

File reference No.: 2022-05-25

Applicant: Dongguan City Shengqiang Electronics Co., Ltd

Product: Wireless Bluetooth Headphone

Model No.: ANC-007, ANC-001

Trademark:

用UOUA 奥路马 Life On Music

Test Standards: FCC Part 15.249

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.10 & FCC Part 15 Subpart C, Paragraph 15.249 regulations for the evaluation of

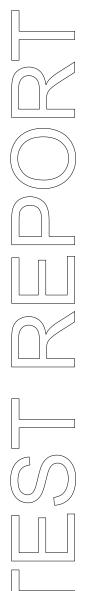
electromagnetic compatibility

Approved By

Terry Tang

Manager

Dated: May 25, 2022


Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

#### SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com



Report No.: TW2205221E Page 2 of 49

Date: 2022-05-25



### **Special Statement:**

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

#### **CNAS-LAB Code: L2292**

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

#### FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

#### Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

#### A2LA (Certification Number: 5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

Date: 2022-05-25



## Test Report Conclusion

#### Content 1.0 General Details ..... 4 4 1.1 Test Lab Details.... 1.2 Applicant Details. 4 1.3 Description of EUT .... 1.4 Submitted Sample.... 4 Test Duration. 1.5 5 5 1.6 Test Uncertainty. 1.7 Test By..... 5 2.0 List of Measurement Equipment..... 6 3.0 7 Technical Details..... 3.1 Summary of Test Results.... 7 3.2 7 Test Standards.... 4.0 EUT Modification.... 7 Power Line Conducted Emission Test. 5.0 Schematics of the Test..... 5.1 8 5.2 Test Method and Test Procedure. 8 Configuration of the EUT..... 5.3 8 5.4 EUT Operating Condition.... 9 Conducted Emission Limit. 9 5.5 5.6 Test Result. 6.0 Radiated Emission test.... 12 Test Method and Test Procedure. 6.1 12 6.2 Configuration of the EUT..... 13 6.3 EUT Operation Condition.... 13 Radiated Emission Limit. 6.4 13 Test Result..... 6.5 15 7.0 Band Edge 23 7.1 Test Method and Test Procedure. 23 7.2 Radiated Test Setup. 23 7.3 Configuration of the EUT..... 23 7.4 EUT Operating Condition.... 23 7.5 23 Band Edge Limit. 7.6 Band Edge Test Result. 24 8.0 Antenna Requirement..... 28 20dB bandwidth measurement.... 9.0 29 10.0 FCC ID Label. 38 Photo of Test Setup and EUT View. 11.0

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2205221E Page 4 of 49

Date: 2022-05-25



#### 1.0 General Details

#### 1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

#### 1.2 Applicant Details

Applicant: Dongguan City Shengqiang Electronics Co., Ltd

Address: Shijiezhen sijiaxihegongyequ dongguanshi guangdongsheng 523290

Telephone: 0769-83529129 Fax: 0769-83237949

#### 1.3 Description of EUT

Product: Wireless Bluetooth Headphone

Manufacturer: Dongguan City Shengqiang Electronics Co., Ltd

Address: Shijiezhen sijiaxihegongyequ dongguanshi guangdongsheng 523290

Trademark:

用UOUA 奥路马 Life On Music

Model Number: ANC-007 Additional Model Name ANC-001 Rating: DC5V, 0.5A

Battery: DC3.7V, 400mAh Li-ion battery Modulation Type: GFSK,  $\pi$  /4DQPSK, 8DPSK

Operation Frequency: 2402-2480MHz

Channel Number: 79
Channel Separation: 1MHz
Hardware Version: V1.1
Software Version: V1.1

Serial No.: 80020201228007

Antenna Designation PCB antenna with gain -0.58dBi Max (Get from the antenna specification)

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2205221E Page 5 of 49

Date: 2022-05-25



1.4 Submitted Sample: 2 Sample

1.5 Test Duration

2022-05-18 to 2022-05-25

1.6 Test Uncertainty

Conducted Emissions Uncertainty =3.6dB

Radiated Emissions below 1GHz Uncertainty =4.7dB

Radiated Emissions above 1GHz Uncertainty =6.0dB

Conducted Power Uncertainty =6.0dB

Occupied Channel Bandwidth Uncertainty = 5%

Conducted Emissions Uncertainty = 3.6dB

Note: The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

1.7 Test Engineer

The sample tested by

Print Name: Andy Xing

Page 6 of 49

Report No.: TW2205221E

Date: 2022-05-25



| 2.0 Test Equipment |              |                  |              |              |            |
|--------------------|--------------|------------------|--------------|--------------|------------|
| Instrument Type    | Manufacturer | Model            | Serial No.   | Date of Cal. | Due Date   |
| ESPI Test Receiver | R&S          | ESPI 3           | 100379       | 2021-06-18   | 2022-06-17 |
| LISN               | R&S          | EZH3-Z5          | 100294       | 2021-06-18   | 2022-06-17 |
| LISN               | R&S          | EZH3-Z5          | 100253       | 2021-06-18   | 2022-06-17 |
| Impuls-Begrenzer   | R&S          | ESH3-Z2          | 100281       | 2021-06-18   | 2022-06-17 |
| Loop Antenna       | EMCO         | 6507             | 00078608     | 2021-06-18   | 2024-06-17 |
| Spectrum           | R&S          | FSIQ26           | 100292       | 2021-06-18   | 2022-06-17 |
| Horn Antenna       | A-INFO       | LB-180400-KF     | J211060660   | 2021-07-02   | 2024-07-01 |
| Horn Antenna       | R&S          | BBHA 9120D       | 9120D-631    | 2021-07-02   | 2024-07-01 |
| Power meter        | Anritsu      | ML2487A          | 6K00003613   | 2021-06-18   | 2022-06-17 |
| Power sensor       | Anritsu      | MA2491A          | 32263        | 2021-06-18   | 2022-06-17 |
| Bilog Antenna      | Schwarebeck  | VULB9163         | 9163/340     | 2021-07-02   | 2024-07-01 |
| 9*6*6 Anechoic     |              |                  | N/A          | 2021-07-02   | 2022-07-01 |
| EMI Test Receiver  | RS           | ESVB             | 826156/011   | 2021-06-18   | 2022-06-17 |
| EMI Test Receiver  | RS           | ESH3             | 860904/006   | 2021-06-18   | 2022-06-17 |
| Spectrum           | HP/Agilent   | ESA-L1500A       | US37451154   | 2021-06-18   | 2022-06-17 |
| Spectrum           | HP/Agilent   | E4407B           | MY50441392   | 2021-06-18   | 2022-06-17 |
| Spectrum           | RS           | FSP              | 1164.4391.38 | 2022-01-15   | 2023-01-14 |
| RF Cable           | Zhengdi      | ZT26-NJ-NJ-8M/FA |              | 2021-06-18   | 2022-06-17 |
| RF Cable           | Zhengdi      | 7m               |              | 2021-06-18   | 2022-06-17 |
| RF Switch          | EM           | EMSW18           | 060391       | 2021-06-18   | 2022-06-17 |
| Pre-Amplifier      | Schwarebeck  | BBV9743          | #218         | 2021-06-18   | 2022-06-17 |
| Pre-Amplifier      | HP/Agilent   | 8449B            | 3008A00160   | 2021-06-18   | 2022-06-17 |
| LISN               | SCHAFFNER    | NNB42            | 00012        | 2022-01-05   | 2023-01-04 |

#### 2.2 Automation Test Software

#### For Conducted Emission Test

| Name   | Version           |  |  |
|--------|-------------------|--|--|
| EZ-EMC | Ver.EMC-CON 3A1.1 |  |  |

#### For Radiated Emissions

| Name                                            | Version |
|-------------------------------------------------|---------|
| EMI Test Software BL410-EV18.91                 | V18.905 |
| EMI Test Software BL410-EV18.806 High Frequency | V18.06  |

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2205221E Page 7 of 49

Date: 2022-05-25



#### 3.0 Technical Details

#### 3.1 Summary of test results

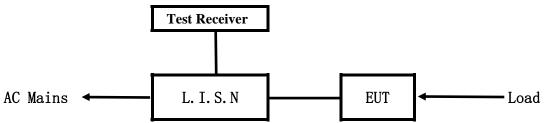
The EUT has been tested according to the following specifications:

| Standard                                                    | Test Type                           | Result | Notes    |
|-------------------------------------------------------------|-------------------------------------|--------|----------|
| FCC Part 15, Paragraph 15.203                               | Antenna<br>Requirement              | Pass   | Complies |
| FCC Part 15, Paragraph 15.207                               | Conducted<br>Emission Test          | Pass   | Complies |
| FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit | Field Strength<br>of<br>Fundamental | Pass   | Complies |
| FCC Part 15, Paragraph 15.209                               | Radiated<br>Emission Test           | Pass   | Complies |
| FCC Part 15 Subpart C Paragraph 15.249(d) Limit             | Band Edge<br>Test                   | Pass   | Complies |

#### 3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

#### 4.0 EUT Modification

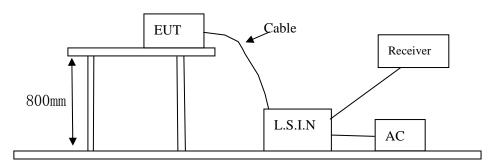

No modification by SHENZHEN TIMEWAY TESTING LABORATORIES

Date: 2022-05-25



#### 5. Power Line Conducted Emission Test

#### 5.1 Schematics of the test




**EUT: Equipment Under Test** 

#### 5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2014. The Frequency spectrum from 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.4 –2014.

