

Test Report

Applicant : wanmuchun-us
Address : Junshuizhen, yantashequ, qi zu, tongchengxian, hubeisheng, China
Product Name : Transmitter Charging Dock
Brand Mark : Swiitech
Model : CH-211
FCC ID : 2A6Y3-CH-211A
Report Number : BLA-EMC-202506-A10402
Date of Receipt : June 26, 2025
Date of Test : June 26, 2025 to July 8, 2025
Test Standard : 47 CFR Part 15, Subpart C 15.247
Test Result : Pass

Compiled by: *Hugh*

Review by: *Xavier*

Approved by: *Blue Zheng*

Issued Date: July 8, 2025

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

The test report is effective only with both signature and specialized stamp and The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full. The results described in this report do not represent the quality or characteristics of the sampled batch, nor do they represent any similar or identical products that are not explicitly stated.

Table of Contents

1	General information	5
1.1	General information	5
1.2	General description of EUT	5
2	Test summary	6
3	Test Configuration	7
3.1	Test mode	7
3.2	Operation Frequency each of channel	8
3.3	Test channel	8
3.4	Auxiliary equipment	9
3.5	Test environment	9
4	Laboratory information	10
4.1	Laboratory and accreditations	10
4.2	Measurement uncertainty	10
5	Test equipment	11
6	Test result	13
6.1	Antenna requirement	13
6.2	Conducted emissions at AC power line (150 kHz-30 MHz)	14
6.3	Conducted peak output Power	18
6.4	20dB Bandwidth	20
6.5	Conducted Band Edges Measurement	21
6.6	Conducted spurious emissions	23
6.7	Carrier Frequencies Separation	25
6.8	Hopping Channel Number	26
6.9	Dwell Time	27
6.10	Radiated spurious emissions	28
6.11	Radiated emissions which fall in the restricted bands	39
7	Appendix A	46
7.1	Duty Cycle	46
7.2	Maximum Conducted Output Power	52
7.3	-20dB Bandwidth	58

7.4	Occupied Channel Bandwidth	64
7.5	Band Edge	70
7.6	Band Edge(Hopping).....	77
7.7	Conducted RF Spurious Emission	84
7.8	Carrier Frequencies Separation	94
7.9	Number of Hopping Channel	97
7.10	Dwell Time	100
	Appendix B: photographs of test setup	106
	Appendix C: photographs of EUT	108

Revise Record

Version No.	Date	Description
01	July 8, 2025	Original

BlueAsia

1 General information

1.1 General information

Applicant	wanmuchaun-us
Address	Junshuizhen, yantashequ, qizu, tongchengxian, hubeisheng, China
Manufacturer	Aikexun Intelligent Acoustic Technology Co., Ltd
Address	No. 15 of Technology Park 1st Road, Shiwan Town, Boluo County, Huizhou City
Factory	Aikexun Intelligent Acoustic Technology Co., Ltd
Address	No. 15 of Technology Park 1st Road, Shiwan Town, Boluo County, Huizhou City

1.2 General description of EUT

Product name	Transmitter Charging Dock
Model No.	CH-211
Series model	N/A
Test engineer sample no.	BLA-EMC-202506-A104-Base
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK, pi/4DQPSK, 8DPSK
Channel Spacing:	1MHz
Number of Channels:	79
Antenna Type:	Chip antenna
Antenna Gain:	3.49dBi(Provided by customer)
Power supply or adapter information	DC5V
Hardware Version	V1.0
Software Version	REV0.02

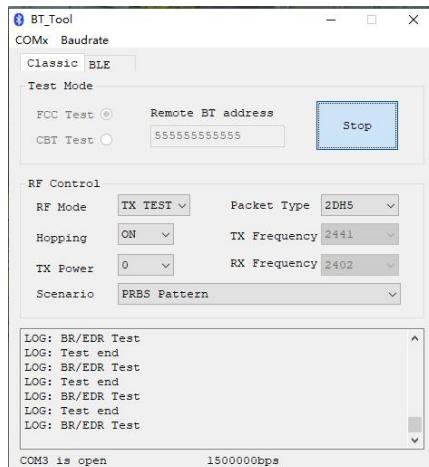
Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2 Test summary

