

Report No.: NTC2205370FV00

# **FCC RADIO TEST REPORT**

Applicant.....: Soulaca INC

Address.....: 36 S 18TH AVE STE A, BRIGHTON, CO, US, 80601

Manufacturer.....: SHINEWORLD INNOVATIONS LIMITED

Address.....: #1502, BUILDING A4, R&D CENTER, SONGSHAN LAKE INTELLIGENT

VALLEY, LIAOBU, DONGGUAN, GUANGDONG, 523425, CHINA

Factory.....: SHINEWORLD INNOVATIONS LIMITED

Address.....: #1502, BUILDING A4, R&D CENTER, SONGSHAN LAKE INTELLIGENT

VALLEY, LIAOBU, DONGGUAN, GUANGDONG, 523425, CHINA

Product Name..... BATHROOM LED TV

Brand Name.....: Soulaca

Model No. .....: SS215U22, SS270U22, SS320U22, M106, M156, M19, M22, M27, M32, M42,

M55 (For model difference refer to section 2.1)

FCC ID.....: 2A658-SLC1

Measurement Standard.....: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Receipt Date of Samples....: May 24, 2022

Date of Tested...... : May 24, 2022 to June 24, 2022

Date of Report...... : July 18, 2022

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore

Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Rose Hu / Project Engineer

lori Fan Authorized Signatory



## **Table of Contents**

| 1. Summary of Test Result                                         | 4  |
|-------------------------------------------------------------------|----|
| 2. General Description of EUT                                     | 5  |
| 3. Test Channels and Modes Detail                                 | 8  |
| 4. Configuration of EUT                                           | 8  |
| 5. Modification of EUT                                            | 8  |
| 6. Description of Support Device                                  | 9  |
| 7. Test Facility and Location                                     | 10 |
| 8. Applicable Standards and References                            | 10 |
| 9. Deviations and Abnormalities from Standard Conditions          | 11 |
| 10. Test Conditions                                               | 11 |
| 11. Measurement Uncertainty                                       | 12 |
| 12. Sample Calculations                                           | 13 |
| 13. Test Items and Results                                        | 14 |
| 13.1 Conducted Emissions Measurement                              | 14 |
| 13.2 Maximum Conducted Output Power Measurement                   | 18 |
| 13.3 6dB Bandwidth Measurement                                    | 20 |
| 13.4 Power Spectral Density Measurement                           | 24 |
| 13.5 Band Edge and Conducted Spurious Emissions Measurement       | 28 |
| 13.6 Radiated Spurious Emissions and Restricted Bands Measurement | 33 |
| 13.7 Antenna Requirement                                          | 40 |
| 14. Test Equipment List                                           | 41 |





# **Revision History**

| Report Number  | Description   | Issued Date |
|----------------|---------------|-------------|
| NTC2205370FV00 | Initial Issue | 2022-07-22  |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |





# 1. Summary of Test Result

| FCC Rules                      | Description of Test                              | Result | Remarks |
|--------------------------------|--------------------------------------------------|--------|---------|
| §15.207 (a)                    | AC Power Conducted Emission                      | PASS   |         |
| §15.247(b)(3)                  | Maximum Conducted Output Power                   | PASS   |         |
| §15.247(a)(2)                  | 6dB Bandwidth                                    | PASS   |         |
| §15.247(e)                     | Power Spectral Density                           | PASS   |         |
| §15.247(d)                     | Band Edge and Conducted Spurious<br>Emissions    | PASS   |         |
| §15.247(d),§15.209,<br>§15.205 | Radiated Spurious Emissions and Restricted Bands | PASS   |         |
| §15.203                        | Antenna Requirement                              | PASS   |         |





# 2. General Description of EUT

| Product Information     |                                                                                                                                                               |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                               |
| Product name:           | BATHROOM LED TV                                                                                                                                               |
| Main Model Name:        | M22                                                                                                                                                           |
| Additional Model Name:  | SS215U22, SS270U22, SS320U22, M106, M156, M19, M27, M32, M42, M55                                                                                             |
| Model Difference:       | These models have the same circuit schematic, construction, PCB Layout and critical components. Their difference is model number only due to trading purpose. |
| S/N:                    | 2205-2247                                                                                                                                                     |
| Brand Name              | Soulaca                                                                                                                                                       |
| Hardware version:       | V01                                                                                                                                                           |
| Software version:       | V01                                                                                                                                                           |
| Rating:                 | AC 100-230V 50/60Hz                                                                                                                                           |
| Classification:         | Class B                                                                                                                                                       |
| Typical arrangement:    | Table-top                                                                                                                                                     |
| I/O Port:               | HDMI IN port*3, USB port*2, Tuner port*2, AV port*1, Earphone port*1, RJ45 port*1                                                                             |
| Accessories Information |                                                                                                                                                               |
| Adapter:                | N/A                                                                                                                                                           |
| Cable:                  | AC Port: 1.55m unshielded.                                                                                                                                    |
| Other:                  | IR Remote control                                                                                                                                             |
| Additional Information  |                                                                                                                                                               |
| Note:                   | According to the model difference, all tests were performed on model M22.                                                                                     |
| Remark:                 | All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.                                |





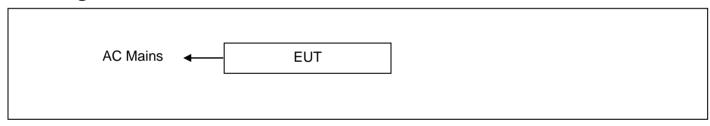
| Technical Specification |                                               |
|-------------------------|-----------------------------------------------|
| Frequency Range:        | 2412-2462MHz for IEEE 802.11b/g/n(HT20)       |
|                         | 2422-2452MHz for IEEE 802.11n(HT40)           |
| Modulation Technology:  | DSSS, OFDM                                    |
| Modulation Type:        | CCK, DQPSK, DBPSK, 64-QAM, 16-QAM, QPSK, BPSK |
| Number of Channel:      | 11 for IEEE 802.11b/g/n(HT20)                 |
|                         | 7 for IEEE 802.11n(HT40)                      |
| Channel Space:          | 5MHz                                          |
| Antenna Type:           | Integral antenna*2                            |
| Antenna Gain:           | 2dBi (Declared by the manufacturer)           |





| Channel List |                         |          |                    |  |  |
|--------------|-------------------------|----------|--------------------|--|--|
| IEEE 802.111 | b/ g/ n(HT20)           | IEEE 802 | .11n(HT40)         |  |  |
| Channel      | Channel Frequency (MHz) |          | Frequency<br>(MHz) |  |  |
| 1            | 2412                    |          |                    |  |  |
| 2            | 2417                    |          |                    |  |  |
| 3            | 2422                    | 3        | 2422               |  |  |
| 4            | 2427                    | 4        | 2427               |  |  |
| 5            | 2432                    | 5        | 2432               |  |  |
| 6            | 2437                    | 6        | 2437               |  |  |
| 7            | 2442                    | 7        | 2442               |  |  |
| 8            | 2447                    | 8        | 2447               |  |  |
| 9            | 2452                    | 9        | 2452               |  |  |
| 10           | 2457                    |          |                    |  |  |
| 11           | 2462                    |          |                    |  |  |