Test Voltage: 120V~, 60Hz Block diagram of Test setup



#### 5.3 Configuration of the EUT

The EUT was configured according to ANSI C63.4-2014. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

79 channels are provided to the EUT

#### A. EUT

| Device             | Manufacturer             | Model            | FCC ID       |
|--------------------|--------------------------|------------------|--------------|
| Wireless Bluetooth | Dongguan City Shengqiang | ANC-007, ANC-001 | 2A6XTANC-007 |
| Headphone          | Electronics Co., Ltd     | ANC-007, ANC-001 | 2A0ATANC-007 |

Report No.: TW2205221E Page 9 of 49

Date: 2022-05-25



#### B. Internal Device

| Device | Manufacturer | Model | FCC ID/DOC |
|--------|--------------|-------|------------|
| N/A    |              |       |            |

#### C. Peripherals

| Device       | Manufacturer | Model           | Rating                            |
|--------------|--------------|-----------------|-----------------------------------|
| Power Supply | KEYU         | KA23-0502000DEU | Input: 100-240V~, 50/60Hz, 0.35A; |
|              |              |                 | Output: DC5V, 2A                  |

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2014

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

| Frequency        | Limits (dB \( \mu \) |               |  |  |
|------------------|----------------------|---------------|--|--|
| (MHz)            | Quasi-peak Level     | Average Level |  |  |
| $0.15 \sim 0.50$ | 66.0~56.0*           | 56.0~46.0*    |  |  |
| $0.50 \sim 5.00$ | 56.0                 | 46.0          |  |  |
| 5.00 ~ 30.00     | 60.0                 | 50.0          |  |  |

Notes:

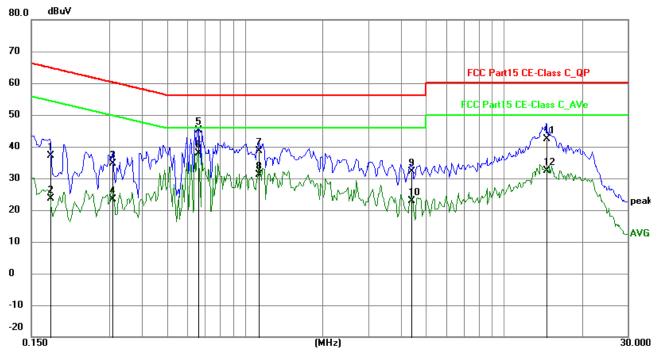
- 1. \*Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

#### 5.6 Test Results:

Date: 2022-05-25



#### A: Conducted Emission on Live Terminal (150kHz to 30MHz)


**EUT Operating Environment** 

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

**EUT set Condition: Communication by BT** 

**Results: Pass** 

Please refer to following diagram for individual

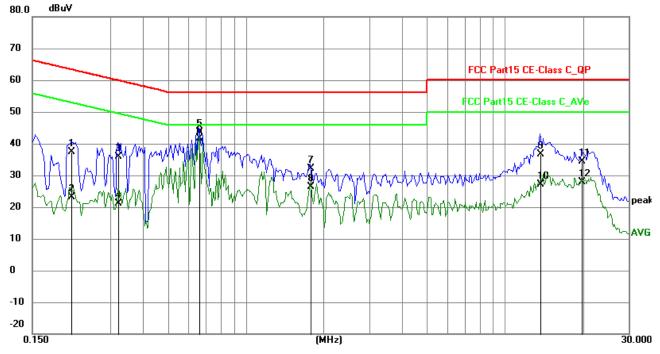


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|
| 1   | 0.1773             | 27.31             | 9.77           | 37.08           | 64.61           | -27.53         | QP       | Р   |
| 2   | 0.1773             | 13.92             | 9.77           | 23.69           | 54.61           | -30.92         | AVG      | Р   |
| 3   | 0.3099             | 24.88             | 9.76           | 34.64           | 59.97           | -25.33         | QP       | Р   |
| 4   | 0.3099             | 13.57             | 9.76           | 23.33           | 49.97           | -26.64         | AVG      | Р   |
| 5   | 0.6609             | 35.33             | 9.78           | 45.11           | 56.00           | -10.89         | QP       | Р   |
| 6   | 0.6609             | 28.06             | 9.78           | 37.84           | 46.00           | -8.16          | AVG      | Р   |
| 7   | 1.1328             | 28.96             | 9.79           | 38.75           | 56.00           | -17.25         | QP       | Р   |
| 8   | 1.1328             | 21.30             | 9.79           | 31.09           | 46.00           | -14.91         | AVG      | Р   |
| 9   | 4.3962             | 22.20             | 9.90           | 32.10           | 56.00           | -23.90         | QP       | Р   |
| 10  | 4.3962             | 12.89             | 9.90           | 22.79           | 46.00           | -23.21         | AVG      | Р   |
| 11  | 14.5752            | 32.02             | 10.36          | 42.38           | 60.00           | -17.62         | QP       | Р   |
| 12  | 14.5752            | 22.10             | 10.36          | 32.46           | 50.00           | -17.54         | AVG      | Р   |

Date: 2022-05-25



#### B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)


**EUT Operating Environment** 

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

**EUT set Condition: Communication by BT** 

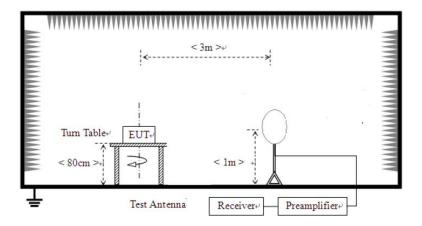
**Results: Pass** 

Please refer to following diagram for individual

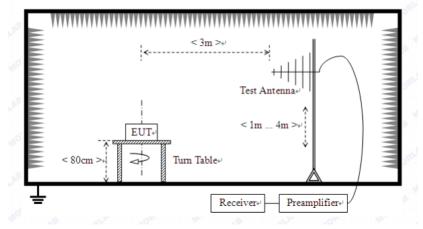


| No. | Frequency<br>(MHz) | Reading (dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|----------------|----------------|-----------------|-----------------|----------------|----------|-----|
| 1   | 0.2124             | 27.71          | 9.75           | 37.46           | 63.11           | -25.65         | QP       | Р   |
| 2   | 0.2124             | 13.49          | 9.75           | 23.24           | 53.11           | -29.87         | AVG      | Р   |
| 3   | 0.3215             | 26.23          | 9.76           | 35.99           | 59.67           | -23.68         | QP       | Р   |
| 4   | 0.3215             | 11.38          | 9.76           | 21.14           | 49.67           | -28.53         | AVG      | Р   |
| 5   | 0.6609             | 33.84          | 9.78           | 43.62           | 56.00           | -12.38         | QP       | Р   |
| 6   | 0.6609             | 31.88          | 9.78           | 41.66           | 46.00           | -4.34          | AVG      | Р   |
| 7   | 1.7724             | 22.34          | 9.80           | 32.14           | 56.00           | -23.86         | QP       | Р   |
| 8   | 1.7724             | 16.60          | 9.80           | 26.40           | 46.00           | -19.60         | AVG      | Р   |
| 9   | 13.6275            | 26.27          | 10.32          | 36.59           | 60.00           | -23.41         | QP       | Р   |
| 10  | 13.6275            | 16.88          | 10.32          | 27.20           | 50.00           | -22.80         | AVG      | Р   |
| 11  | 19.7895            | 23.78          | 10.67          | 34.45           | 60.00           | -25.55         | QP       | Р   |
| 12  | 19.7895            | 17.13          | 10.67          | 27.80           | 50.00           | -22.20         | AVG      | Р   |

Date: 2022-05-25




#### **6** Radiated Emission Test


- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

#### **Block diagram of Test setup**

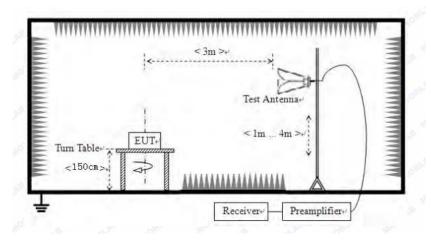
For radiated emissions from 9kHz to 30MHz



For radiated emissions from 30MHz to1GHz



The report refers only to the sample tested and does not apply to the bulk.


This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2022-05-25



For radiated emissions above 1GHz



- 6.2 Configuration of the EUT
  Same as section 5.3 of this report
- 6.3 EUT Operating Condition
  Same as section 5.4 of this report.
- 6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

#### A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

| Fundamental Frequency | Field Stre | Strength of Fundamental (3m) |            |      | trength of Harmo | onics (3m) |
|-----------------------|------------|------------------------------|------------|------|------------------|------------|
| (MHz)                 | mV/m       | dBuV/m                       |            | uV/m | dBu              | V/m        |
| 2400-2483.5           | 50         | 94 (Average)                 | 114 (Peak) | 500  | 54 (Average)     | 74 (Peak)  |

Note:

- 1. RF Field Strength  $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

The report refers only to the sample tested and does not apply to the bulk.