No.	Test item	FCC standard	Test Method(Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Conducted Peak Output Power	§ 15.247 (b)(1)	ANSI C63.10-2013 Clause 7.8.5	Pass
4	20dB Bandwidth	§ 15.247 (a)(1)	ANSI C63.10-2013 Clause 6.9.2	Pass
5	Conducted Band Edges Measurement	§ 15.247 (d)	ANSI C63.10-2013 Clause 7.8.6	Pass
6	Conducted Spurious Emissions	§ 15.247 (d)	ANSI C63.10-2013 Clause 7.8.8	Pass
7	Carrier Frequencies Separation	§ 15.247 (a)(1)	ANSI C63.10-2013 Clause 7.8.2	Pass
8	Hopping Channel Number	§ 15.247 (a)(1) (iii)	ANSI C63.10-2013 Clause 7.8.3	Pass
9	Dwell Time	§ 15.247 (a)(1) (iii)	ANSI C63.10-2013 Clause 7.8.4	Pass
10	Radiated Spurious Emissions	§ 15.247 (d) § 15209	ANSI C63.10-2013 Clause 6.4,6.5,6.6	Pass
11	Radiated Emissions which fall in the restricted bands	§ 15.247 (d) § 15.205	ANSI C63.10-2013 Clause 6.10.5	Pass

3 Test Configuration

3.1 Test mode


Test Mode ^{Note 1}	Description
TX	Keep the EUT in continuously transmitting mode with modulation. (hopping and non-hopping mode all have been tested)
RX	Keep the EUT in receiving mode
TX Low channel	Keep the EUT in continuously transmitting mode in low channel
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel
TX high channel	Keep the EUT in continuously transmitting mode in high channel

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use; the EUT was operated in the engineering mode ^{Note 2} to fix the TX or Rx frequency that was for the purpose of the measurements.

Note 2: Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

Power level setup in software			
Test Software Name	BT_Tool		
Mode	Channel	Frequency (MHz)	Soft Set
GFSK, pi/4DQPSK, 8DPSK	CH00	2402	TX level: 0
	CH39	2441	
	CH78	2480	

Run Software

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		--

3.3 Test channel

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

3.4 Auxiliary equipment

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	Lenovo	E460C	N/A	From lab (No.BLA-ZC-BS-2022005)

Note:
"--" mean no any auxiliary device during testing.

3.5 Test environment

Environment	Temperature	Voltage
Normal	25°C	DC 5V

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China
CNAS accredited No.:	L9788
A2LA Cert. No.:	5071.01
FCC Designation No.:	CN1252
ISED CAB identifier No.:	CN0028
Telephone:	+86-755-28682673
FAX:	+86-755-28682673

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-002-01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2024/3/27	2027/3/26
BLA-EMC-002-02	Control room	966 control room	SKET	N/A	2024/3/27	2027/3/26
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28
BLA-EMC-065	Broadband antenna	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-001-01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15
BLA-EMC-001-02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07
BLA-EMC-012	Broadband antenna	VULB9168	Schwarzbeck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28
BLA-EMC-014	Amplifier	PA_000318G-45	SKET	PA201804 3003	2024/08/08	2025/08/07
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2025/06/28	2026/06/27
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2025/06/28	2026/06/27
BLA-EMC-066	Amplifier	LNPA_30M01 G-30	SKET	SK202106 0801	2025/06/28	2026/06/27
BLA-EMC-086	Amplifier	LNPA_18G40 G-50dB	SKET	SK202207 1301	2025/06/28	2026/06/27
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28
BLA-XC-03	Coaxial Cable	N/A	BlueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	N/A	BlueAsia	V04	N/A	N/A

Conducted Emissions

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2025/06/28	2026/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat6	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbeck	01045	2025/06/28	2026/06/27
BLA-EMC-096	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbeck	01075	2025/06/28	2026/06/27
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A

RF conducted

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003-003	Shield room	5*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-016	Signal Generator	N5182A	Agilent	MY52420567	2025/06/28	2026/06/27
BLA-EMC-038	Spectrum	N9020A	Agilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-042	Power sensor	RPR3006W	DARE	14I00889SN042	2024/08/08	2025/08/07
BLA-EMC-044	Radio communication tester	CMW500	R&S	132429	2024/08/08	2025/08/07
BLA-EMC-064	Signal Generator	N5182B	KEYSIGHT	MY58108892	2025/06/28	2026/06/27
BLA-EMC-079	Spectrum	N9020A	Agilent	MY54420161	2024/08/08	2025/08/07
BLA-EMC-088	Audio Analyzer	ATS-1	Audio Precision	ATS141094	2025/06/28	2026/06/27