# 3. Test Channels and Modes Detail

|    | Mode        | Channel | Frequency<br>(MHz) | Specification Remark     |                                      |            |
|----|-------------|---------|--------------------|--------------------------|--------------------------------------|------------|
|    |             | 1       | 2412               | IEEE 802.11b/ g/ n(HT20) | SISO, MIMO                           |            |
|    |             | 3       | 2422               | IEEE 802.11n(HT40)       | SISO, MIMO                           |            |
| 1  | 1 TX        | TX      | 6                  | 2437                     | IEEE 802.11b/ g/ n(HT20)/<br>n(HT40) | SISO, MIMO |
|    |             | 9       | 2452               | IEEE 802.11n(HT40)       | SISO, MIMO                           |            |
|    |             | 11      | 2462               | IEEE 802.11b/ g/ n(HT20) | SISO, MIMO                           |            |
| 2. | Normal Mode |         |                    |                          |                                      |            |

### Note:

- 1. TX mode means that the EUT was programmed to be in continuously transmitting mode.
- 2. SISO mode applies to 802.11b/g mode only, and both SISO and MIMO applies 802.11n modes.

# 4. Configuration of EUT



## 5. Modification of EUT

No modifications are made to the EUT during all test items.





# 6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| No. | Equipment    | Brand | M/N            | S/N      | Cable Specification                                                         | Remarks                                                                                |
|-----|--------------|-------|----------------|----------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1.  | Laptop       | DELL  | VOSTR0<br>3400 | H3K2XA01 | Power Cord: 1.8m<br>Unshielded, with core                                   | Provided by the Lab                                                                    |
| 2.  | Adapter      | DELL  | HA45NM<br>140  | N/A      | AC Line: 1.13m<br>unshielded<br>DC Line: 1.15m<br>unshielded with a<br>core | I/P: AC 100-240V<br>50-60Hz, 1.3A<br>O/P: DC 19.5V 2.31A<br>45W<br>Provided by the Lab |
| 3.  | Test fixture |       |                |          |                                                                             | Provided by the manufacturer                                                           |

| Software | Power Setting      |       |  |  |
|----------|--------------------|-------|--|--|
|          | IEEE 802.11b       | 55,75 |  |  |
| RTLBTAPP | IEEE 802.11g       | 20,35 |  |  |
| KILDIALI | IEEE 802.11n(HT20) | 20,35 |  |  |
|          | IEEE 802.11n(HT40) | 20,35 |  |  |



# 7. Test Facility and Location

| Test Site          | : | Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)               |  |
|--------------------|---|-------------------------------------------------------------------------------|--|
| Accreditations and | : | The Laboratory has been assessed and proved to be in compliance with          |  |
| Authorizations     |   | CNAS/CL01                                                                     |  |
|                    |   | Listed by CNAS, August 13, 2018                                               |  |
|                    |   | he Certificate Registration Number is L5795.                                  |  |
|                    |   | The Certificate is valid until August 13, 2024                                |  |
|                    |   | The Laboratory has been assessed and proved to be in compliance with ISO17025 |  |
|                    |   | Listed by A2LA, November 01, 2017                                             |  |
|                    |   | The Certificate Registration Number is 4429.01                                |  |
|                    |   | e Certificate is valid until December 31, 2023                                |  |
|                    |   | Listed by FCC, November 06, 2017                                              |  |
|                    |   | Test Firm Registration Number is 907417                                       |  |
|                    |   | Listed by Industry Canada, June 08, 2017                                      |  |
|                    |   | The Certificate Registration Number is 46405-9743A                            |  |
| T (0)              |   |                                                                               |  |
| Test Site Location | : | Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng       |  |
|                    |   | District, Dongguan City, Guangdong Province, China                            |  |

# 8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

### **Test Standards:**

47 CFR Part 15, Subpart C, 15.247 ANSI C63.10-2013

### **References Test Guidance:**

DTS KDB 558074 D01 15.247 Meas Guidance v05r02 KDB 662911 D01 Multiple Transmitter Output v02r01



# 9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

# 10. Test Conditions

| No. | Test Item                                        | Test Mode | Test Voltage | Tested by | Remarks    |
|-----|--------------------------------------------------|-----------|--------------|-----------|------------|
| 1.  | AC Power Conducted Emission                      | 2         | AC 120V 60Hz | Sean      | See note 1 |
| 2.  | Max. Conducted Output Power                      | 1         | AC 120V 60Hz | Sean      | See note 1 |
| 3.  | 6dB Bandwidth                                    | 1         | AC 120V 60Hz | Sean      | See note 1 |
| 4.  | Power Spectral Density                           | 1         | AC 120V 60Hz | Sean      | See note 1 |
| 5.  | Band Edge and Conducted Spurious Emissions       | 1         | AC 120V 60Hz | Sean      | See note 1 |
| 6.  | Radiated Spurious Emissions and Restricted Bands | 1, 2      | AC 120V 60Hz | Sean      | See note 1 |
| 7.  | Antenna Requirement                              |           |              |           | See note 1 |

#### Note:

<sup>1.</sup> The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~70%, 86~106kPa.





11. Measurement Uncertainty

| No. | Test Item                  | Frequency      | Uncertainty      | Remarks |
|-----|----------------------------|----------------|------------------|---------|
| 1.  | Conducted Emission         | 150KHz ~ 30MHz | ±2.52 dB         |         |
| 2.  |                            | 9KHz ~ 30MHz   | ±2.60 dB         |         |
|     | Radiated Emission Test     | 30MHz ~ 1GHz   | ±5.04 dB         |         |
|     |                            | 1GHz ~ 18GHz   | ±5.23 dB         |         |
|     |                            | 18GHz ~ 40GHz  | ±5.14 dB         |         |
| 3.  | RF Conducted Test          | 10Hz ~ 40GHz   | ±1.06 dB         |         |
| 4.  | Occupied Channel Bandwidth |                | ±1.42 x10-4% MHz |         |

#### Note:

- 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.
- 3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.