Report No.: TW2205221E Page 14 of 49

Date: 2022-05-25



#### B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

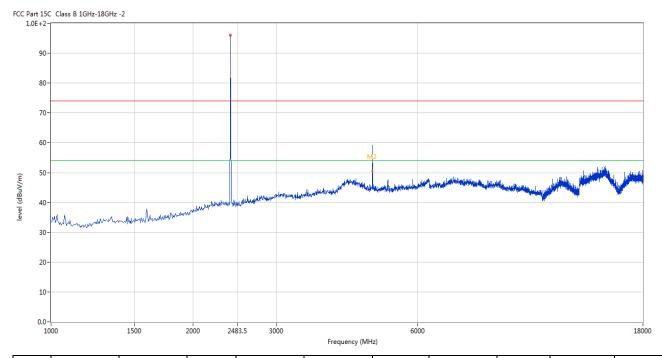
| Frequency Range (MHz) | Distance (m) | Field strength (dB µ V/m)         |
|-----------------------|--------------|-----------------------------------|
| 0.009-0.490           | 3            | 20log(2400/F(kHz)) +40log (300/3) |
| 0.490-1.705           | 3            | 20log(24000/F(kHz)) +40log (30/3) |
| 1.705-30              | 3            | 69.5                              |
| 30-80                 | 3            | 40.0                              |
| 88-216                | 3            | 43.5                              |
| 216-960               | 3            | 46.0                              |
| Above 960             | 3            | 54.0                              |

Note:

- 1. RF Voltage  $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 5. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 6. For radiated emissions from 9kHz to 30MHz, the emission level is much less than the limit for more than 20dB. No necessary to take down the record.
- 7. Battery fully charged was used during tests.

Report No.: TW2205221E Page 15 of 49

Date: 2022-05-25



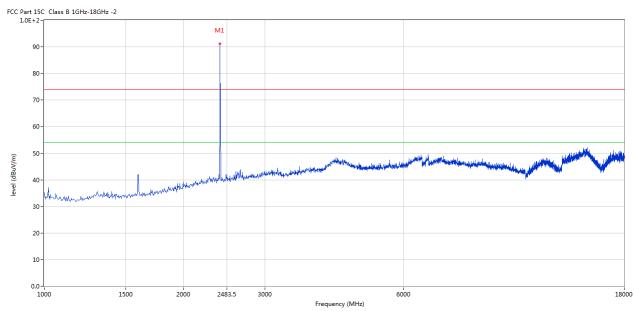

#### 6.5 Test result

#### A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

#### Horizontal




| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 2402      | 96.89    | -3.57  | 114.0    | -17.11     | Peak     | 229.00    | 100    | Horizontal | Pass    |
| 1*  | 2402      | 87.21    | -3.57  | 94.0     | -6.79      | AV       | 229.00    | 100    | Horizontal | Pass    |
| 2   | 4802.799  | 59.12    | 3.12   | 74.0     | -14.88     | Peak     | 213.00    | 100    | Horizontal | Pass    |
| 2** | 4802.799  | 50.48    | 3.12   | 54.0     | -3.52      | AV       | 213.00    | 100    | Horizontal | Pass    |

Report No.: TW2205221E Page 16 of 49

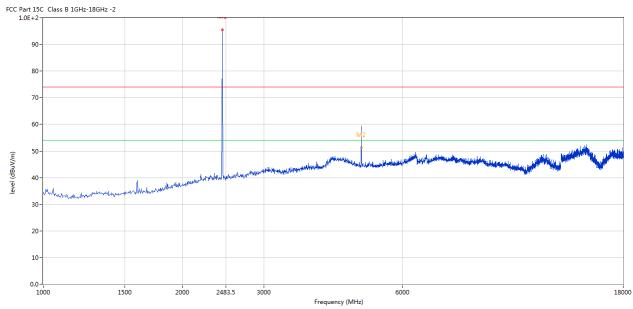
Date: 2022-05-25



#### Vertical



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 2402      | 91.22    | -3.57  | 114.0    | -22.78     | Peak     | 186.00    | 100    | Vertical | Pass    |
| 1*  | 2402      | 82.63    | -3.57  | 94.0     | -11.37     | AV       | 186.00    | 100    | Vertical | Pass    |


Report No.: TW2205221E Page 17 of 49

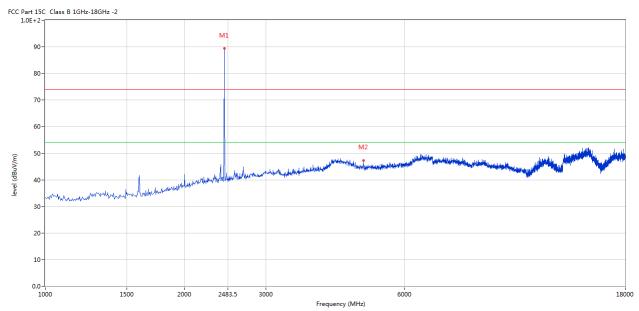
Date: 2022-05-25



Please refer to the following test plots for details: Middle Channel-2441MHz

#### **Horizontal**




| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 2441      | 95.49    | -3.57  | 114.0    | -18.51     | Peak     | 123.00    | 100    | Horizontal | Pass    |
| 1*  | 2441      | 86.95    | -3.57  | 94.0     | -7.06      | AV       | 123.00    | 100    | Horizontal | Pass    |
| 2   | 4879.280  | 59.30    | 3.20   | 74.0     | -14.70     | Peak     | 119.00    | 100    | Horizontal | Pass    |
| 2** | 4879.280  | 51.25    | 3.20   | 54.0     | -2.75      | AV       | 119.00    | 100    | Horizontal | Pass    |

Report No.: TW2205221E Page 18 of 49

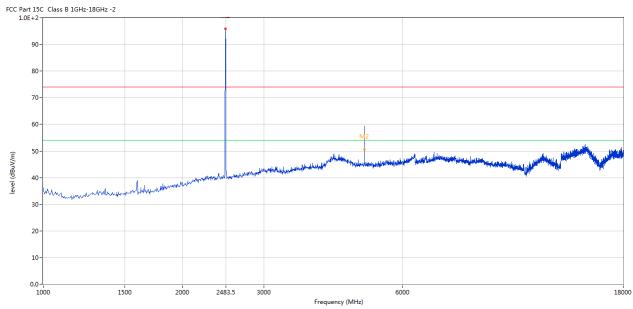
Date: 2022-05-25



#### Vertical



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 2441      | 89.44    | -3.57  | 114.0    | -24.56     | Peak     | 180.00    | 100    | Vertical | Pass    |
| 2   | 4883.529  | 47.24    | 3.20   | 74.0     | -26.76     | Peak     | 165.00    | 100    | Vertical | Pass    |


Report No.: TW2205221E Page 19 of 49

Date: 2022-05-25

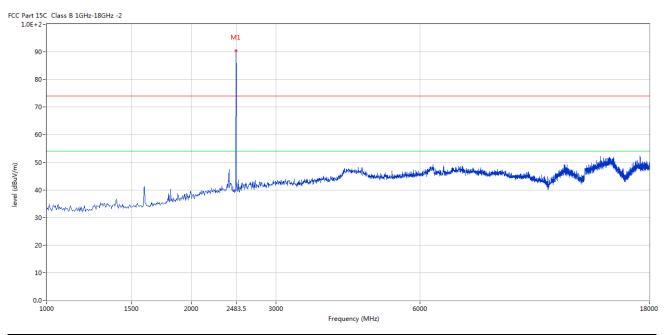


Please refer to the following test plots for details: High Channel-2480MHz

#### Horizontal



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 2480      | 96.08    | -3.57  | 114.0    | -17.92     | Peak     | 125.00    | 100    | Horizontal | Pass    |
| 1   | 2480      | 87.12    | -3.57  | 94.0     | -6.88      | AV       | 125.00    | 100    | Horizontal | Pass    |
| 2   | 4960.010  | 59.24    | 3.36   | 74.0     | -14.76     | Peak     | 162.00    | 100    | Horizontal | Pass    |
| 2** | 4960.010  | 50.71    | 3.36   | 54.0     | -3.29      | AV       | 162.00    | 100    | Horizontal | Pass    |


Page 20 of 49

Report No.: TW2205221E

Date: 2022-05-25



#### Vertical



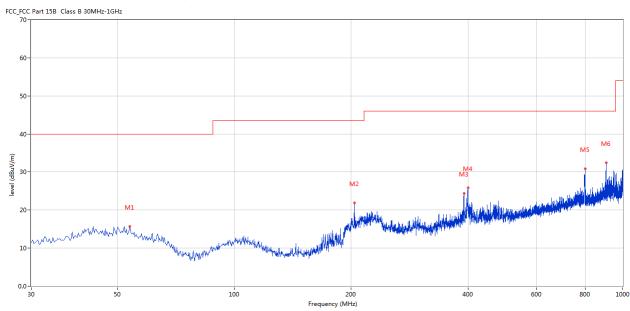
| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 2480      | 90.31    | -3.57  | 114.0    | -23.69     | Peak     | 194.00    | 100    | Vertical | Pass    |

Note: (2) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (3)Margin=Emission-Limits
- (4)According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (5) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz and Below 30MHz, It is only the floor noise. No necessary to take down.
- (6) the measured PK value less than the AV limit.