Test software

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE(Below 1GHz)
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE(Above 1GHz)
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

6 Test result

6.1 Antenna requirement

Test Standard	47 CFR Part 15, Subpart C 15.203
Test Method	N/A

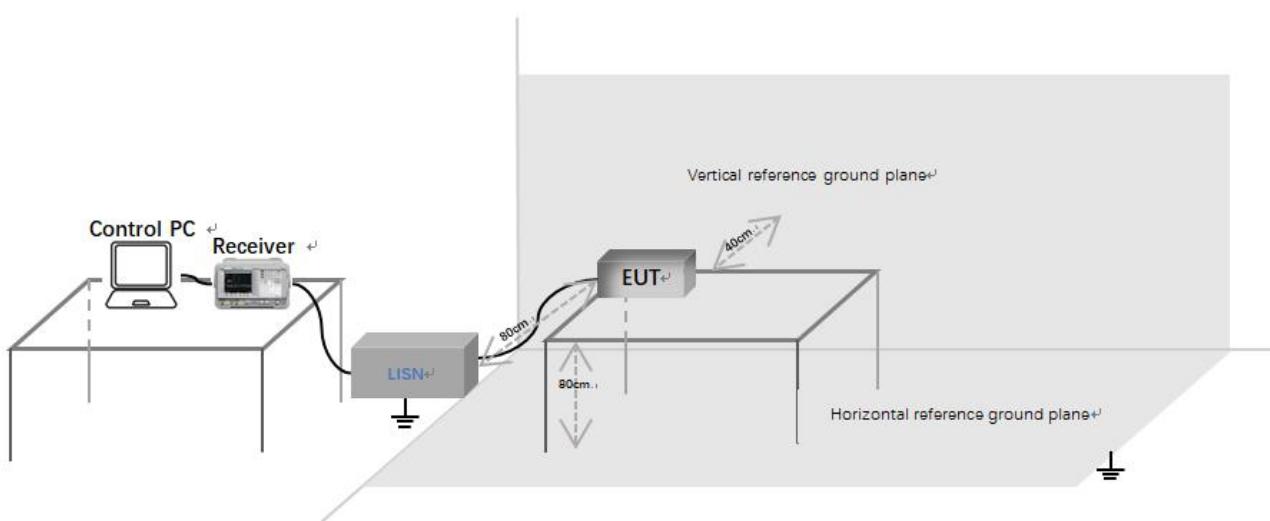
6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.49 dBi.

6.2 Conducted emissions at AC power line (150 kHz-30 MHz)


Test Standard	47 CFR Part 15, Subpart C 15.207
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.2.1 Limit

Frequency of emission(MHz)	Conducted limit(dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

6.2.2 Test setup

Description of test setup connection:

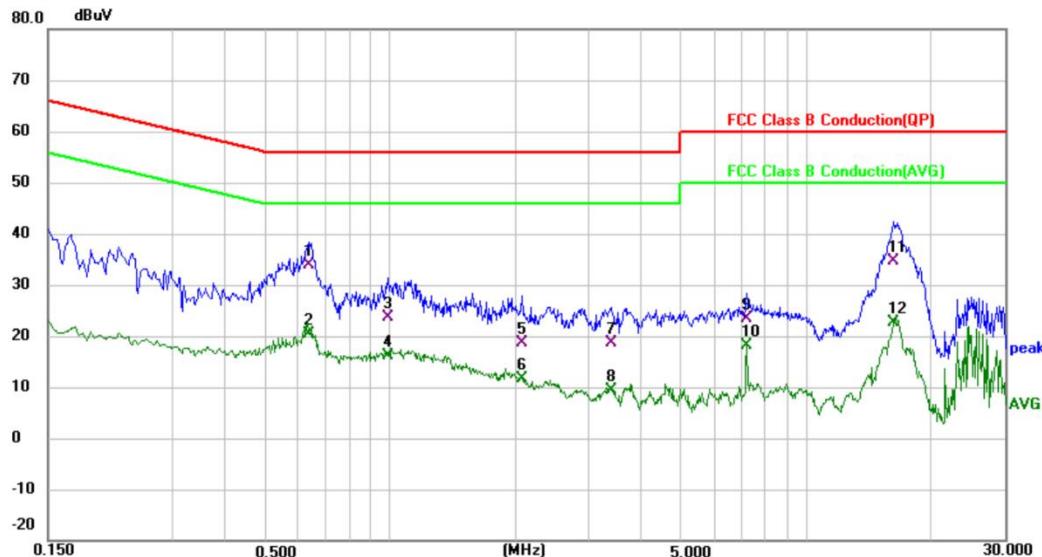
- Connect the control PC to the receiver through a USB to GPIB cable;
- The receiver is connected to the LISN through a coaxial line;
- Connect the power port of LISN to the EUT.