# 12. Sample Calculations

| Conducted Emission |                         |                     |                    |                 |              |          |  |  |  |  |
|--------------------|-------------------------|---------------------|--------------------|-----------------|--------------|----------|--|--|--|--|
| Freq.<br>(MHz)     | Reading Level<br>(dBuV) | Correct Factor (dB) | Measurement (dBuV) | Limit<br>(dBuV) | Over<br>(dB) | Detector |  |  |  |  |
| 0.1500             | 49.00                   | 10.60               | 59.60              | 66.00           | -6.40        | QP       |  |  |  |  |

Where,

Freq. = Emission frequency in MHz

Reading Level = Spectrum Analyzer/Receiver Reading

Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation

Measurement = Reading + Corrector Factor

Limit = Limit stated in standard

Margin = Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

| Radiated Spurious Emissions and Restricted Bands                                                     |       |       |       |       |       |    |  |  |  |
|------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|----|--|--|--|
| Freq. Reading Level Correct Factor Measurement Limit Over (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) |       |       |       |       |       |    |  |  |  |
| 110.5100                                                                                             | 41.82 | -7.62 | 34.20 | 43.50 | -9.30 | QP |  |  |  |

Where,

Freq. = Emission frequency in MHz

Reading Level = Spectrum Analyzer/Receiver Reading

Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier

Measurement = Reading + Corrector Factor

Limit = Limit stated in standard

Over = Margin, which calculated by Measurement - Limit

Detector = Reading for Quasi-Peak / Average / Peak

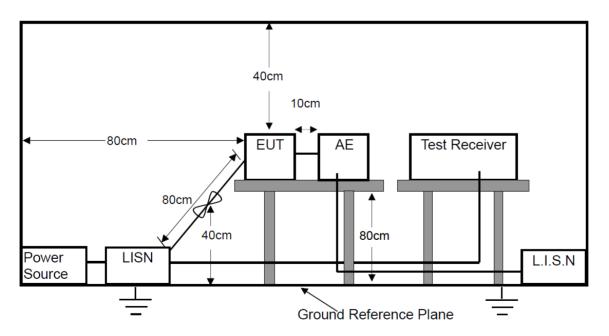
Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.



# 13. Test Items and Results

## 13.1 Conducted Emissions Measurement

### **LIMITS**


According to the requirements of FCC PART 15.207, the limits are as follows:

| Frequency (MHz) | Quasi-peak | Average  |
|-----------------|------------|----------|
| 0.15 to 0.5     | 66 to 56   | 56 to 46 |
| 0.5 to 5        | 56         | 46       |
| 5 to 30         | 60         | 50       |

Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

## **BLOCK DIAGRAM OF TEST SETUP**



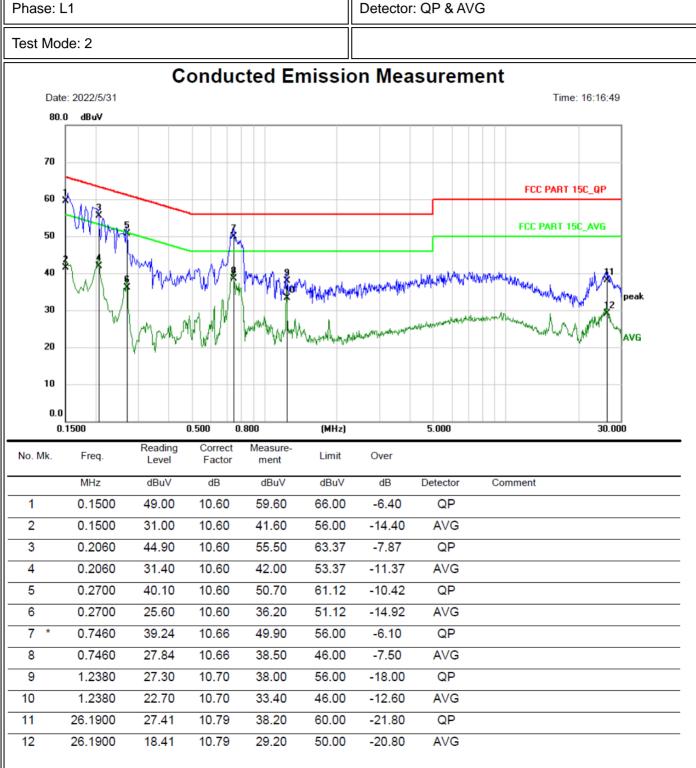




## **TEST PROCEDURES**

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

## **TEST RESULTS**


**PASS** 

Please refer to the following pages.





| M/N: M22     | Testing Voltage: AC 120V 60Hz |
|--------------|-------------------------------|
| Phase: L1    | Detector: QP & AVG            |
| Test Mode: 2 |                               |







1.2380

14.7859

14.7859

10 11

12

22.70

29.95

19.65

10.70

10.75

10.75

33.40

40.70

30.40

46.00

60.00

50.00

-12.60

-19.30

-19.60

AVG

QP

AVG

| M/N: M22      |              |                  |                      |                       | Testing Voltage: AC 120V 60Hz |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|--------------|------------------|----------------------|-----------------------|-------------------------------|------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase:        | N            |                  |                      |                       |                               | Detector               | r: QP & AV                           | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mo       | de: 2        |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date          | e: 2022/5/31 | C                | ondu                 | cted Er               | nissio                        | n Mea                  | surem                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e: 16:21:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | D dBuV       |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C. 10.21.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 70            |              |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60            | Į.           |                  |                      |                       |                               |                        |                                      | FCC PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15C_QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 00            | ALLA.        |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50            |              |                  | Ā                    |                       |                               |                        |                                      | FCC PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISC_AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 40            | * *          | Whi              | MA AME               | 9<br>44 - 1 14 - * 43 |                               |                        | مراهد والمراجع المراجع               | HOME HORAL HORAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |              | 1 1 1            | ון יוען.<br>און יוען | LINNAL MARIN          | Halfrananahppal               | 4 Hallyharran          | National Contraction                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A MANAGEMENT OF THE PROPERTY O |
| 30            | \www.        |                  | الأراريل             | M. 1                  | 1                             |                        | markey by the property and the party | port of the distribution of the state of the | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20            |              | N balloway       | M. 76M               | Mary Mary             | Werensy (APANA)               | hopport dunatural form |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Muli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10            |              |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0           |              |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 1500         | 1                | ).500 C              | .800                  | (MHz)                         |                        | 5.000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| No. Mk.       | Freq.        | Reading<br>Level | Correct<br>Factor    | Measure-<br>ment      | Limit                         | Over                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | MHz          | dBuV             | dB                   | dBuV                  | dBuV                          | dB                     | Detector                             | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1             | 0.1580       | 48.90            | 10.60                | 59.50                 | 65.57                         | -6.07                  | QP                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2             | 0.1580       | 30.20            | 10.60                | 40.80                 | 55.57                         | -14.77                 | AVG                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3             | 0.2100       | 44.00            | 10.60                | 54.60                 | 63.21                         | -8.61                  | QP                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4             | 0.2100       | 29.90            | 10.60                | 40.50                 | 53.21                         | -12.71                 | AVG                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5             | 0.2660       | 38.50            | 10.60                | 49.10                 | 61.24                         | -12.14                 | QP                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6             | 0.2660       | 24.10            | 10.60                | 34.70                 | 51.24                         | -16.54                 | AVG                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 0.7460       | 39.34            | 10.66                | 50.00                 | 56.00                         | -6.00                  | QP                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 *           |              |                  |                      |                       |                               |                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 *<br>8<br>9 | 0.7460       | 26.94<br>28.40   | 10.66                | 37.60<br>39.10        | 46.00<br>56.00                | -8.40<br>-16.90        | AVG<br>QP                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## 13.2 Maximum Conducted Output Power Measurement

### **LIMITS**

For system using digital modulation in the 2400-2483.5 MHz bands, the limit for peak output power is 1 Watt.

