

TEST REPORT

Product Name : FF-T1_Wireless pump

Model Number : FF-W-0005-002

FCC ID : 2A73O-FF-W-0005

Prepared for : FOOFEE INTELLIGENT MANUFACTURING TECHNOLOGY
(DONGGUAN) CO., LTD.

Address : Room 401, Building 15, No.1 Pushi First Road Qiaotou Town,
Dongguan City, Guangdong Province

Prepared by : EMTEK (NINGBO) CO., LTD.

Address : 1F Building 4, 1177#, Lingyun Road, Ningbo National Hi-Tech
Zone, Ningbo, Zhejiang, China.

Tel: +86-574-27907998

Fax: +86-574-27721538

Report Number : ENB2205270024W01001R

Date(s) of Tests : May 27, 2022 to June 13, 2022

Date of issue : June 15, 2022

TABLE OF CONTENT

Test Report Description	Page
1. SUMMARY OF TEST RESULTS	5
2. GENERAL INFORMATION	6
2.1. Description of Device (EUT)	6
2.2. Input / Output Ports	6
2.3. Independent Operation Modes.....	6
2.4. Test Manner.....	7
2.5. Description of Test Facility	7
2.6. Test Software	7
2.7. Description of Support Device.....	7
2.8. Measurement Uncertainty	7
3. MEASURING DEVICE AND TEST EQUIPMENT	8
3.1. For Radiated Emission Measurement.....	8
4. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
4.1. Block Diagram of Test Setup	9
4.2. Conducted Limit.....	9
4.3. Test Procedure.....	9
4.4. Measuring Results.....	10
5. RADIATED EMISSION MEASUREMENT(UP TO 1GHz)	11
5.1. Block Diagram of Test Setup	11
5.2. Radiated Limit	11
5.3. Test Procedure.....	11
5.4. Measuring Results.....	12
6. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	15
6.1. Block Diagram of Test Setup	15
6.2. Radiated Limit	15
6.3. Test Procedure.....	15
6.4. Measuring Results.....	16

TEST REPORT DESCRIPTION

Applicant : FOOFEI INTELLIGENT MANUFACTURING TECHNOLOGY (DONGGUAN) CO., LTD.

Manufacturer : FOOFEI INTELLIGENT MANUFACTURING TECHNOLOGY (DONGGUAN) CO., LTD..

Trade Mark : N/A

EUT : FF-T1_Wireless pump

Model No. : FF-W-0005-002

Power Supply : DC 5V

Measurement Procedure Used:

FCC CFR Title 47, Part 15, Subpart B
ANSI C63.4-2014

The device described above is tested by EMTEK (NINGBO) CO., LTD. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and EMTEK (NINGBO) CO., LTD. is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of EMTEK (NINGBO) CO., LTD.

Date of Test : May 27, 2022 to June 13, 2022

Prepared by : June Gao
June Gao/Engineer

Reviewer : Ade Wang
Ade Wang/Supervisor

Approved & Authorized Signer : Tony Wei
Tony Wei/Manager

Modified Information

Version	Report No.	Revision date	Summary
	ENB2205270024W01001R	/	Original Report

1. SUMMARY OF TEST RESULTS

EMISSION		
Description of Test Item	Standard & Limits	Results
Conducted Emission at Mains Terminals	FCC CFR Title 47, Part 15, Subpart B, Class B ANSI C63.4-2014	N/A
Radiated Emission	FCC CFR Title 47, Part 15, Subpart B, Class B ANSI C63.4-2014	Pass
Note: N/A is an abbreviation for Not Applicable.		

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT : FF-T1_Wireless pump
Model Number : FF-W-0005-002
Test Voltage : DC 5V
Modulation: ASK
Operating Frequency : Receive:140-170 kHz
Sample Number : 1#
Number of Channels : 1 Channel
Antenna Type : Coil antenna
Antenna Gain : 0.0 dBi
Temperature Range : -15°C ~ +50°C
Date of Received : May 27, 2022

2.2. Input / Output Ports

Port #	Name	Type*	Cable Max. >3m	Cable Shielded	Comments
1	Enclosure	N/E	--	--	None
2	DC port	DC	No	Unshielded	None

* Note: Use abbreviations:

AC= AC Power Port

DC= DC Power Port

N/E= Non-Electrical

I/O= Signal Input or Output Port (Not Involved in Process Control)

TP= Telecommunication Ports

2.3. Independent Operation Modes

A. Receive

2.4. Test Manner

Test Items	Test Voltage	Operation Modes	Worst case
Radiated Emission	DC 5V	Mode A	Mode A

2.5. Description of Test Facility

Site Description

EMC Lab. : **Accredited by CNAS**
 The Certificate Registration Number is L6666.
 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2018 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1302
 Test Firm Registration Number: 436491

Accredited by A2LA

The certificate is valid until May 31, 2023

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0114

Name of Firm

: EMTEK (NINGBO) CO., LTD.