Report No.: TW2205221E Page 21 of 49

Date: 2022-05-25




# B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

**Results:** Pass

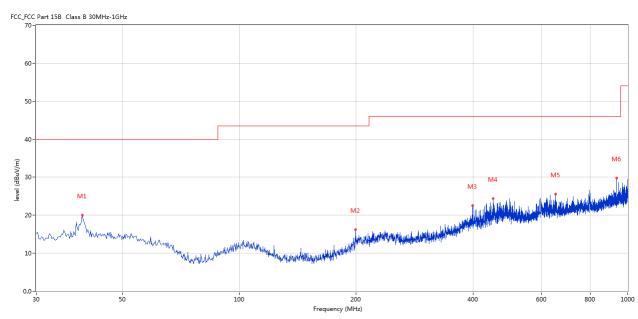
Please refer to following diagram for individual



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table  | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|--------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          | (o)    | (cm)   |            |         |
| 1   | 53.759    | 15.67    | -11.53 | 40.0     | -24.33     | Peak     | 360.00 | 100    | Horizontal | Pass    |
| 2   | 203.829   | 21.89    | -13.50 | 43.5     | -21.61     | Peak     | 286.00 | 100    | Horizontal | Pass    |
| 3   | 390.022   | 24.34    | -8.88  | 46.0     | -21.66     | Peak     | 176.00 | 100    | Horizontal | Pass    |
| 4   | 399.720   | 25.90    | -8.57  | 46.0     | -20.10     | Peak     | 24.00  | 100    | Horizontal | Pass    |
| 5   | 799.745   | 30.82    | -2.97  | 46.0     | -15.18     | Peak     | 304.00 | 100    | Horizontal | Pass    |
| 6   | 907.388   | 32.45    | -1.76  | 46.0     | -13.55     | Peak     | 37.00  | 100    | Horizontal | Pass    |

Report No.: TW2205221E Page 22 of 49

Date: 2022-05-25




#### Radiated Emission In Vertical (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

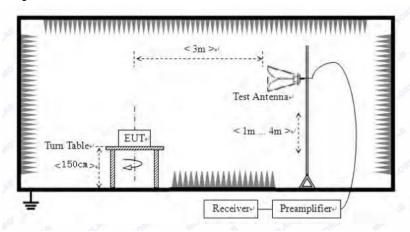
Results: Pass

Please refer to following diagram for individual



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 39.455    | 20.09    | -12.52 | 40.0     | -19.91     | Peak     | 266.00    | 100    | Vertical | Pass    |
| 2   | 199.223   | 16.21    | -13.50 | 43.5     | -27.29     | Peak     | 332.00    | 100    | Vertical | Pass    |
| 3   | 398.508   | 22.54    | -8.65  | 46.0     | -23.46     | Peak     | 273.00    | 100    | Vertical | Pass    |
| 4   | 450.875   | 24.36    | -7.97  | 46.0     | -21.64     | Peak     | 327.00    | 100    | Vertical | Pass    |
| 5   | 652.827   | 25.58    | -4.58  | 46.0     | -20.42     | Peak     | 260.00    | 100    | Vertical | Pass    |
| 6   | 936.481   | 29.85    | -1.73  | 46.0     | -16.15     | Peak     | 0.00      | 100    | Vertical | Pass    |

Date: 2022-05-25




#### 7. Band Edge

#### 7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz, VBW=3MHz and Peak detector used for PK value. RBW=1MHz, VBW=10Hz and Peak detector used for AV value.
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

#### 7. 2 Radiated Test Setup



For the actual test configuration, please refer to the related items – Photos of Testing

#### 7.3 Configuration of The EUT

Same as section 5.3 of this report

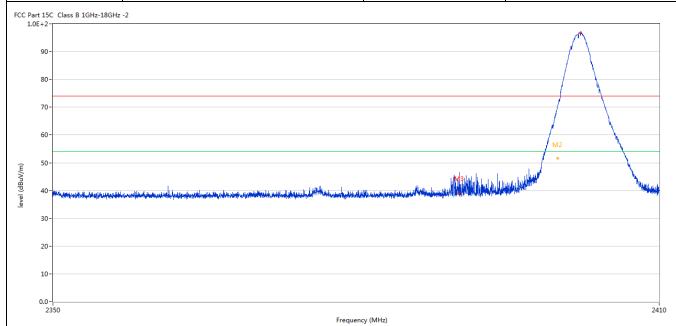
#### 7.4 EUT Operating Condition

Same as section 5.4 of this report.

#### 7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

The report refers only to the sample tested and does not apply to the bulk.


Report No.: TW2205221E Page 24 of 49

Date: 2022-05-25



#### 7.6 Test Result

| Product:     | Wireless Bluetooth Headphone | Polarity     | Horizontal |
|--------------|------------------------------|--------------|------------|
| Mode         | Keeping Transmitting         | Test Voltage | DC3.7V     |
| Temperature  | 24 deg. C,                   | Humidity     | 56% RH     |
| Test Result: | Pass                         |              |            |



|     | l         |          |        |          |            | 1        |           |        | 1          |         |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 2402.142  | 96.73    | -3.57  | 74.0     | 22.73      | Peak     | 208.00    | 100    | Horizontal | N/A     |
| 2   | 2400.012  | 67.87    | -3.57  | 74.0     | -6.13      | Peak     | 228.00    | 100    | Horizontal | Pass    |
| 2** | 2400.012  | 51.69    | -3.57  | 54.0     | -2.31      | AV       | 228.00    | 100    | Horizontal | Pass    |
| 3   | 2390.070  | 39.12    | -3.53  | 74.0     | -34.88     | Peak     | 162.00    | 100    | Horizontal | Pass    |

Page 25 of 49 Report No.: TW2205221E



| I                  | Product:     | Wii              | reless Bl | uetooth Hea       | adphone      | D        | etector   |             | Vertical        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|--------------|------------------|-----------|-------------------|--------------|----------|-----------|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Mode         |                  | Keepin    | g Transmitt       | ting         | Test     | t Voltage |             | DC3.7V          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Te                 | mperature    |                  | 2         | 4 deg. C,         |              | Н        | ımidity   |             | 56% RF          | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Te                 | est Result:  |                  |           | Pass              |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CC Part 1<br>1.0E+ |              | z -2             |           |                   |              |          |           |             | M1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81                 |              |                  |           |                   |              |          |           |             | $\int \int$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                 | 0-           |                  |           |                   |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60                 | 0-           |                  |           |                   |              |          |           |             | $\overline{}$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (m//mgp) 44        | la la caraci |                  |           |                   |              |          |           |             | <b>√12</b><br>• | The state of the s |
| 30                 | 0-           |                  |           |                   |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                 | 0-           |                  |           |                   |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |              |                  |           |                   |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                 | 0-           |                  |           |                   |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                 |              |                  |           |                   |              |          |           |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0                |              |                  |           |                   | Frequency (N | IHz)     |           |             |                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0                | 0-           | Results (dBuV/m) | Factor    | Limit<br>(dBuV/m) | Over Limit   | Detector | Table (o) | Height (cm) | ANT             | Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 2401.857  | 91.18    | -3.57  | 74.0     | 17.18      | Peak     | 186.00    | 100    | Vertical | N/A     |
| 2   | 2400.042  | 64.64    | -3.57  | 74.0     | -9.36      | Peak     | 186.00    | 100    | Vertical | Pass    |
| 2** | 2400.042  | 48.56    | -3.57  | 54.0     | -5.44      | AV       | 186.00    | 100    | Vertical | Pass    |
| 3   | 2390.040  | 42.53    | -3.53  | 74.0     | -31.47     | Peak     | 227.00    | 100    | Vertical | Pass    |

Report No.: TW2205221E Page 26 of 49

Date: 2022-05-25

2\*\*

2483.392

46.36



| Product:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wireless    | Bluetooth         | Headphone              |                                 | Polar                                | rity                              | Horiz                                                                                                          | ontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|------------------------|---------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kee         | eping Transı      | mitting                |                                 | Test Vo                              | ltage                             | DC3                                                                                                            | .7V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Temperature                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 24 deg. C         | ·,                     |                                 | Humi                                 | dity                              | 56%                                                                                                            | RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Result:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Pass              |                        |                                 |                                      |                                   |                                                                                                                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Part 15C Class B 1GHz-18<br>1.0E+2-      | GHz -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                   |                        |                                 |                                      |                                   | •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 90-                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |                        |                                 |                                      |                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70-                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |                        |                                 |                                      |                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60-                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |                        |                                 |                                      |                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |                        |                                 |                                      |                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50-                                      | , skulpiledaja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                   | M2                     |                                 |                                      |                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | Charles with the state of the s |             |                   |                        | and he had grant the colored    |                                      | harabahk kendagi                  | Harris Harry of the American                                                                                   | المنافلة المتعادمة المتعادمة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                          | Consequented and published in the state of t |             |                   |                        | and the last the section of     |                                      | olesee subsepting the sections of | Hildwardsinkeren, sikkita, nelyeni,                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40-Land Malanda Miles                    | Control of the State of the Sta |             |                   |                        | makada firatra dipertika alba g | waddi di ar a hi bibarhi             | olesse substitute (la periodope)  | الماطعة المعادية الماطيعة المعادية المعادية المعادية المعادية المعادية المعادية المعادية المعادية المعادية الم | e de la decima de l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30-                                      | tadiying din direktirin direktirin direktirin direktirin direktirin direktirin direktirin direktirin direktiri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                   |                        | and had before the section of   | engabilitedel, singe tal believe the | ok ng zahigidika lan and danad    | hidronia in deserço i distança (specie                                                                         | e de la companya de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30-                                      | tadional particular designation of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |                        | and had before the section of   | renadak dalaman kalaban da           | ok se zakadiri ke eni kenak       | hildrandrish bengari Albertang banar                                                                           | e de la companya de l |
| 30-                                      | the all the state of the state  |             |                   |                        |                                 | engalah dina atah dalam da           | ok ay abaddir lo endigy           | hildrandin kongo i Albina, dana                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40-<br>30-<br>20-<br>10-<br>2470         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor      | Limit             | 2483.5                 |                                 | Table (o)                            | Height                            | ANT                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40-<br>30-<br>20-<br>10-<br>2470         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor (dB) | Limit<br>(dBuV/m) | 2483.5<br>Frequency (I | MH2)                            |                                      |                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40-<br>30-<br>20-<br>10-<br>0.0-<br>2470 | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                   | 2483.5<br>Frequency (I | MH2)                            |                                      | Height                            |                                                                                                                | Verdic<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