If the transmitting antenna of directional gain greater than 6dBi are used the peak output power form the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6dBi.

In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of Antenna exceeds 6dBi.

### **BLOCK DIAGRAM OF TEST SETUP**



### **TEST PROCEDURES**

ANSI C63.10 - 2013, Section 11.9.1.3 ANSI C63.10 - 2013, Section 11.9.2.3.2

#### **TEST RESULTS**

**PASS** 

Please refer to the following table.





| Channel      | Frequency<br>(MHz) | Data<br>Rate<br>(Mbps) | P€              | Limit<br>(dBm)  | Result                |     |      |  |  |  |  |  |
|--------------|--------------------|------------------------|-----------------|-----------------|-----------------------|-----|------|--|--|--|--|--|
| IEEE 802.11b |                    |                        |                 |                 |                       |     |      |  |  |  |  |  |
| 1            | 2412               | 1                      |                 | 13.282          |                       | ≤30 | PASS |  |  |  |  |  |
| 6            | 2437               | 1                      |                 | 11.892          |                       | ≤30 | PASS |  |  |  |  |  |
| 11           | 2462               | 1                      |                 | 12.252          |                       | ≤30 | PASS |  |  |  |  |  |
|              |                    |                        | IEEE 80         | )2.11g          |                       |     |      |  |  |  |  |  |
| 1            | 2412               | 6                      |                 | 12.139          |                       | ≤30 | PASS |  |  |  |  |  |
| 6            | 2437               | 6                      |                 | 10.572          |                       | ≤30 | PASS |  |  |  |  |  |
| 11           | 2462               | 6                      |                 | 10.806          |                       | ≤30 | PASS |  |  |  |  |  |
|              |                    |                        | IEEE 802.1      | 1n(HT20)        |                       |     |      |  |  |  |  |  |
|              |                    |                        | ANT_1<br>(SISO) | ANT_2<br>(SISO) | Ant_1+ANT_2<br>(MIMO) |     |      |  |  |  |  |  |
| 1            | 2412               | MCS0                   | 12.439          | 12.058          | 15.263                | ≤30 | PASS |  |  |  |  |  |
| 6            | 2437               | MCS0                   | 10.660          | 11.785          | 14.269                | ≤30 | PASS |  |  |  |  |  |
| 11           | 2462               | MCS0                   | 10.837          | 10.999          | 13.929                | ≤30 | PASS |  |  |  |  |  |
|              | IEEE 802.11n(HT40) |                        |                 |                 |                       |     |      |  |  |  |  |  |
| 3            | 2422               | MCS0                   | 11.320          | 11.949          | 14.656                | ≤30 | PASS |  |  |  |  |  |
| 6            | 2437               | MCS0                   | 10.720          | 11.657          | 14.224                | ≤30 | PASS |  |  |  |  |  |
| 9<br>Note:   | 2452               | MCS0                   | 10.353          | 11.287          | 13.855                | ≤30 | PASS |  |  |  |  |  |

#### Note:

- 1. For IEEE 802.11b/g mode, both of antennas have considered during pre-test, but only the worst case (ANT\_1) was recorded.
- 2. For IEEE 802.11n mode, EUT working in both SISO and MIMO mode.
- 3. Directional Gain = 2dBi + 10log(2) = 5.01 dBi<6 dBi, Therefore the limit doesn't change.





## 13.3 6dB Bandwidth Measurement

### **LIMITS**

The minimum 6dB bandwidth shall be at least 500 kHz

## **BLOCK DIAGRAM OF TEST SETUP**



#### **TEST PROCEDURES**

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to DTS KDB 558074 D01 15.247 Meas Guidance v05r02:

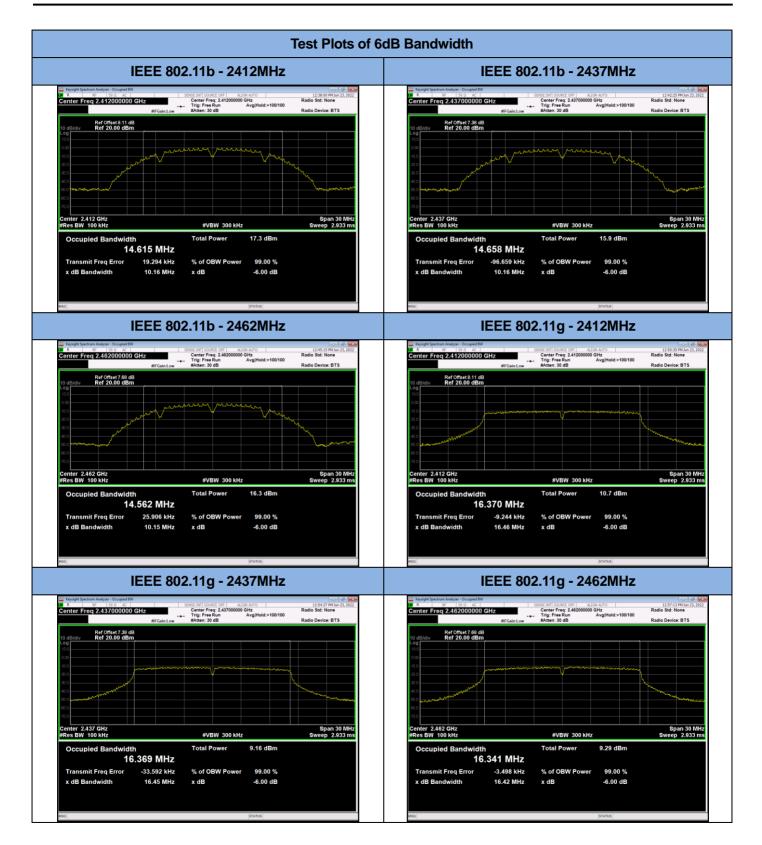
- a. Set the RBW = 100KHz.
- b. Set the VBW ≥ 3 x RBW
- c. Set the Detector = peak.
- d. Set the Sweep time = auto couple.
- e. Set the Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

