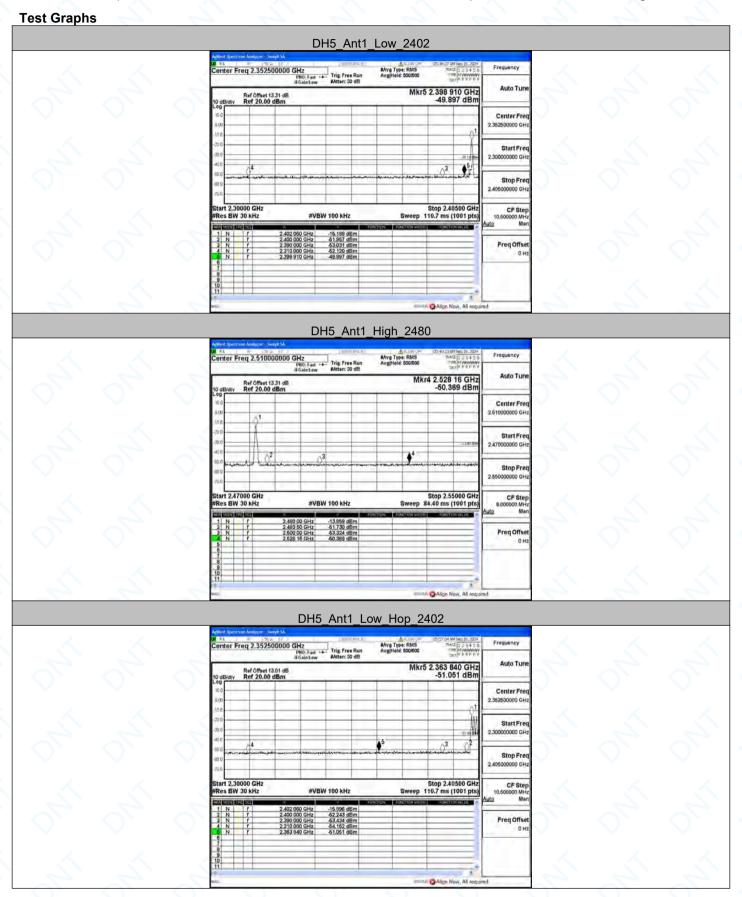
Report No.: DNT2409040031R1439-02403 Page: 49/66 Date: September 25, 2024 3DH1_Ant1_Hop Ref Offset 13.31 dB Ref 23.31 dBm Center Fre Start Fre #VBW 3.0 MHz 3DH3 Ant1 Hop First - Trig Video FAtten: 20 dB enter Freq 2.441000000 GHz Ref Offset 13.31 dB Ref 23.31 dBm Center Fre #VBW 3.0 MHz 3DH5_Ant1_Hop nter Freq 2.441000000 GHz Trig Delta Trig Vide Ratten: 2 ΔMkr2 2.887 ms 6.10 dB Ref Offset 13.31 dB Ref 23.31 dBm Center Fre Stop Fre CF Ste #VBW 3,0 MHz


Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 50 / 66

Appendix F: Number of hopping channels

TestMode	Antenna	Freq(MHz)	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 51 / 66


Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 52 / 66

Appendix F: Band edge measurements

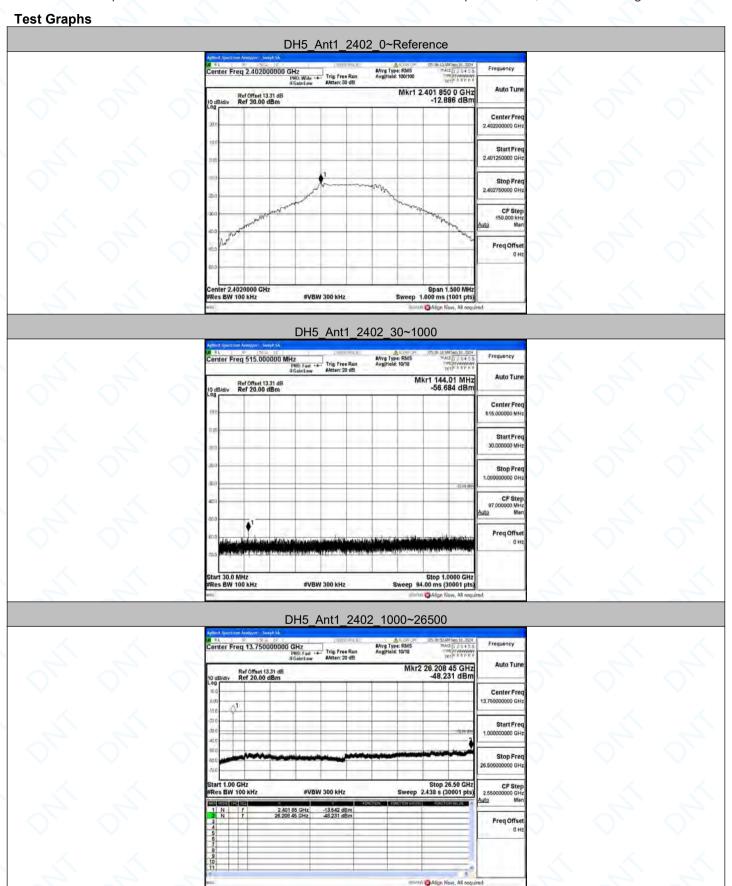
Test Mode	Antenna	Ch Name	Freq(MHz)	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict	
		Low	2402	-15.19	-49.9	≤-35.19	PASS	
DH5	Ant1	High	2480	-13.86	-50.37	≤-33.86	PASS	
DHS	Anti	Low	Hop_2402	-15.90	-51.05	≤-35.9	PASS	
		High	Hop_2480	-14.21	-50.66	≤-34.21	PASS	
		Low	2402	-14.93	-50.12	≤-34.93	PASS	
2DH5	Ant1	Ant1	High	2480	-13.71	-50.49	≤-33.71	PASS
ZDH5	Anti	Low	Hop_2402	-15.55	-51.44	≤-35.55	PASS	
		High	Hop_2480	-15.21	-50.62	≤-35.21	PASS	
		Low	2402	-15.13	-49.91	≤-35.13	PASS	
3DH5 A	A 44	High	2480	-13.81	-49.68	≤-33.81	PASS	
	Ant1	Low	Hop_2402	-14.98	-51.25	≤-34.98	PASS	
		High	Hop 2480	-14.18	-50.04	≤-34.18	PASS	

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 53 / 66

Report No.: DNT2409040031R1439-02403 Page: 54 / 66 Date: September 25, 2024 DH5_Ant1_High_Hop_2480 enter Freq 2.510000000 GHz #Avg Type: RMS AvgiHold: 600/60 Auto Tur Mkr4 2.544 88 GHz -50,660 dBm Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre 17711111 Stop 2.55000 GHz Sweep 84.40 ms (1001 pts) #VBW 100 kHz Freq Offs 2DH5 Ant1 Low 2402 #Avg Type: RMS Avg|Hold: \$00/500 Center Fre Start Fre Stop 2.40500 GHz Sweep 110.7 ms (1001 pts) 2DH5_Ant1_High_2480 mter Freq 2.510000000 GHz
PRO: Feet Trig: Free Rum
#Atten: 30 dB Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Stop Fre Stop 2.55000 GHz Sweep 84.40 ms (1001 pts) CF Ste 8.000000 MH Freq Offsi