6.2.3 Procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

LISN=Read Level+ Cable Loss+ LISN Factor

6.2.4 Test data


[Test mode: TX]; [Line: Line]; [Power: AC120V/60Hz]

Conducted Emission Measurement

Project No.: CE

Data #:4

2025/06/30

Site

 Phase: **L1**

Temperature: (C)

Limit: FCC Class B Conduction(QP)

Power:

Humidity: %RH

EUT: TV Headphones

Distance:

RBW: 9 KHz

M/N: CH-211

VBW: 30 KHz

Sweep Time: 100 ms

Mode: BT TX

Note:

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure-ment dBuV	Limit dBuV	Over dB	Antenna Height cm	Table Degree	Comment
1	*	0.6380	24.04	9.77	33.81	56.00	-22.19	QP		
2		0.6380	10.64	9.77	20.41	46.00	-25.59	AVG		
3		0.9860	13.93	9.77	23.70	56.00	-32.30	QP		
4		0.9860	6.24	9.77	16.01	46.00	-29.99	AVG		
5		2.0700	8.76	9.94	18.70	56.00	-37.30	QP		
6		2.0700	1.77	9.94	11.71	46.00	-34.29	AVG		
7		3.3860	8.51	10.08	18.59	56.00	-37.41	QP		
8		3.3860	-0.74	10.08	9.34	46.00	-36.66	AVG		
9		7.1780	13.03	10.27	23.30	60.00	-36.70	QP		
10		7.1780	7.93	10.27	18.20	50.00	-31.80	AVG		
11		16.1820	22.42	12.14	34.56	60.00	-25.44	QP		
12		16.1820	10.60	12.14	22.74	50.00	-27.26	AVG		

*:Maximum data x:Over limit !:over margin

(Reference Only)

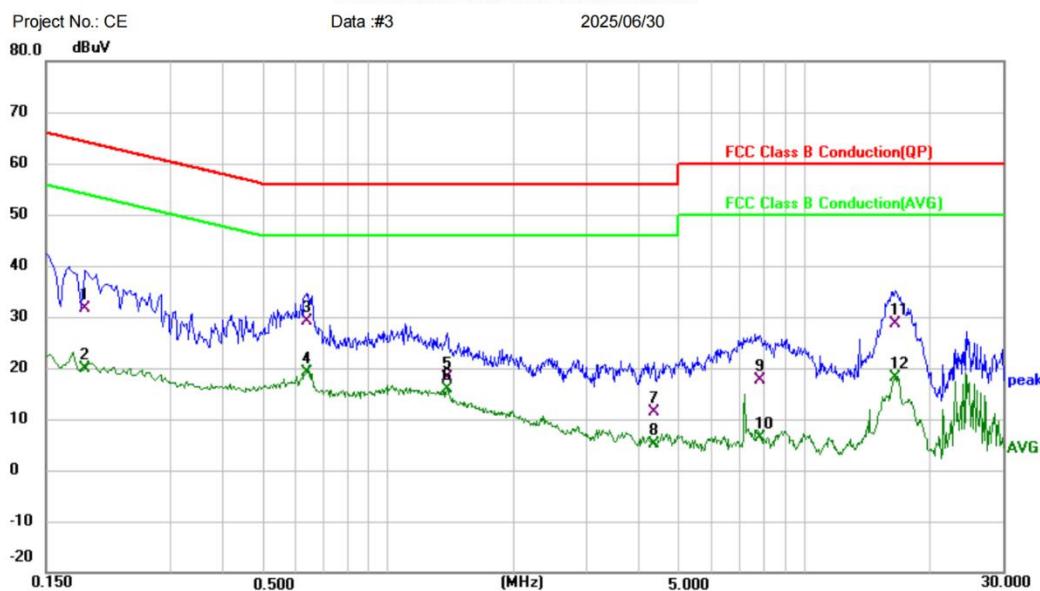
Receiver: ESPI_1

Spectrum Analyzer:

ESPI

Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.