## **TEST RESULTS**

**PASS** 

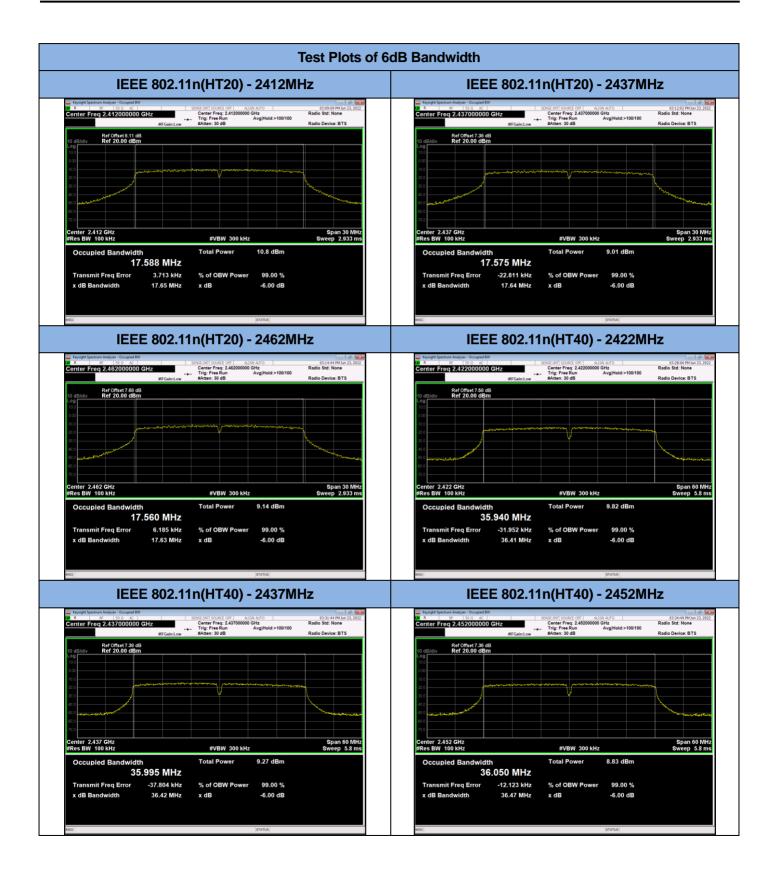
Please refer to the following tables.






| Channel | Frequency (MHz)    | Data Rate<br>(Mbps) | 6dB Bandwidth 99% Bandwidth (MHz) (MHz) |      | Limit<br>(MHz) | Result |  |  |  |  |  |  |
|---------|--------------------|---------------------|-----------------------------------------|------|----------------|--------|--|--|--|--|--|--|
|         | IEEE 802.11b       |                     |                                         |      |                |        |  |  |  |  |  |  |
| 1       | 2412               | 1                   | 10.16                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 6       | 2437               | 1                   | 10.16                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 11      | 2462               | 1                   | 10.15                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
|         | IEEE 802.11g       |                     |                                         |      |                |        |  |  |  |  |  |  |
| 1       | 2412               | 6                   | 16.46                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 6       | 2437               | 6                   | 16.45                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 11      | 2462               | 6                   | 16.42                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
|         |                    |                     | IEEE 802.11n(H                          | Г20) |                |        |  |  |  |  |  |  |
| 1       | 2412               | MCS0                | 17.65                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 6       | 2437               | MCS0                | 17.64                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 11      | 2462               | MCS0                | 17.63                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
|         | IEEE 802.11n(HT40) |                     |                                         |      |                |        |  |  |  |  |  |  |
| 3       | 2422               | MCS0                | 36.41                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 6       | 2437               | MCS0                | 36.42                                   |      | >0.5           | PASS   |  |  |  |  |  |  |
| 9       | 2452               | MCS0                | 36.47                                   |      | >0.5           | PASS   |  |  |  |  |  |  |

Note: Both of antennas have considered during pre-test, but only the worst case (ANT\_1) was recorded.


















## 13.4 Power Spectral Density Measurement

#### **LIMITS**

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

### **BLOCK DIAGRAM OF TEST SETUP**



### **TEST PROCEDURES**

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC DTS KDB 558074 D01 15.247 Meas Guidance v05r02:

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz ≤ RBW ≤ 100KHz
- d. Set the VBW ≥ 3 x RBW.
- e. Set the Detector = peak.
- f. Set the Sweep time = auto couple.
- g. Set the Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.
- j. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

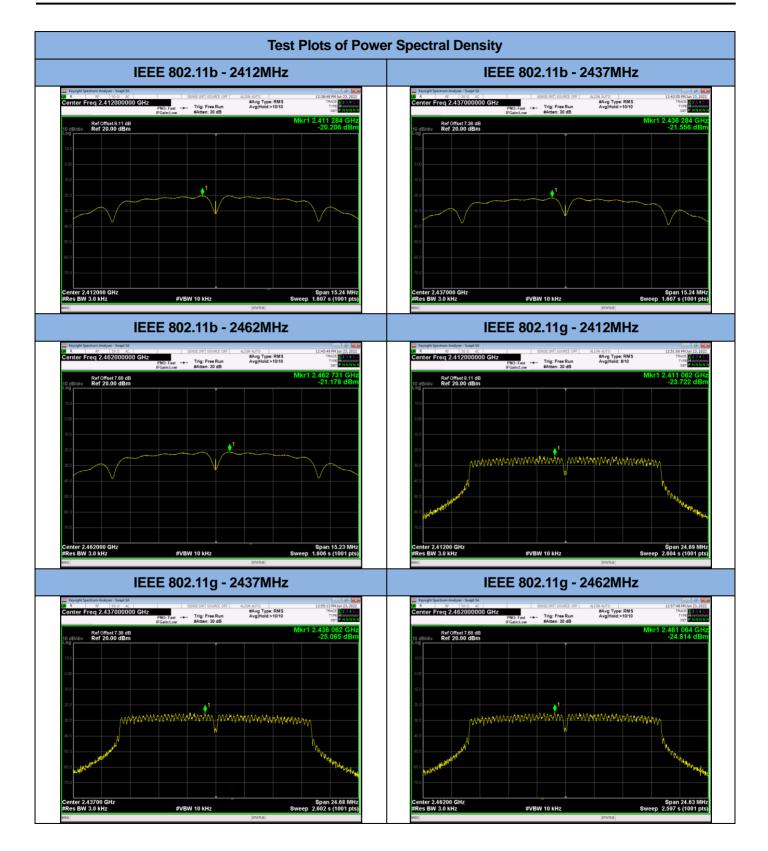
### **TEST RESULTS**

**PASS** 

Please refer to the following table.