-7.64

ΑV

100

Horizontal

Pass

130.00

-3.57

54.0

Report No.: TW2205221E Page 27 of 49



| P                          | Product: Wireless Bluetooth Headphone Detector |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |                                      |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tical                    |
|----------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|--------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                            | Mode                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K           | eeping Tran         | nsmitting                            |                                               | Test V                                                                 | Voltage                         | DC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7V                     |
| Ter                        | nperature                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 24 deg.             | C,                                   |                                               | Hun                                                                    | nidity                          | 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RH                       |
| Tes                        | st Result:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Pass                |                                      |                                               |                                                                        | -                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| C Part 15                  | 5C Class B 1GHz-18GH:                          | z -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                     |                                      |                                               | I                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |                                      |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 90                         | )-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | \mathrew \tag{1.50} |                                      |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 80                         | )-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /           |                     |                                      |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 70                         | )-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |                                      |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 60                         | J-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -/          |                     | 1                                    |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     | N I                                  |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     | Mark Comment                         |                                               |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 50                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     | M <sub>2</sub>                       |                                               | 1.                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 50                         | )-                                             | Hadda Jaron Haringa Alek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                     |                                      | ileradiyesediyejelida billa                   |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 50<br>40<br>30             | -<br>                                          | Haller of the water of the state of the stat |             |                     |                                      | hindusolii ja loka loka                       | da Nobella ka a Maraka ka                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 40                         | <br><sub></sub>                                | المراد المنافقة المراد والمنافقة المنافقة المناف |             |                     |                                      | throwhere of the fact of the Audient          | da Nie Andrick zwieden der Iden                                        |                                 | halid and the state of the stat |                          |
| 40                         | <br><sub></sub>                                | المراد ال |             |                     |                                      | ilmin wilders and first fill fill the lighten |                                                                        | de Albharaí e é agus de bhliadh |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dipatrica de principalis |
| 40<br>30                   |                                                | tidisəni kanin dirilərini diri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                     |                                      | ilwandinga di kapadi da kapadi                | da <mark>dib dala sa</mark> ka da  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | did nad deployed played  |
| 30<br>20<br>10             |                                                | المفاق يتعاول بعدادة المفاقعة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                     |                                      | ilmina addine and the first find the second   |                                                                        | المالم المراجع المالية الله     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an in the second         |
| 30<br>20<br>10             |                                                | tekkensisteristik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |                                      |                                               | da <mark>dik dalamb</mark> a sa da |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a to to water            |
| 30 20 10 0.0               |                                                | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Factor      | Limit               | 2483.5                               |                                               | Table (o)                                                              | Height                          | ANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>Verdict             |
| 30<br>30<br>10<br>0.0<br>2 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor (dB) | Limit<br>(dBuV/m)   | 2483.5<br>Frequency (                | MHz)                                          |                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                        |
| 30 20 10 0.0 2 No.         | Frequency                                      | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                     | 2483.5<br>Frequency (                | MHz)                                          |                                                                        | Height                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                        |
| 30<br>30<br>10<br>0.0<br>2 | Frequency (MHz)                                | Results<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (dB)        | (dBuV/m)            | 2483.5<br>Frequency (Over Limit (dB) | MHz) Detector                                 | Table (o)                                                              | Height (cm)                     | ANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 Verdict                |

Note: 1. The PK emission level less than the AV limit. No necessary to record the AV emission level.

Report No.: TW2205221E Page 28 of 49

Date: 2022-05-25



#### 8.0 Antenna Requirement

#### **Applicable Standard**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

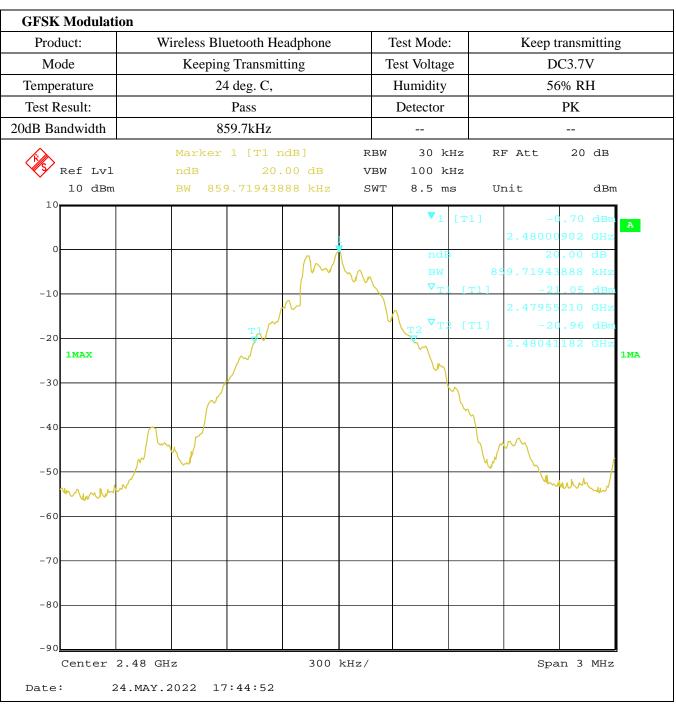
This product has a PCB antenna. The antenna gain is -0.58dBi Max. It fulfills the requirement of this section. Test Result: Pass

Page 29 of 49 Report No.: TW2205221E



| Product:     | Wireless 1    | Bluetooth F                       | Ieadphon     | e          | Test Mod                               | le:        | Keep                | transmitting | g  |
|--------------|---------------|-----------------------------------|--------------|------------|----------------------------------------|------------|---------------------|--------------|----|
| Mode         |               | ing Transm                        |              |            | Test Volta                             | ige        |                     | C3.7V        | -  |
| emperature   |               |                                   | Humidit      |            | 5                                      | 6% RH      |                     |              |    |
| Cest Result: |               | 24 deg. C, Humidity Pass Detector |              |            |                                        |            |                     | PK           |    |
| B Bandwidth  |               | 811.6kHz                          |              |            |                                        |            |                     |              |    |
| Ref Lvl      | Marker<br>ndB | 1 [T1 no                          | dB]<br>00 dB | RBW<br>VBW | 30 kH<br>100 kH                        |            | F Att               | 20 dB        |    |
| 10 dBm       | BW 811        | L.6232464                         | 19 kHz       | SWT        | 8.5 ms                                 | U          | nit                 | dBm          |    |
| 10           |               |                                   |              | ļ          | <b>V</b> 1                             | [T1]       | 2.4020              | 0.68 dBm     | A  |
| 0            |               |                                   |              | M          | ndB<br>BW<br>▼ <sub>T1</sub>           | 8:<br>[T1] | 20<br>11.6232<br>-1 |              |    |
| -10          |               | Ţ,                                | V            | V          |                                        | [T1]       | _                   | 0020 GHz     |    |
| -20<br>1MAX  | ,             |                                   |              |            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            | 2.4024              |              | 1M |
| -30          |               |                                   |              |            |                                        | 4          | Λ                   |              |    |
| -40          |               |                                   |              |            |                                        |            | W/                  |              |    |
| -50          |               |                                   |              |            |                                        |            | by.                 | mund         |    |
| -60          |               |                                   |              |            |                                        |            |                     |              |    |
| -70          |               |                                   |              |            |                                        |            |                     |              |    |
| -80          |               |                                   |              |            |                                        |            |                     |              |    |
| -90          |               |                                   |              |            |                                        |            |                     |              |    |