Tel: +86-755-23059481

 Email: marketing@cblueasia.com www.cblueasia.com

Version:v1.3

[Test mode: TX]; [Line: Neutral]; [Power: AC120V/60Hz]

Conducted Emission Measurement

Site: Phase: **N** Temperature: (C)
 Limit: FCC Class B Conduction(QP) Power: Humidity: %RH
 EUT: TV Headphones Distance: RBW: 9 KHz
 M/N: CH-211 VBW: 30 KHz Sweep Time: 100 ms
 Mode: BT TX
 Note:

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	Over dB	Antenna Height cm	Table Degree	Comment
1		0.1860	21.48	10.19	31.67	64.21	-32.54	QP		
2		0.1860	9.80	10.19	19.99	54.21	-34.22	AVG		
3		0.6380	19.31	9.71	29.02	56.00	-26.98	QP		
4	*	0.6380	9.51	9.71	19.22	46.00	-26.78	AVG		
5		1.3820	8.25	9.76	18.01	56.00	-37.99	QP		
6		1.3820	6.16	9.76	15.92	46.00	-30.08	AVG		
7		4.3460	1.20	10.07	11.27	56.00	-44.73	QP		
8		4.3460	-4.82	10.07	5.25	46.00	-40.75	AVG		
9		7.8460	7.31	10.38	17.69	60.00	-42.31	QP		
10		7.8460	-4.02	10.38	6.36	50.00	-43.64	AVG		
11		16.5140	16.43	12.16	28.59	60.00	-31.41	QP		
12		16.5140	6.06	12.16	18.22	50.00	-31.78	AVG		

*:Maximum data x:Over limit !:over margin

(Reference Only)

Receiver: ESPI_1

Spectrum Analyzer: ESPI

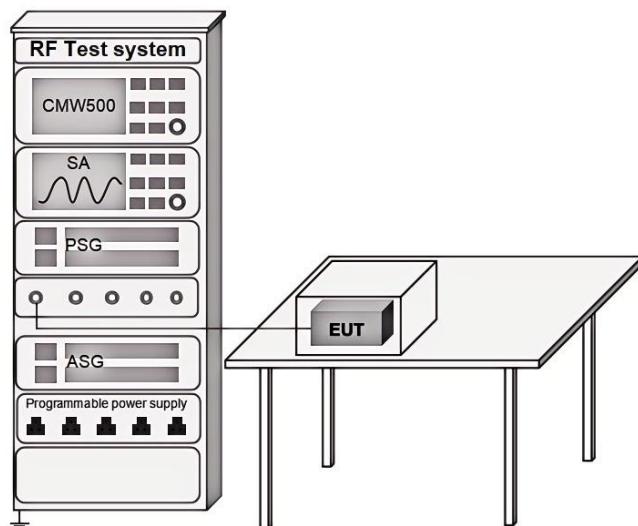
Test Result: Pass

BlueAsia of Technical Services (Shenzhen) Co.,Ltd.

Tel: +86-755-23059481

 Email: marketing@cblueasia.com www.cblueasia.com

Version:v1.3


6.3 Conducted peak output Power

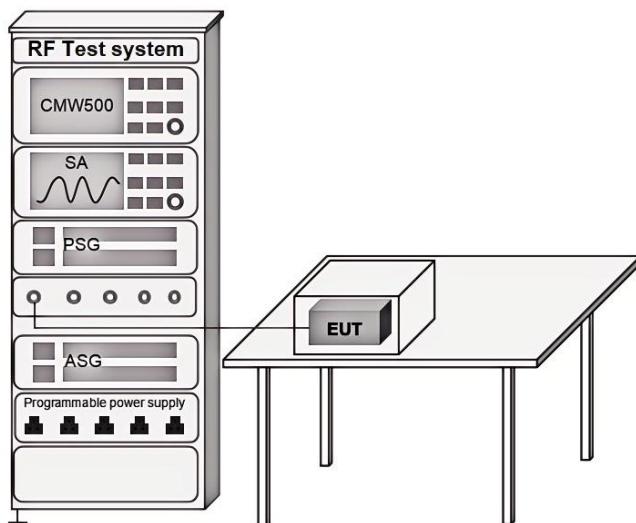
Test Standard	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method	ANSI C63.10 (2013) Section 11.9.1
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.3.1 Limit

Frequency range(MHz)	Output power of the intentional radiator(watt)
902-928	1 for ≥ 50 hopping channels
	0.25 for $25 \leq$ hopping channels < 50
	1 for digital modulation
2400-2483.5	1 for ≥ 75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