Site Location

: 1F Building 4, 1177#, Lingyun Road, Ningbo National Hi-Tech Zone, Ningbo, Zhejiang, China.

2.6. Test Software

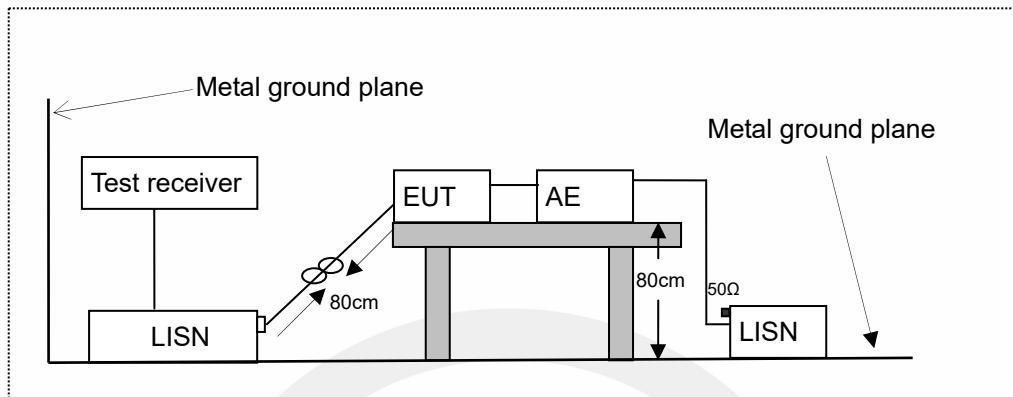
Item : Software
 Radiated Emission : EZ-EMC (Ver. EMEC-3A1)

2.7. Description of Support Device

N/A

2.8. Measurement Uncertainty

Test Item	Uncertainty
Radiated Emission Uncertainty (3m Chamber)	: 4.06 dB (Polarize: H) (30MHz-1000MHz) 4.04 dB (Polarize: V) (30MHz-1000MHz) 4.82 dB (Polarize: H) (1~18GHz) 4.80 dB (Polarize: V) (1~18GHz)


3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. For Radiated Emission Measurement

Equ. No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ENE-002	Spectrum Analyzer	Rohde & Schwarz	ESCI	101107	July 08, 2021	1 Year
ENE-002	EMI Test Receiver	Rohde & Schwarz	ESCI	101107	July 08, 2021	1 Year
ENE-009	Pre-Amplifier	CD	PAP-0203	22015	July 08, 2021	1 Year
ENE-010	Bilog Antenna	Schwarzbeck	VULB9163	9163-467	July 12, 2020	2 Year
ENE-025-1	Cable	Huber + Suhner	CBL3-NN-0.5m	101216-2140500-2	July 08, 2021	1 Year
ENE-025-2	Cable	Huber + Suhner	CBL3-NN-3.0m	101216-2143000-2	July 08, 2021	1 Year
ENE-025-3	Cable	Huber + Suhner	CBL3-NN-9.0m	101216-2149000	July 08, 2021	1 Year

4. POWER LINE CONDUCTED EMISSION MEASUREMENT

4.1. Block Diagram of Test Setup

LISN: Line Impedance Stabilization Network

AE: Associated equipment

EUT: Equipment under test

4.2. Conducted Limit

FCC CFR Title 47, Part 15, Subpart B, Class B

Frequency (MHz)	Limit (dB μ V)	
	Quasi-peak Level	Average Level
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *
0.50 ~ 5.00	56.0	46.0
5.00 ~ 30.00	60.0	50.0

NOTE1-The lower limit shall apply at the transition frequencies.
 NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

4.3. Test Procedure

The EUT was placed on a desk 0.8 m height from the metal ground plane and 0.4 m from the conducting wall of the shielding room and it was kept at least 0.8 m from any other grounded conducting surface. The size of the table will nominally be 1.5 m x1.0 m.

The rear of the arrangement shall be flush with the back of the supporting tabletop unless that would not be possible or typical of normal use.

All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units.

Connect EUT to the power mains through a line impedance stabilization network (LISN). Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

All the support units are connecting to the other LISN.