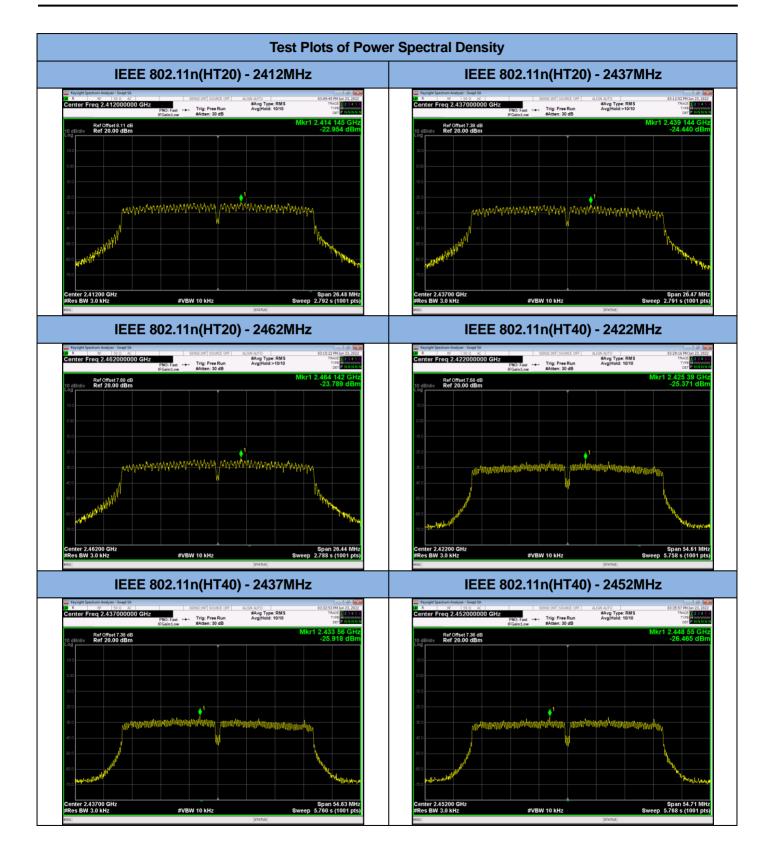





| Channel      | Frequency<br>(MHz) | Data<br>Rate<br>(Mbps) |                 | Limit<br>dBm /<br>3kHz | Result                |   |      |  |  |  |  |  |
|--------------|--------------------|------------------------|-----------------|------------------------|-----------------------|---|------|--|--|--|--|--|
| IEEE 802.11b |                    |                        |                 |                        |                       |   |      |  |  |  |  |  |
| 1            | 2412               | 1                      |                 | -20.206                |                       | 8 | PASS |  |  |  |  |  |
| 6            | 2437               | 1                      |                 | -21.556                |                       | 8 | PASS |  |  |  |  |  |
| 11           | 2462               | 1                      |                 | -21.178                |                       | 8 | PASS |  |  |  |  |  |
|              |                    |                        | IEEE 80         | )2.11g                 |                       |   |      |  |  |  |  |  |
| 1            | 2412               | 6                      |                 | -23.722                |                       | 8 | PASS |  |  |  |  |  |
| 6            | 2437               | 6                      |                 | -25.065                |                       |   |      |  |  |  |  |  |
| 11           | 2462               | 6                      |                 | -24.814                |                       | 8 | PASS |  |  |  |  |  |
|              |                    |                        | IEEE 802.1      | 1n(HT20)               |                       |   |      |  |  |  |  |  |
|              |                    |                        | ANT_1<br>(SISO) | ANT_2<br>(SISO)        | Ant_1+ANT_2<br>(MIMO) |   |      |  |  |  |  |  |
| 1            | 2412               | MCS0                   | -22.954         | -23.065                | -19.999               | 8 | PASS |  |  |  |  |  |
| 6            | 2437               | MCS0                   | -24.440         | -23.499                | -20.934               | 8 | PASS |  |  |  |  |  |
| 11           | 2462               | MCS0                   | -23.789         | -23.968                | -20.867               | 8 | PASS |  |  |  |  |  |
|              |                    |                        | IEEE 802.1      | 1n(HT40)               |                       |   |      |  |  |  |  |  |
| 3            | 2422               | MCS0                   | -25.371         | -24.414                | -21.856               | 8 | PASS |  |  |  |  |  |
| 6            | 2437               | MCS0                   | -25.918         | -23.994                | -21.840               | 8 | PASS |  |  |  |  |  |
| 9            | 2452               | MCS0                   | -26.465         | -25.470                | -22.929               | 8 | PASS |  |  |  |  |  |

Note: 1. For IEEE 802.11b/g mode, both of antennas have considered during pre-test, but only the worst case (ANT\_1) was recorded.

Note: 2. For 802.11n(HT20) 802.11n(HT40), both SISO and MIMO modes have been considered and tested.
















## 13.5 Band Edge and Conducted Spurious Emissions Measurement

#### **LIMITS**

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### **BLOCK DIAGRAM OF TEST SETUP**



### **TEST PROCEDURES**

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to ANSI C63.10-2013, Section 11.11

#### **Measurement Procedure REF**

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Set the Detector = peak.
- d. Set the Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

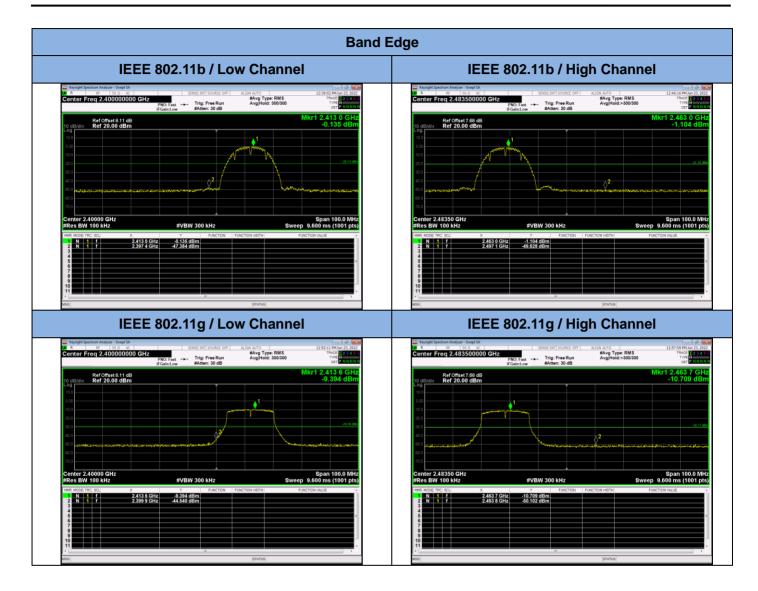




### **Measurement Procedure OOBE**

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Set the Detector = peak.
- d. Set the Sweep = auto couple.
- e. Set the Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

### **TEST RESULTS**


**PASS** 

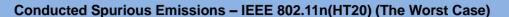
Please refer to the following test plots of the worst case.

Note: both of antennas have considered during pre-test, but only the worst case (ANT\_1) was recorded.