Report No.: DNT2409040031R1439-02403 Page: 55 / 66 Date: September 25, 2024 2DH5_Ant1_Low_Hop_2402 nter Freq 2.352500000 GHz Auto Tur Ref Offset 13.01 dB Ref 20.00 dBm Center Fre Start Fre Stop 2.40500 GHz Sweep 110.7 ms (1001 pts) Freq Offs 2DH5 Ant1 High Hop 2480 #Avg Type: RMS Avg|Hold: 600Mor Center Fre Stop 2.55000 GHz Sweep 84.40 ms (1001 pts) 3DH5_Ant1_Low_2402 enter Freq 2.352500000 GHz
PHO: Fast --If Gaind ow Anten: 30 dB #Avg Type: RMS Center Fre Stop Fre Stop 2.40500 GHz Sweep 110.7 ms (1001 pts) CF Ste Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 56 / 66 Date: September 25, 2024 3DH5_Ant1_High_2480 Auto Tur Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre Stop 2.55000 GHz Sweep 84.40 ms (1001 pts) #VBW 100 kHz Freq Offs 3DH5 Ant1 Low Hop 2402 enter Freq 2.352500000 GHz
PHO: Failer low
Atten: 30 dB #Avg Type: RMS Avg|Held: 600 Center Fre Stop 2.40500 GHz Sweep 110.7 ms (1001 pts) 3DH5_Ant1_High_Hop_2480 Center Fre Stop Fre Stop 2.55000 GHz Sweep 84.40 ms (1001 pts CF Ste 8.000000 MH Freq Offsi


Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 57 / 66

Appendix F: Conducted Spurious Emission

Test Mode	Antenna	Freq(MHz)	Freq Range [MHz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict		
Q Q			Reference	-12.89	-12.89		PASS		
		2402	30~1000	-12.89	-56.68	≤-32.89	PASS		
			1000~26500	-12.89	-48.23	≤-32.89	PASS		
			Reference	-12.05	-12.05		PASS		
DH5	Ant1	2441	30~1000	-12.05	-57.41	≤-32.05	PASS		
			1000~26500	-12.05	-48.02	≤-32.05	PASS		
			Reference	-11.77	-11.77		PASS		
		2480	30~1000	-11.77	-57.18	≤-31.77	PASS		
			1000~26500	-11.77	-47.55	≤-31.77	PASS		
			Reference	-12.57	-12.57		PASS		
		2402	30~1000	-12.57	-56.43	≤-32.57	PASS		
			1000~26500	-12.57	-47.76	≤-32.57	PASS		
			Reference	-12.13	-12.13		PASS		
2DH5	Ant1	2441	30~1000	-12.13	-56.14	≤-32.13	PASS		
			1000~26500	-12.13	-48.28	≤-32.13	PASS		
			Reference	-12.13	-12.13		PASS		
		2480	30~1000	-12.13	-56.61	≤-32.13	PASS		
			1000~26500	-12.13	-47.75	≤-32.13	PASS		
	Ant1		Reference	-13.31	-13.31	,	PASS		
		2402	30~1000	-13.31	-56.83	≤-33.31	PASS		
			1000~26500	-13.31	-47.8	≤-33.31	PASS		
			Reference	-12.50	-12.50		PASS		
3DH5		2441	30~1000	-12.50	-41.78	≤-32.5	PASS		
			1000~26500	-12.50	-48.05	≤-32.5	PASS		
			Reference	-11.84	-11.84		PASS		
		2480	30~1000	-11.84	-56.71	≤-31.84	PASS		
						1000~26500	-11.84	-47.7	≤-31.84

Report No.: DNT2409040031R1439-02403 Date: September 25, 2024 Page: 58 / 66

Report No.: DNT2409040031R1439-02403 Page: 59 / 66 Date: September 25, 2024 DH5_Ant1_2441_0~Reference #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre Freq Offs nter 2.4410000 GHz #VBW 300 kHz DH5 Ant1 2441 30~1000 enter Freq 515.000000 MHz
PHO: Fast --Frig: Free Rus

Attent 20 dB #Avg Type: RM5 Avg|Held: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz DH5_Ant1_2441_1000~26500 onter Freq 13.750000000 GHz Center Fre Stop Fre CF Ste Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 60 / 66 Date: September 25, 2024 DH5_Ant1_2480_0~Reference Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre Freq Offs nter 2.4800000 GHz es BW 100 kHz #VBW 300 kHz DH5 Ant1 2480 30~1000 enter Freq 515.000000 MHz
PHO: Fast -- Trig: Free Rus