The LISN provides 50 ohm coupling impedance for the measuring instrument.

Both sides of AC line were checked for maximum conducted interference.

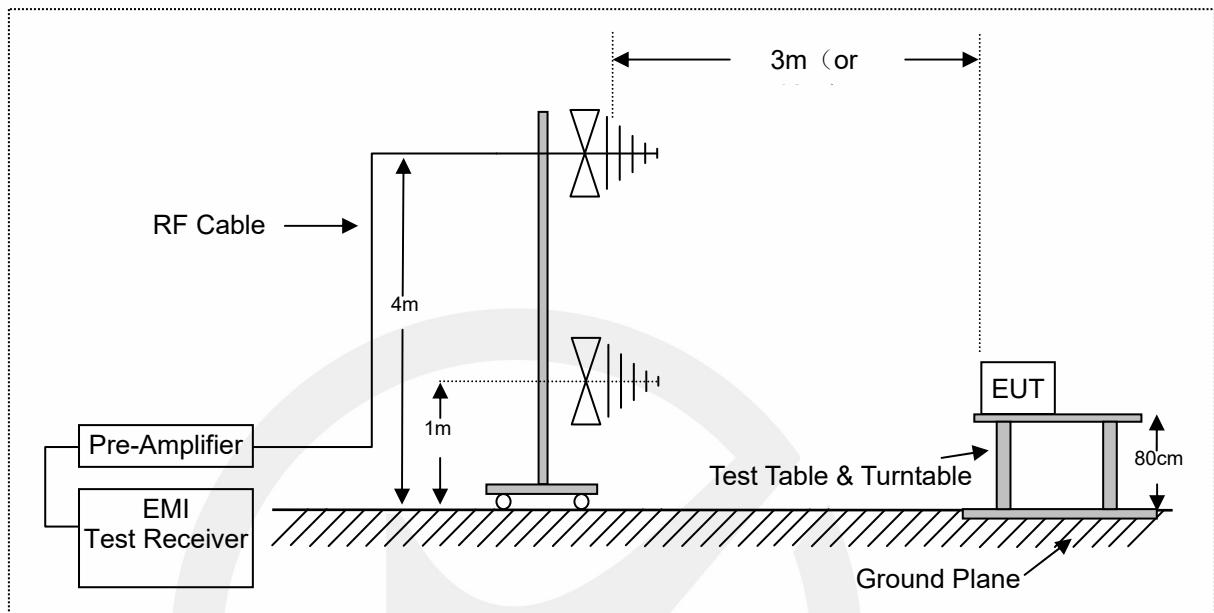
The frequency range from 150 kHz to 30 MHz was sweep.

Set the test-receiver system to quasi peak detect function and average detect function, and to measure the conducted emissions values.

Test results were obtained from the following equation:

Measurement (dB μ V) = Correct Factor (dB) + Reading (dB μ V)

Over (dB) = Measurement (dB μ V) - Limit (dB μ V)


4.4. Measuring Results

N/A.

5. RADIATED EMISSION MEASUREMENT(UP TO 1GHz)

5.1. Block Diagram of Test Setup

5.2. Radiated Limit

FCC CFR Title 47, Part 15, Subpart B, Class B

Frequency MHz	Distance Meters	Field Strengths Limit	
		μ V/m	dB(μ V)/m
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0

5.3. Test Procedure

The EUT was placed on a non-conductive table whose total height equaled 80cm. All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

The EUT was set 3 meters away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

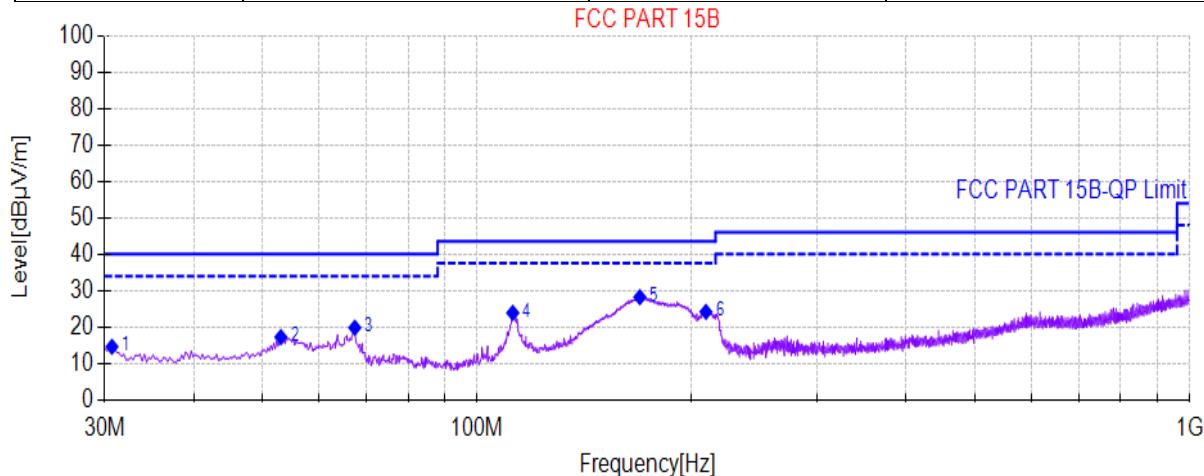
The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The bandwidth of the Receiver is set at 120 kHz.