Page 30 of 49 Report No.: TW2205221E




| 2.44100902 GHz  ndB 20.00 dB  BW 853.70741483 kHz  ▼TI [T1] -2C.37 dBm  2.44055210 GHz  T1 ▼T2 [T1] -19.87 dBm  2.44140581 GHz                                                                                                                               |     |              |             |          |      |                                                              |          |            |           |             | tion     | K Modula | GFS     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-------------|----------|------|--------------------------------------------------------------|----------|------------|-----------|-------------|----------|----------|---------|
| Temperature 24 deg. C, Humidity 56% RH  Test Result: Pass Detector PK  20dB Bandwidth 853.7kHz                                                                                                                                                               |     | transmitting | Keep tr     |          | le:  | Test Mod                                                     |          | adphone    | etooth He | ireless Blu | W        | duct:    | Pro     |
| Test Result:  Pass  Detector  PK  20dB Bandwidth  853.7kHz   Marker 1 [T1 ndB] RBW 30 kHz RF Att 20 dB ndB 20.00 dB VBW 100 kHz  10 dBm BW 853.70741483 kHz SWT 8.5 ms Unit dBm  10  10  10  10  10  10  10  10  10  1                                       |     | C3.7V        | DO          |          | ige  | est Volta                                                    | 7        | ting       | g Transmi | Keeping     |          | ode      | Me      |
| 20dB Bandwidth 853.7kHz                                                                                                                                                                                                                                      |     | 5% RH        | 56          |          | y    | Humidit                                                      |          | 24 deg. C, |           |             |          |          | Temp    |
| Marker 1 [T1 ndB] RBW 30 kHz RF Att 20 dB  Ref Lvl ndB 20.00 dB VEW 100 kHz  10 dBm 853.70741483 kHz SWT 8.5 ms Unit dBm  10 v1 [T1] -c.10 dBm  2.44100902 GHz  10 ndi 2.000 dB  BW 853.70741483 kHz  VT [T1] -20 37 dBm  2.44055210 GHz  -10 1MAX  -30 1MAX |     | PK           |             |          | r    | Detecto                                                      |          |            | Pass      |             |          | Result:  | Test I  |
| Ref Lvl ndB 20.00 dB VBW 100 kHz  10 dBm BW 853.70741483 kHz SWT 8.5 ms Unit dBm  10                                                                                                                                                                         |     |              |             |          |      |                                                              |          |            | 53.7kHz   | 8:          |          | andwidth | 20dB Ba |
| 10 dBm BW 853.70741483 kHz SWT 8.5 ms Unit dBm  10                                                                                                                                                                                                           |     | 20 dB        | 7 Att       | z RI     | kHz  | 30                                                           | RBW      | ndB]       | 1 [T1 r   | Marker      |          |          | (F)     |
| 10 0 1                                                                                                                                                                                                                                                       |     | 10           |             |          |      |                                                              |          |            |           |             |          |          | WS/     |
| -10 -10 -10 -10 -10 -10 -20 -20 -30 -40 -40 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1                                                                                                                                                                           |     | dBm          | nit         | Uı       | ms   | 8.5                                                          | SWT      | 83 KHZ     | 3.707414  | BW 85.      |          |          | 10      |
| 0                                                                                                                                                                                                                                                            | A   |              | - O         | T1]      | 1 [T | ▼:                                                           |          |            |           |             |          |          |         |
| BW 853.70741483 kHz  VT: [T1] -2C, 37 dBm  2.44055210 GHz  -19.87 dBm  2.44140581 GHz  11  -30  -40                                                                                                                                                          |     |              |             |          | 3 75 |                                                              | ,        |            |           |             |          |          | C       |
| -10  -20  -20  -20  -30  -40  -10  -20, 37 dBm  -20, 37 dBm  -20, 37 dBm  -20, 44055210 GHz  -19.87 dBm  -2.44140581 GHz  1:                                                                                                                                 |     |              |             | 85       |      |                                                              | <u>ر</u> |            |           |             |          |          |         |
| -20 1MAX  -20 1MAX  -30 -40                                                                                                                                                                                                                                  |     |              | -20         |          |      |                                                              | V V      |            |           |             |          |          | -10     |
| -20 1MAX -30 -40                                                                                                                                                                                                                                             |     | 5210 GHz     | 2.44055     |          |      | Λ                                                            |          | $\sim$     |           |             |          |          |         |
| -30 -40                                                                                                                                                                                                                                                      |     |              |             | [T1]     | г2 [ | $     \begin{array}{c}                                     $ | ·        |            | T1<br>V   |             |          |          | -20     |
| -40                                                                                                                                                                                                                                                          | 1MA |              | 2.44140     |          | 7    | 7                                                            |          |            |           |             |          |          |         |
|                                                                                                                                                                                                                                                              |     |              |             | <b>У</b> |      |                                                              |          |            |           |             |          |          | -30     |
| -50                                                                                                                                                                                                                                                          |     |              | M           |          |      |                                                              |          |            |           |             | $\int $  |          | -40     |
| harman                                                                                                                                                                                                                                                       |     | two water    | ~~ <u>\</u> |          |      |                                                              |          |            |           |             | <b>~</b> |          | -50     |
| -60                                                                                                                                                                                                                                                          |     |              |             |          |      |                                                              |          |            |           |             |          |          | -60     |
| -70                                                                                                                                                                                                                                                          |     |              |             |          |      |                                                              |          |            |           |             |          |          | -70     |
| -80                                                                                                                                                                                                                                                          |     |              |             |          |      |                                                              |          |            |           |             |          |          | -80     |
| -90                                                                                                                                                                                                                                                          |     |              |             |          |      |                                                              |          |            |           |             |          |          | -90     |
| Center 2.441 GHz 300 kHz/ Span 3 MHz                                                                                                                                                                                                                         |     | an 3 MHz     | Spa         |          |      |                                                              | kHz/     | 300        |           | Hz          | 2.441 G  |          |         |
| Date: 24.MAY.2022 17:41:59                                                                                                                                                                                                                                   |     |              |             |          |      |                                                              |          |            | :41:59    | 2022 17     | 24.MAY.2 | : 2      | Date    |

Page 31 of 49

Report No.: TW2205221E





Page 32 of 49 Report No.: TW2205221E



| Product:      | Wireless Bluetoe | oth Headphone | Test Mode:             | Keep tr | ansmitting                |  |
|---------------|------------------|---------------|------------------------|---------|---------------------------|--|
| Mode          | Keeping Tra      | ansmitting    | Test Voltage           | DO      | C3.7V                     |  |
| Temperature   | 24 de            | g. C,         | Humidity               | 56      | % RH                      |  |
| Test Result:  | Pas              | SS            | Detector               | PK      |                           |  |
| OdB Bandwidth | 1.2631           | MHz           |                        |         |                           |  |
| <u> </u>      | Marker 1 [T      | l ndB] RBW    | 30 kHz                 | RF Att  | 20 dB                     |  |
| Ref Lvl       | ndB              | 20.00 dB VBW  | 100 kHz                |         |                           |  |
| 10 dBm        | BW 1.262         | 52505 MHz SWT | 8.5 ms                 | Unit    | dBm                       |  |
| 10            |                  |               | <b>▼</b> 1 [T1]        | -1      | .32 dBm                   |  |
|               |                  |               |                        |         | 902 GHz                   |  |
| 0             |                  | Á             | ndB                    | 20      | .00 dB                    |  |
|               |                  | Λ. /\\ /      | BW V <sub>T1 [T1</sub> |         | 505 MHz                   |  |
| -10           |                  |               | VT T                   |         | <u>.97 dBm</u><br>776 GHz |  |
|               |                  |               | V <sub>12</sub> [T1    |         | .39 dBm                   |  |
| -20           | 7                |               | Y Y                    | 2.40264 | 028 GHz                   |  |
| 1MAX          |                  |               |                        |         | 1M2                       |  |
| -30           |                  |               |                        |         |                           |  |
|               |                  |               |                        |         |                           |  |
| -40 hm/ nutro | man M            |               |                        | mm      |                           |  |
| 0 4 W         |                  |               |                        | M       | $\sim$ $\sim$             |  |
| -50           |                  |               |                        |         |                           |  |
|               |                  |               |                        |         |                           |  |
| -60           |                  |               |                        |         |                           |  |
|               |                  |               |                        |         |                           |  |
| -70           |                  |               |                        |         |                           |  |
|               |                  |               |                        |         |                           |  |
| -80           |                  |               |                        |         |                           |  |
|               |                  |               |                        |         |                           |  |
| -90           |                  |               |                        |         |                           |  |
| Center 2.40   | )2 GHz           | 300 kHz/      |                        | Spai    | n 3 MHz                   |  |

Page 33 of 49 Report No.: TW2205221E



| Product:      | Wireless Blu | etooth Head | lphone                                 | T         | est Mode:     | Keep transmitt |         | ransmitting | g   |
|---------------|--------------|-------------|----------------------------------------|-----------|---------------|----------------|---------|-------------|-----|
| Mode          | Keeping      | Transmittir |                                        |           |               | C3.7V          |         |             |     |
| Temperature   |              | deg. C,     |                                        |           | Humidity      |                | 56      | % RH        |     |
| Test Result:  |              | Pass        |                                        |           | Detector      | PK             |         |             |     |
| OdB Bandwidth | 1.2          | 69MHz       |                                        |           |               |                |         |             |     |
| <u> </u>      | Marker       | 1 [T1 nd]   | B]                                     | RBW       | 30 kHz        | RI             | 7 Att   | 20 dB       |     |
| Ref Lvl       | ndB          | 20.00       | 0 dB                                   | VBW       | 100 kHz       |                |         |             |     |
| 10 dBm        | BW 1         | .2685370    | 7 MHz                                  | SWT       | 8.5 ms        | Ur             | nit     | dBm         | ı   |
| 10            |              |             |                                        |           | <b>▼</b> 1 [T | 1]             | -2      | .29 dBm     | A   |
| 0             |              |             | 1                                      |           |               |                | 2.44101 | 503 GHz     |     |
|               |              |             | Ā                                      |           | ndB           |                | 20      | .00 dB      |     |
|               |              |             | \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $\Lambda$ | BW VT1 [      | т11            | 1.26853 | 707 MHz     |     |
| -10           |              | ~~\^\       |                                        | him       | my            |                | 2.44037 | 174 GHz     |     |
|               |              | /           |                                        |           | <b>7</b> 22 [ | T1]            | -22     | .29 dBm     |     |
| -20<br>1MAX   | 7            |             |                                        |           | Y             |                | 2.44164 | 028 GHz     | 1MA |
| -30           |              |             |                                        |           |               |                |         |             |     |
| -40           | W W          |             |                                        |           |               | lun            | ~~~~    | m m         |     |
| -50           |              |             |                                        |           |               |                |         |             |     |
| -60           |              |             |                                        |           |               |                |         |             |     |
| -70           |              |             |                                        |           |               |                |         |             |     |
| - 70          |              |             |                                        |           |               |                |         |             |     |
| -80           |              |             |                                        |           |               |                |         |             |     |
| -90           |              |             |                                        |           |               |                |         |             |     |
| Center 2.     | 441 GHz      |             | 300 kHz                                | /         |               |                | Spa     | n 3 MHz     |     |