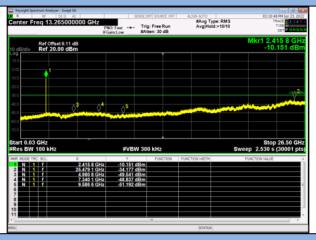




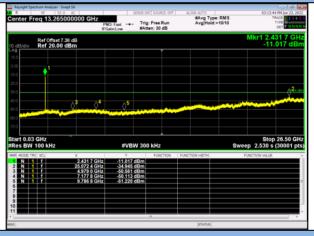




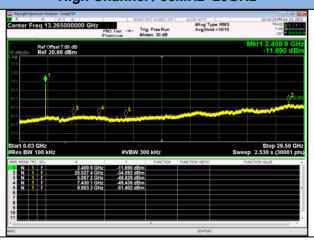








## Low Channel / 30MHz~25GHz



### Middle Channel / 30MHz~25GHz



## High Channel / 30MHz~25GHz

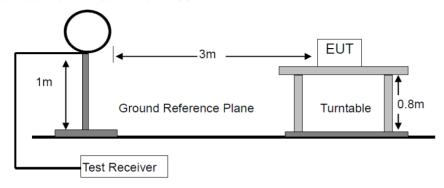




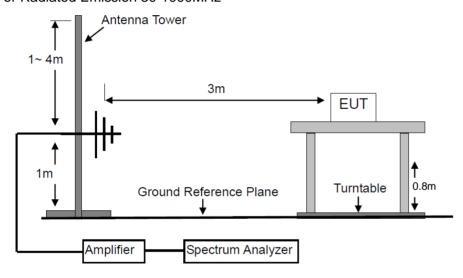


## 13.6 Radiated Spurious Emissions and Restricted Bands Measurement

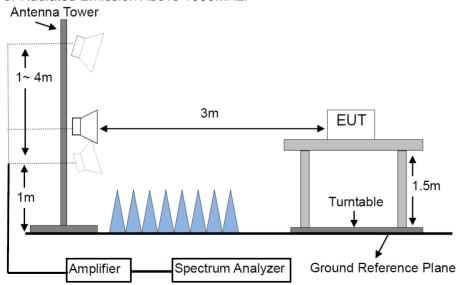
### **LIMITS**


| Frequency range | Distance Meters | Field Strengths Limit (15.209) |
|-----------------|-----------------|--------------------------------|
| MHz             | Distance Meters | μV/m                           |
| 0.009 ~ 0.490   | 300             | 2400/F(kHz)                    |
| 0.490 ~ 1.705   | 30              | 24000/F(kHz)                   |
| 1.705 ~ 30      | 30              | 30                             |
| 30 ~ 88         | 3               | 100                            |
| 88 ~ 216        | 3               | 150                            |
| 216 ~ 960       | 3               | 200                            |
| Above 960       | 3               | 500                            |

- Remark: (1) Emission level (dB) $\mu$ V = 20 log Emission level  $\mu$ V/m
  - (2) The smaller limit shall apply at the cross point between two frequency bands.
  - (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
  - (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
  - (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.




## **BLOCK DIAGRAM OF TEST SETUP**


## For Radiated Emission below 30MHz



## For Radiated Emission 30-1000MHz



## For Radiated Emission Above 1000MHz.





### **TEST PROCEDURES**

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:
  - The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

| Frequency Band<br>(MHz) | Detector | Resolution Bandwidth | Video Bandwidth |
|-------------------------|----------|----------------------|-----------------|
| 30 to 1000              | QP       | 120 kHz              | 300 kHz         |
| Above 1000              | Peak     | 1 MHz                | 3 MHz           |
| Above 1000              | Average  | 1 MHz                | 10 Hz           |



# **TEST RESULTS**

PASS

Please refer to the following pages of the worst case.

Report No.: NTC2205370FV00





| M/N: M22                                            | Testing Voltage: AC 120V 60Hz |
|-----------------------------------------------------|-------------------------------|
| Polarization: Horizontal                            | Detector: QP                  |
| Test Mode: 1 (IEEE 802.11n(HT20) Low channel) -SISO | Distance: 3m                  |

## **Radiated Emission Measurement** Date: 2022/6/23 Time: 9:58:23 80.0 dBuV/m 70 60 FCC\_Part 15C\_3m Margin -6 dB 50 40 30 20 10 0.0 30.0000 127.000 224.000 321.000 418.000 515.000 612.000 709.000 806.000 1000.000 MHz

| No | o. Mk | c. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|----|-------|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|    |       | MHz      | dBu∀             | dB/m              | dBu√/m           | dBu∀/m | dB     | Detector | Comment |  |
| •  | 1     | 110.5100 | 41.82            | -7.62             | 34.20            | 43.50  | -9.30  | QP       |         |  |
| 2  | 2     | 192.9600 | 40.75            | -8.05             | 32.70            | 43.50  | -10.80 | QP       |         |  |
| (  | 3 *   | 273.4700 | 47.16            | -5.96             | 41.20            | 46.00  | -4.80  | QP       |         |  |
| 4  | 1     | 296.7500 | 45.19            | -5.59             | 39.60            | 46.00  | -6.40  | QP       |         |  |
|    | 5     | 519.8500 | 34.63            | -1.43             | 33.20            | 46.00  | -12.80 | QP       |         |  |
| (  | 6     | 817.6400 | 30.52            | 4.28              | 34.80            | 46.00  | -11.20 | QP       |         |  |

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.





| M/N: M22                                            | Testing Voltage: AC 120V 60Hz |
|-----------------------------------------------------|-------------------------------|
| Polarization: Vertical                              | Detector: QP                  |
| Test Mode: 1 (IEEE 802.11n(HT20) Low channel) -SISO | Distance: 3m                  |

## **Radiated Emission Measurement** Date: 2022/6/23 Time: 10:05:13 80.0 dBuV/m 70 60 FCC\_Part 15C\_3m Margin -6 dB 50 40 30 20 10 0.0 30.0000 127.000 321.000 418.000 515.000 612.000 709.000 806.000 1000.000 MHz 224.000

| No.              | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |         |  |
|------------------|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--|
|                  |     | MHz      | dBu∨             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | Comment |  |
| 1                |     | 32.9100  | 42.39            | -9.49             | 32.90            | 40.00  | -7.10  | QP       |         |  |
| 2                | *   | 63.9500  | 44.76            | -9.06             | 35.70            | 40.00  | -4.30  | QP       |         |  |
| 3                |     | 101.7800 | 42.12            | -8.72             | 33.40            | 43.50  | -10.10 | QP       |         |  |
| 4                |     | 222.0600 | 37.51            | -8.31             | 29.20            | 46.00  | -16.80 | QP       |         |  |
| 3<br>4<br>5<br>6 |     | 518.8800 | 37.56            | -2.46             | 35.10            | 46.00  | -10.90 | QP       |         |  |
| 6                |     | 817.6400 | 26.92            | 4.28              | 31.20            | 46.00  | -14.80 | QP       |         |  |

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.