Attent 20 dB #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz DH5_Ant1_2480_1000~26500 onter Freq 13.750000000 GHz Center Fre Stop Fre CF Ste Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 61/66 Date: September 25, 2024 2DH5_Ant1_2402_0~Reference #Avg Type: RMS AvgiHeid: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre 2.401250000 GH Freq Offs nter 2.4020000 GHz es BW 100 kHz #VBW 300 KHz 2DH5 Ant1 2402 30~1000 enter Freq 515.000000 MHz
PHO Fast 1 Trig Free Rus
PAtter: 20 dB #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz 2DH5_Ant1_2402_1000~26500 mter Freq 13.750000000 GHz Center Fre Stop Fre CF Ste 2.402 50 GHz 26.460 05 GHz Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 62/66 Date: September 25, 2024 2DH5_Ant1_2441_0~Reference #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre Freq Offs nter 2.4410000 GHz es BW 100 kHz #VBW 300 KHz 2DH5 Ant1 2441 30~1000 enter Freq 515.000000 MHz
PHO Fast 10 Free Rus
PAtter: 20 dB #Avg Type: RMS Avg|Held: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz 2DH5_Ant1_2441_1000~26500 Center Fre Stop Fre CF Ste 2.441 60 GHz 26.181 25 GHz Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 63 / 66 Date: September 25, 2024 2DH5_Ant1_2480_0~Reference nter Freq 2.480000000 GHz #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre 2.479250000 GH Freq Offs nter 2.4800000 GHz es BW 100 kHz #VBW 300 KHz 2DH5 Ant1 2480 30~1000 enter Freq 515.000000 MHz
PHO Fast 10 Free Rus
PAtter: 20 dB #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz 2DH5_Ant1_2480_1000~26500 mter Freq 13.750000000 GHz Center Fre Stop Fre CF Ste 2.479 85 GHz 26.171 05 GHz Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 64 / 66 Date: September 25, 2024 3DH5_Ant1_2402_0~Reference #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre 2.401250000 GH Freq Offs nter 2.4020000 GHz es BW 100 kHz #VBW 300 KHz 3DH5 Ant1 2402 30~1000 enter Freq 515.000000 MHz
PHO Fast 1 Trig Free Rus
PAtter: 20 dB #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz 3DH5_Ant1_2402_1000~26500 onter Freq 13.750000000 GHz Center Fre Stop Fre CF Ste 2.401 65 GHz 26.193 15 GHz Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 65/66 Date: September 25, 2024 3DH5_Ant1_2441_0~Reference #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 13.31 dB Ref 30.00 dBm Center Fre Start Fre Freq Offs nter 2.4410000 GHz es BW 100 kHz #VBW 300 KHz 3DH5 Ant1 2441 30~1000 enter Freq 515.000000 MHz
PHO: Fast Trig: Free Run
FASTern: 20 dB #Avg Type: RMS Avg|Hold: 10/10 Mkr1 96.02 MHz -41.777 dBm Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz 3DH5_Ant1_2441_1000~26500 mter Freq 13.750000000 GHz Center Fre Stop Fre CF Ste Freq Offse

Report No.: DNT2409040031R1439-02403 Page: 66 / 66 Date: September 25, 2024 3DH5_Ant1_2480_0~Reference nter Freq 2.480000000 GHz Ref Offset 13.31 dB Ref 30.00 dBm Center Fre StartFre Freq Offs nter 2.4800000 GHz es BW 100 kHz #VBW 300 KHz 3DH5 Ant1 2480 30~1000 enter Freq 515.000000 MHz PHO Feet Trig Free Run Fortunation #Avg Type: RMS Avg|Hold: 10/10 Ref Offset 13.31 dB Ref 20.00 dBm Center Fre Start Fre #VBW 300 KHz 3DH5_Ant1_2480_1000~26500 Center Fre Stop Fre CF Ste 2.479 85 GHz 26.272 20 GHz Freq Offse

The End Report