Page 34 of 49 Report No.: TW2205221E



| Product:      | Wii                                    | reless Blu    | aetooth He | adphone   |      | Test Mode              | ;             | Keep t  | ransmitting |  |
|---------------|----------------------------------------|---------------|------------|-----------|------|------------------------|---------------|---------|-------------|--|
| Mode          |                                        |               | g Transmi  |           | -    | Test Voltag            | e             |         | C3.7V       |  |
| Temperature   |                                        |               | 4 deg. C,  | =         |      | Humidity               |               |         | 5% RH       |  |
| Test Result:  |                                        | Pass          |            |           |      | Detector               |               | PK      |             |  |
| OdB Bandwidth |                                        | 1.3           | 263MHz     |           |      |                        |               |         |             |  |
| Ŕ             |                                        | Marker        | 1 [T1 r    | ndB]      | RBW  | 30 k                   | Hz R          | F Att   | 20 dB       |  |
| Ref Lvl       |                                        | ndB           | 20.        | 00 dB     | VBW  | 100 k                  | Hz            |         |             |  |
| 10 dBm        |                                        | BW I          | 1.262525   | 05 MHz    | SWT  | 8.5 m                  | s U           | nit     | dBm         |  |
| 10            |                                        |               |            |           |      | <b>v</b> <sub>1</sub>  | [T1]          | -3      | .00 dBm     |  |
|               |                                        |               |            |           |      |                        |               | 2.48000 |             |  |
| 0             |                                        |               |            |           |      | ndE                    | 3             | 20      | .00 dB      |  |
|               |                                        |               |            | _ /       | $$   | BW<br>▼ <sub>T</sub> 1 | [T1]          | 1.26252 | 505 MHz     |  |
| -10           |                                        |               | ~/         | $\sqrt{}$ | V    | My                     |               | 2.47937 |             |  |
|               |                                        |               |            |           |      | $\Delta f^{L_3}$       | 2 [T1]        | -22     | .79 dBm     |  |
| -20           |                                        | 7             |            |           |      | 1                      | <del>T2</del> | 2.48063 | 427 GHz     |  |
| 1MAX          |                                        | /             |            |           |      |                        |               |         | 11          |  |
| -30           |                                        |               |            |           |      |                        | _             |         |             |  |
|               |                                        | /             |            |           |      |                        | \             |         |             |  |
| -40           | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <del>~ </del> |            |           |      |                        | \             |         |             |  |
| ~~~~          | ~~                                     |               |            |           |      |                        | Wan           | $\sim$  | . ^ ~       |  |
| -50           |                                        |               |            |           |      |                        |               | ****    | W \         |  |
|               |                                        |               |            |           |      |                        |               |         |             |  |
| -60           |                                        |               |            |           |      |                        |               |         |             |  |
|               |                                        |               |            |           |      |                        |               |         |             |  |
| -70           |                                        |               |            |           |      |                        |               |         |             |  |
|               |                                        |               |            |           |      |                        |               |         |             |  |
| -80           |                                        |               |            |           |      |                        |               |         |             |  |
|               |                                        |               |            |           |      |                        |               |         |             |  |
| -90           |                                        |               |            |           |      |                        |               |         |             |  |
| Center 2      | 2.48 GHz                               | :             |            | 300       | kHz/ |                        |               | Spa     | n 3 MHz     |  |

Page 35 of 49 Report No.: TW2205221E



| Product:      | W       | ireless Blu | aetooth He | adphone      | 7        | Test Mode             | :      | Keep t         | ransmitting          | g   |
|---------------|---------|-------------|------------|--------------|----------|-----------------------|--------|----------------|----------------------|-----|
| Mode          |         | Keeping     | g Transmit | ting         | Т        | est Voltage           | e      | D              | C3.7V                |     |
| Temperature   |         |             | deg. C,    |              |          | Humidity              |        | 56             | 5% RH                |     |
| Test Result:  |         | Pass        |            |              |          | Detector              |        | PK             |                      |     |
| 0dB Bandwidth |         | 1.3         | 281MHz     |              |          |                       |        |                |                      |     |
| Ŕ             |         | Marker      | 1 [T1 n    | ndB]         | RBW      | RBW 30 kHz            |        | 7 Att          | 20 dB                |     |
| Ref Lvl       |         | ndB         | 20.        | 00 dB        | VBW      | 100 k                 | Hz     |                |                      |     |
| 10 dBm        |         | BW 3        | 1.280561   | 12 MHz       | SWT      | 8.5 m                 | s Ur   | nit            | dBm                  | L   |
| 10            |         |             |            |              |          | <b>v</b> <sub>1</sub> | [T1]   | -1             | l.35 dBm             | ,   |
|               |         |             |            | ;            | <u>L</u> |                       |        | 2.40200        | 902 GHz              | A   |
| 0             |         |             |            | 1            | \ \ \    | ndE                   | 3      | 20             |                      |     |
|               |         |             |            |              |          | BW                    |        | 1.28056        |                      |     |
| -10           |         |             |            | <del>~</del> | , C      | M VTI                 | [T1]   | -21<br>2.40135 | 1.36 dBm<br>3371 GHz |     |
|               |         |             | / *        |              |          | √ <sub>1</sub> 2      | 2 [T1] | -21            |                      |     |
| -20           |         | T1          |            |              |          |                       | T 2" 1 | 2.40263        | 3427 GHz             |     |
| 1MAX          |         |             |            |              |          |                       |        |                |                      | 1MA |
| -30           |         |             |            |              |          |                       |        |                |                      |     |
| -40           |         | W.          |            |              |          |                       | w      | m/w            | m                    |     |
| -50           |         |             |            |              |          |                       |        |                |                      |     |
|               |         |             |            |              |          |                       |        |                |                      |     |
| -60           |         |             |            |              |          |                       |        |                |                      |     |
|               |         |             |            |              |          |                       |        |                |                      |     |
| -70           |         |             |            |              |          |                       |        |                |                      |     |
| , 5           |         |             |            |              |          |                       |        |                |                      |     |
|               |         |             |            |              |          |                       |        |                |                      |     |
| -80           |         |             |            |              |          |                       |        |                |                      |     |
|               |         |             |            |              |          |                       |        |                |                      |     |
| -90           | 2.402 G | II.a        | I          | 200          | kHz/     |                       |        | 222            | an 3 MHz             |     |

Page 36 of 49 Report No.: TW2205221E



| 8QPSK Modul    | ation       |                     |                                       |                                                   |        |                        |
|----------------|-------------|---------------------|---------------------------------------|---------------------------------------------------|--------|------------------------|
| Product:       | Wireless 1  | Bluetooth Headphone | Te                                    | st Mode:                                          | Keep   | transmitting           |
| Mode           | Keep        | ing Transmitting    | Tes                                   | st Voltage                                        | Ι      | OC3.7V                 |
| Temperature    |             | 24 deg. C,          | Humidity 56% R                        |                                                   |        | 6% RH                  |
| Test Result:   |             | Pass                | Γ                                     | Detector                                          |        | PK                     |
| 20dB Bandwidth |             | 1.281MHz            |                                       |                                                   |        |                        |
| Ŕ              | Marke       | er 1 [T1 ndB]       | RBW                                   | 30 kHz                                            | RF Att | 20 dB                  |
| Ref Lvl        | ndB         | 20.00 dB            | VBW                                   | 100 kHz                                           |        |                        |
| 10 dBm         | BW          | 1.28056112 MHz      | SWT                                   | 8.5 ms                                            | Unit   | dBm                    |
|                |             |                     |                                       | <b>▼</b> 1 [T                                     | 1] -   | 2.20 dBm A             |
| 0              |             |                     |                                       |                                                   | 2.4410 |                        |
|                |             |                     |                                       | ndB<br>BW                                         | 1.2805 | 0.00 dB<br>6112 MHz    |
| -10            |             |                     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | _                                                 | r1] -2 | 2.35 dBm               |
|                |             | ~~~~                |                                       | My                                                | 2.4403 | 5371 GHz               |
| -20            |             | T1                  |                                       | ∇\ <sub>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</sub> | T1] -2 | 2.31 dBm               |
| 1MAX           |             |                     |                                       |                                                   | 2.4416 | 3427 GHz<br><b>1MA</b> |
| -30            |             |                     |                                       | 1                                                 |        |                        |
| -40            | War war     |                     |                                       |                                                   | hymn   | M ~ M                  |
| -50            |             |                     |                                       |                                                   | •      |                        |
| -60            |             |                     |                                       |                                                   |        |                        |
| -70            |             |                     |                                       |                                                   |        |                        |
| -80            |             |                     |                                       |                                                   |        |                        |
|                |             |                     |                                       |                                                   |        |                        |
| -90<br>Center  | 2.441 GHz   | 300                 | kHz/                                  | l                                                 | Sp     | an 3 MHz               |
| Date: 2        | 24.MAY.2022 | 17:58:06            |                                       |                                                   |        |                        |

Page 37 of 49 Report No.: TW2205221E

Date: 2022-05-25



| 8QPSK Modula   | ntion                 |                     |                                        |             |               |                   |               |                   |        |
|----------------|-----------------------|---------------------|----------------------------------------|-------------|---------------|-------------------|---------------|-------------------|--------|
| Product:       | ss Bluetooth He       | Bluetooth Headphone |                                        | Test Mode:  |               | Keep transmitting |               | g<br>S            |        |
| Mode           | eeping Transmit       | Transmitting        |                                        | est Voltage | DC3.7V        |                   |               |                   |        |
| Temperature    | 24 deg. C,            | 4 deg. C,           |                                        | Humidity    |               | 56% RH            |               |                   |        |
| Test Result:   | Pass                  |                     |                                        | Detector    |               | PK                |               |                   |        |
| 20dB Bandwidth | 20dB Bandwidth 1.2    |                     |                                        |             |               |                   |               |                   |        |
| (F)            |                       | rker 1 [T1 r        | ndB]                                   | RBW         | 30 kHz        | RF                | Att           | 20 dB             |        |
| Ref Lvl        |                       |                     | .00 dB                                 | VBW         | 100 kHz       |                   |               | _                 |        |
| 10 dBm         | BW                    | 1.280561            | 12 MHz                                 | SWT         | 8.5 ms        | Un:               | it            | dBm               | l<br>1 |
|                |                       |                     |                                        |             | <b>V</b> 1 [3 | r1]               | -3            | .00 dBm           | Α      |
| 0              |                       |                     |                                        |             |               | 2                 | 2.48000       | 902 GHz           |        |
|                |                       |                     | <b>1</b>                               | 0           | ndB<br>BW     | -                 | 20<br>1.28056 | .00 dB<br>112 MHz |        |
| 1.0            |                       |                     | $  \wedge  $                           | ١// ا       | _             | [T1]              | -23<br>-23    | .30 dBm           |        |
| -10            |                       | ~~~                 | ~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |             | ~~~           |                   | 2.47935       | 371 GHz           |        |
|                |                       |                     |                                        |             | ₹\_T2         | [T1]              | -23           | .41 dBm           |        |
| -20<br>1MAX    |                       |                     |                                        |             | V 2           | 2                 | 2.48063       | 427 GHz           | 1MA    |
| -30            |                       |                     |                                        |             | ,             |                   |               |                   |        |
| -40            | Comment of the second | ,                   |                                        |             |               | hay               | my n          | ۸۸                |        |
| -50            |                       |                     |                                        |             |               |                   |               |                   |        |
| -60            |                       |                     |                                        |             |               |                   |               |                   |        |
| -70            |                       |                     |                                        |             |               |                   |               |                   |        |
| -80            |                       |                     |                                        |             |               |                   |               |                   |        |
| -90<br>Center  | 2.48 GHz 300 kHz/     |                     |                                        |             |               |                   | Spa           | n 3 MHz           |        |
| Date: 2        | 24.MAY.2022           | 17:58:58            |                                        |             |               |                   |               |                   |        |