6.3.2 Test setup

6.3.3 Test data


Pass: Please refer to appendix A for details

BlueAsia

6.4 20dB Bandwidth

Test Standard	47 CFR Part 15, Subpart C 15.247 (a)(1)
Test Method	ANSI C63.10 (2013) Section 6.9.2& 7.8.7
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25°C
Humidity	60%

6.4.1 Test setup

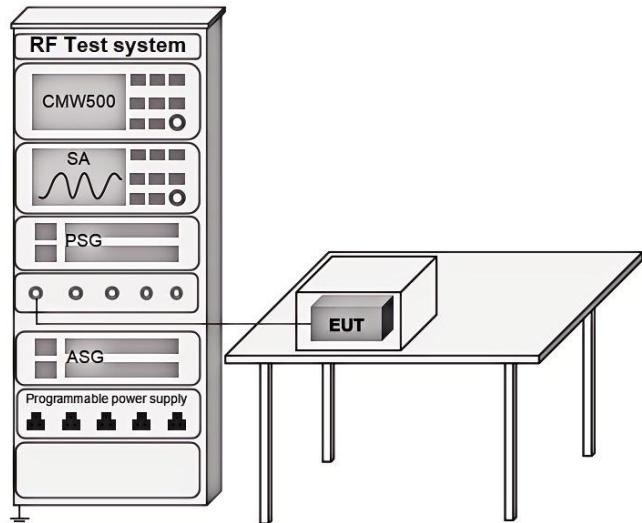
6.4.2 Test data

Pass: Please refer to appendix A for details

6.5 Conducted Band Edges Measurement

Test Standard	47 CFR Part 15, Subpart C 15.247 (d)
Test Method	ANSI C63.10 (2013) Section 6.10.4
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.5.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.5.2 Test setup

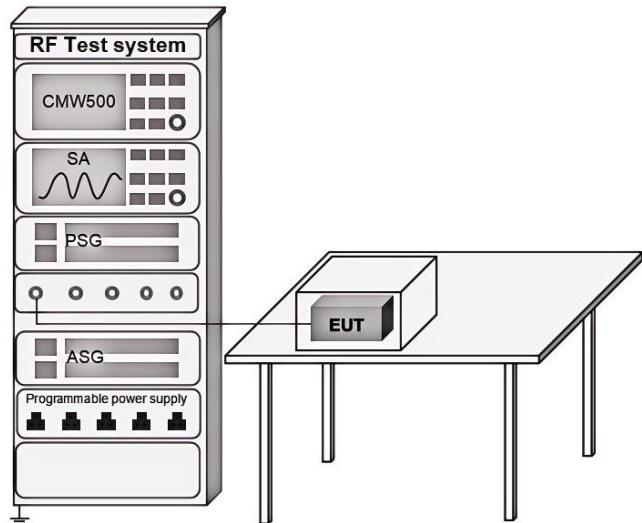
6.5.3 Test data

Pass: Please refer to appendix A for details

6.6 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247 (d)
Test Method	ANSI C63.10 (2013) Section 7.8.8
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

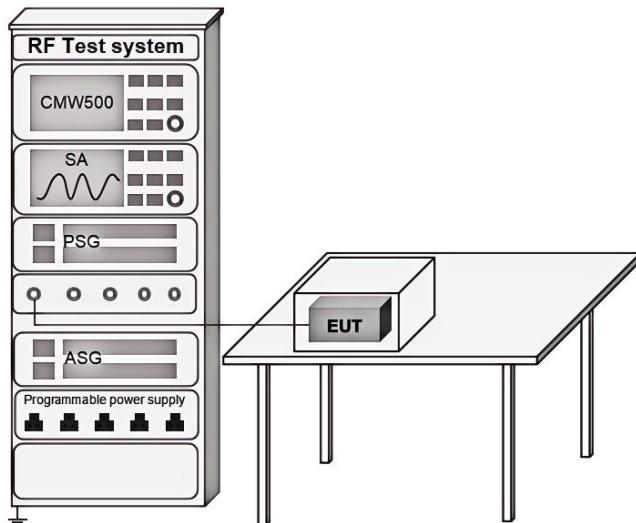
Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

6.6.3 Test data

Pass: Please refer to appendix A for details


6.7 Carrier Frequencies Separation

Test Standard	47 CFR Part 15, Subpart C 15.247 (a)(1)
Test Method	ANSI C63.10 (2013) Section 7.8.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.7.1 Limit

2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details