Test results were obtained from the following equation:

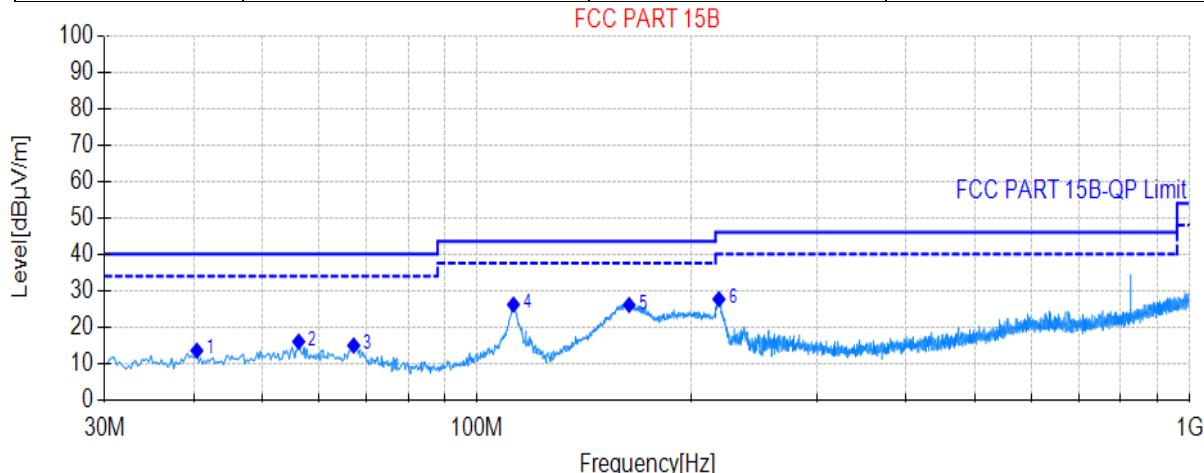
Measurement (dB μ V) = Correct Factor (dB) + Reading (dB μ V)

Over (dB) = Measurement (dB μ V) - Limit (dB μ V)


5.4. Measuring Results

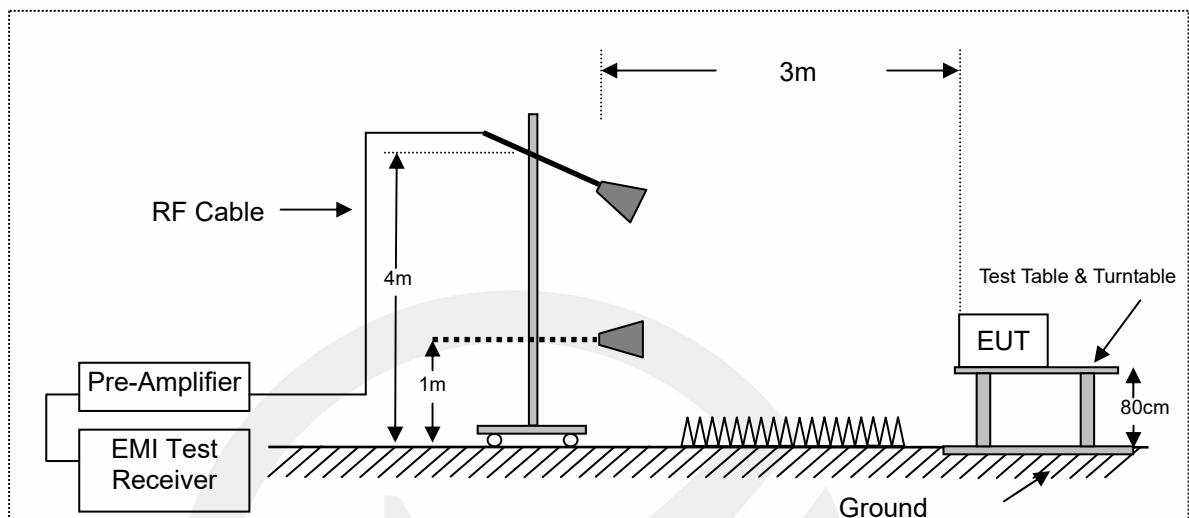
Pass.