| Modulation:<br>TX (IEEE 802.11n(HT20) –SISO<br>the worst case) |                               |                        |       | Test Result: PASS |                            |           | Test frequency range: 1-25GHz |       |                |        |  |
|----------------------------------------------------------------|-------------------------------|------------------------|-------|-------------------|----------------------------|-----------|-------------------------------|-------|----------------|--------|--|
| Freq.                                                          | Ant.<br>Pol.                  | Reading<br>Level(dBuV) |       | Factor            | Emission Level<br>(dBuV/m) |           | Limit 3m<br>(dBuV/m)          |       | Margin<br>(dB) |        |  |
| (MHz)                                                          | (H/V)                         | PK                     | AV    | (dB/m)            | PK                         | AV        | PK                            | AV    | PK             | AV     |  |
| Operation Mode: TX Mode (Low)                                  |                               |                        |       |                   |                            |           |                               |       |                |        |  |
| 4824                                                           | V                             | 46.51                  | 34.66 | 6.38              | 52.89                      | 41.04     | 74.00                         | 54.00 | -21.11         | -12.96 |  |
| 7236                                                           | V                             | 46.36                  | 32.26 | 10.48             | 56.84                      | 42.74     | 74.00                         | 54.00 | -17.16         | -11.26 |  |
|                                                                |                               |                        |       |                   |                            |           |                               |       |                |        |  |
| 4824                                                           | Н                             | 50.21                  | 43.09 | 6.38              | 56.59                      | 49.47     | 74.00                         | 54.00 | -17.41         | -4.53  |  |
| 7236                                                           | Н                             | 45.89                  | 32.28 | 10.48             | 56.37                      | 42.76     | 74.00                         | 54.00 | -17.63         | -11.24 |  |
|                                                                |                               |                        |       |                   |                            |           |                               |       |                |        |  |
|                                                                | Operation Mode: TX Mode (Mid) |                        |       |                   |                            |           |                               |       |                |        |  |
| 4874                                                           | V                             | 45.78                  | 38.29 | 6.56              | 52.34                      | 44.85     | 74.00                         | 54.00 | -21.66         | -9.15  |  |
| 7311                                                           | V                             | 45.78                  | 31.63 | 10.53             | 56.31                      | 42.16     | 74.00                         | 54.00 | -17.69         | -11.84 |  |
|                                                                |                               |                        |       |                   |                            |           |                               |       |                |        |  |
| 4874                                                           | Н                             | 47.86                  | 40.36 | 6.56              | 54.42                      | 46.92     | 74.00                         | 54.00 | -19.58         | -7.08  |  |
| 7311                                                           | Н                             | 46.02                  | 31.69 | 10.53             | 56.55                      | 42.22     | 74.00                         | 54.00 | -17.45         | -11.78 |  |
|                                                                |                               |                        |       |                   |                            |           |                               |       |                |        |  |
|                                                                |                               |                        | Oper  | ation Mod         | e: TX Mod                  | le (High) |                               |       |                |        |  |
| 4924                                                           | V                             | 43.43                  | 34.68 | 6.76              | 50.19                      | 41.44     | 74.00                         | 54.00 | -23.81         | -12.56 |  |
| 7386                                                           | V                             | 44.54                  | 31.32 | 10.57             | 55.11                      | 41.89     | 74.00                         | 54.00 | -18.89         | -12.11 |  |
|                                                                |                               |                        |       |                   |                            |           |                               |       |                |        |  |
| 4924                                                           | Н                             | 47.04                  | 38.84 | 6.76              | 53.80                      | 45.60     | 74.00                         | 54.00 | -20.20         | -8.40  |  |
| 7386                                                           | Н                             | 45.21                  | 31.56 | 10.57             | 55.78                      | 42.13     | 74.00                         | 54.00 | -18.22         | -11.87 |  |
|                                                                |                               |                        |       |                   |                            |           |                               |       |                |        |  |
| Spurious Emission in restricted band:                          |                               |                        |       |                   |                            |           |                               |       |                |        |  |
| 2390.000                                                       | V                             | 57.96                  | 39.61 | 0.09              | 58.05                      | 39.70     | 74.00                         | 54.00 | -15.95         | -14.30 |  |
| 2390.000                                                       | Н                             | 59.96                  | 45.37 | 0.09              | 60.05                      | 45.46     | 74.00                         | 54.00 | -13.95         | -8.54  |  |
| 2483.500                                                       | V                             | 49.83                  | 35.91 | 0.34              | 50.17                      | 36.25     | 74.00                         | 54.00 | -23.83         | -17.75 |  |
| 2483.500                                                       | Н                             | 51.81                  | 38.24 | 0.34              | 52.15                      | 38.58     | 74.00                         | 54.00 | -21.85         | -15.42 |  |

Remark:

- 1. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits.
- 2. Others emissions are attenuated 20dB below the limits, so it does not record in report.
- 3. Both SISO and MIMO modes have been considered and tested.



## 13.7 Antenna Requirement

## STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.247:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### **ANTENNA CONNECTED CONSTRUCTION**

The EUT is an integral antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 2dBi, therefore, the antenna is considered to meet the requirement.



# 14. Test Equipment List

| Item | Equipment                   | Manufacturer                            | Model No.            | Serial No.        | Last Cal.     | Cal.<br>Interval |
|------|-----------------------------|-----------------------------------------|----------------------|-------------------|---------------|------------------|
| 1.   | Test Receiver               | Rohde & Schwarz                         | ESCI7                | 100837            | Mar. 13, 2022 | 1 Year           |
| 2.   | Antenna                     | Schwarzbeck                             | VULB9162             | 9162-010          | Mar. 23, 2022 | 2 Year           |
| 3.   | Spectrum Analyzer           | Rohde & Schwarz                         | FSU26                | 200409/026        | Mar. 13, 2022 | 1 Year           |
| 4.   | Spectrum Analyzer           | Keysight                                | N9020A               | MY54200831        | Mar. 13, 2022 | 1 Year           |
| 5.   | Spectrum Analyzer           | Rohde & Schwarz                         | FSV40                | 101094            | Mar. 13, 2022 | 1 Year           |
| 6.   | Horn Antenna                | Schwarzbeck                             | BBHA9170             | 9170-172          | Mar. 23, 2022 | 2 Year           |
| 7.   | Power Sensor                | DARE                                    | RPR3006W             | 15I00041SNO<br>64 | Mar. 13, 2022 | 1 Year           |
| 8.   | Horn Antenna                | COM-Power                               | AH-118               | 071078            | Mar. 23, 2022 | 2 Year           |
| 9.   | Pre-Amplifier               | HP                                      | HP 8449B             | 3008A00964        | Mar. 13, 2022 | 1 Year           |
| 10.  | Pre-Amplifier               | HP                                      | HP 8447D             | 1145A00203        | Mar. 13, 2022 | 1 Year           |
| 11.  | Loop Antenna                | Schwarzbeck                             | FMZB 1513            | 1513-272          | Mar. 23, 2022 | 2 Year           |
| 12.  | Test Receiver               | Rohde & Schwarz                         | ESCI                 | 101152            | Mar. 13, 2022 | 1 Year           |
| 13.  | L.I.S.N                     | Rohde & Schwarz                         | ENV 216              | 101317            | Mar. 13, 2022 | 1 Year           |
| 14.  | RF Switching Unit           | Compliance<br>Direction Systems<br>Inc. | RSU-M2               | 38311             | Mar.13, 2022  | 1 Year           |
| 15.  | Temporary antenna connector | TESCOM                                  | SS402                | N/A               | N/A           | N/A              |
| 16.  | Test Software               | EZ                                      | EZ_EMC,<br>NTC-3A1.1 | N/A               | N/A           | N/A              |

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.