Please refer to following pages.



Project Information			
Mode:	Receive	Voltage:	DC 5V
Environment:	Temp: 25°C; Humi:60%	Engineer:	Alarak Wu

Final Data List										
NO.	Freq. [MHz]	QP Reading [dBμV/m]	Factor [dB]	QP Value [dBμV/m]	QP Limit [dBμV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	Verdict
1	30.727	39.02	-24.46	14.56	40.00	25.44	100	296	Vertical	Pass
2	53.037	39.56	-22.34	17.22	40.00	22.78	100	316	Vertical	Pass
3	67.345	43.33	-23.54	19.79	40.00	20.21	100	356	Vertical	Pass
4	112.207	47.41	-23.53	23.88	43.50	19.62	100	302	Vertical	Pass
5	169.195	52.88	-24.68	28.20	43.50	15.30	100	356	Vertical	Pass
6	209.450	47.09	-22.93	24.16	43.50	19.34	100	280	Vertical	Pass


Project Information			
Mode:	Receive	Voltage:	DC 5V
Environment:	Temp: 25°C; Humi:60%	Engineer:	Alarak Wu

Final Data List										
NO.	Freq. [MHz]	QP Reading [dBμV/m]	Factor [dB]	QP Value [dBμV/m]	QP Limit [dBμV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	Verdict
1	40.427	36.77	-23.26	13.51	40.00	26.49	100	356	Horizontal	Pass
2	56.190	38.31	-22.34	15.97	40.00	24.03	100	356	Horizontal	Pass
3	67.102	38.40	-23.48	14.92	40.00	25.08	100	338	Horizontal	Pass
4	112.450	49.70	-23.55	26.15	43.50	17.35	100	356	Horizontal	Pass
5	163.375	50.88	-24.83	26.05	43.50	17.45	100	340	Horizontal	Pass
6	218.422	50.30	-22.65	27.65	46.00	18.35	100	356	Horizontal	Pass

6. RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

6.1. Block Diagram of Test Setup

6.2. Radiated Limit

FCC CFR Title 47, Part 15, Subpart B, Class B

Frequency range GHz	Average limit dB(μ V/m)	Peak limit dB(μ V/m)
Above 1000	54	74

Note: The highest internal source of an EUT is defined as the highest frequency generated or used in the device or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 1.705 MHz, the measurement shall only be made up to 30 MHz. If the highest frequency of the internal sources of the EUT is between 1.705 MHz and 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 40 GHz, whichever is less.

6.3. Test Procedure

The EUT was placed on a non-conductive table whose total height equaled 80cm. All units of equipment forming the system under test (includes the EUT as well as connected peripherals and associated equipment or devices) shall be arranged such that a nominal 0.1 m separation is achieved between the neighboring units. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the centre into a bundle no longer than 0.4 m, so that its length is shortened to 1 m.

The EUT was set 3 meters away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with peak detector for peak values, and use RBW=1 MHz and VBW=10 Hz with peak detector for Average Values.

Test results were obtained from the following equation:

$$\begin{aligned}\text{Measurement (dB}\mu\text{V)} &= \text{Correct Factor (dB)} + \text{Reading (dB}\mu\text{V)} \\ \text{Over (dB)} &= \text{Measurement (dB}\mu\text{V)} - \text{Limit (dB}\mu\text{V)}\end{aligned}$$

6.4. Measuring Results

N/A.

*** End of Report ***

声 明 Statement

1. 本报告无授权批准人签字及“检验报告专用章”无效；

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制；

This report shall not be copied partly without authorization.

3. 本报告的检测结果仅对送测样品有效，委托方对样品的代表性和资料的真实性负责；

The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.

4. 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内，仅作为客户委托、科研、教学或内部质量控制等目的使用；

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

5. 本检测报告以实测值进行符合性判定，未考虑不确定度所带来的风险，本实验室不承担相关责任，特别约定、标准或规范中有明确规定的除外；

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检测报告若有异议，请于收到报告之日起 20 日内提出；

Objections shall be raised within 20 days from the date receiving the report.