Report No.: TW2205221E Page 38 of 49

Date: 2022-05-25



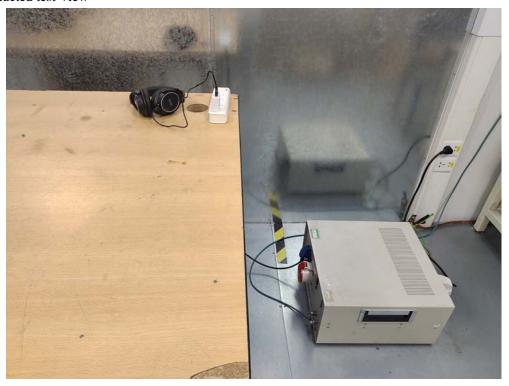

## 10.0 FCC ID Label

### FCC ID: 2A6XTANC-007

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

## **Mark Location:**




Page 39 of 49 Report No.: TW2205221E

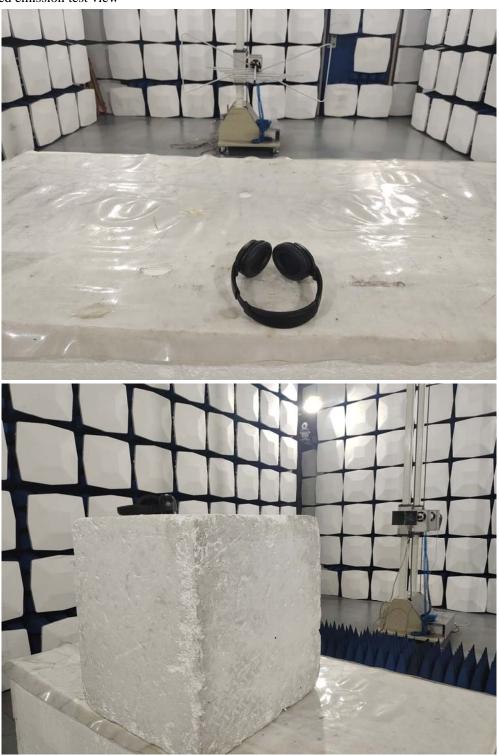
Date: 2022-05-25



### 11.0 Photo of testing

#### 11.1 Conducted test View--




Page 40 of 49

Report No.: TW2205221E

Date: 2022-05-25



## Radiated emission test view

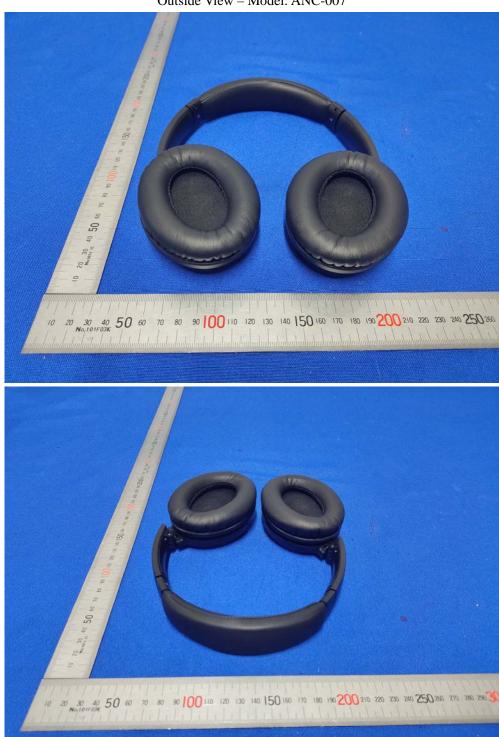


The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to


adopt any other remedies which may be appropriate.

Date: 2022-05-25



# 11.2 Photographs – EUT

Outside View - Model: ANC-007



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Page 42 of 49

Report No.: TW2205221E

Date: 2022-05-25



Outside View – Model: ANC-007



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2022-05-25

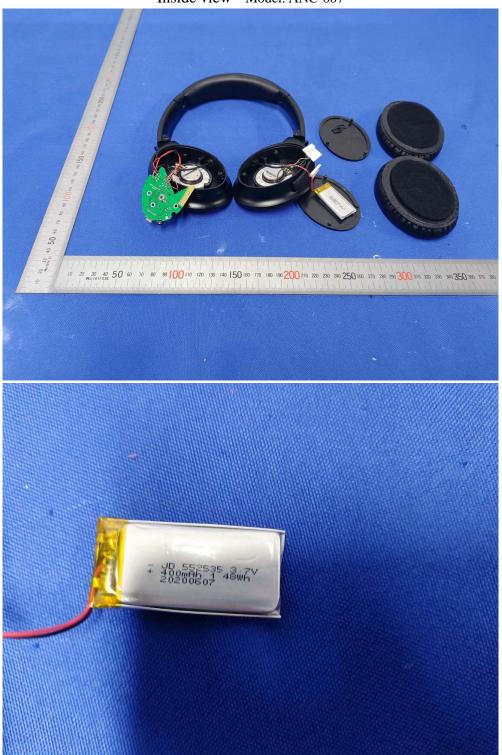


Outside View – Model: ANC-007



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


Page 44 of 49

Report No.: TW2205221E

Date: 2022-05-25

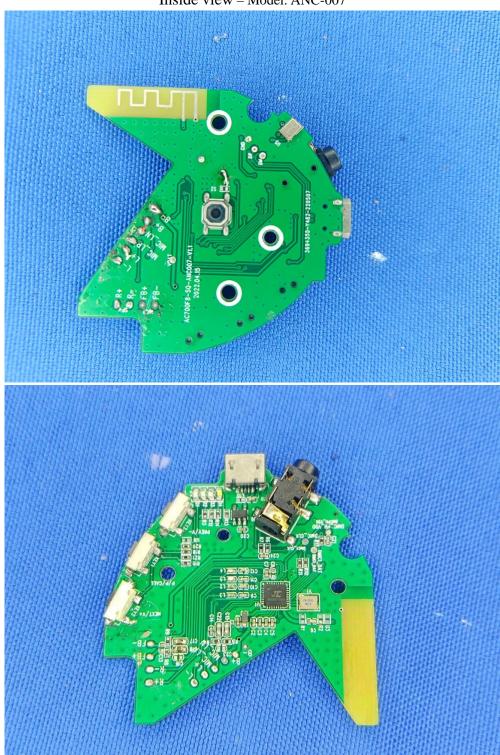


Inside view - Model: ANC-007



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Date: 2022-05-25



Inside view - Model: ANC-007

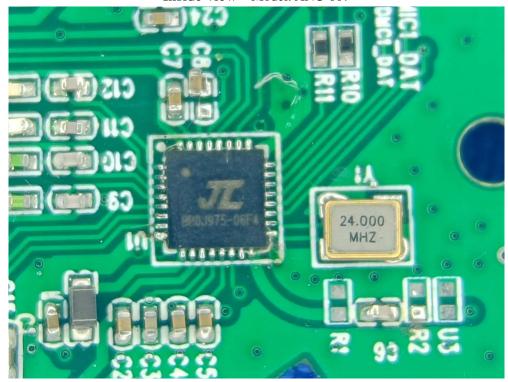


The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

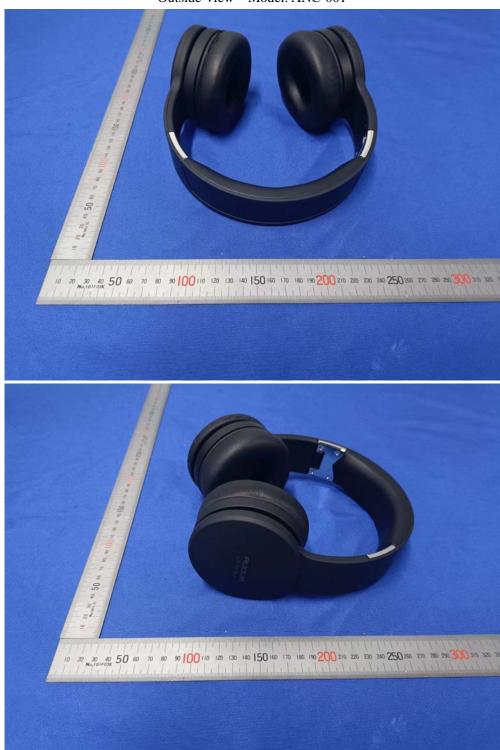
In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to


adopt any other remedies which may be appropriate.

Page 46 of 49 Report No.: TW2205221E

Date: 2022-05-25




Inside view - Model: ANC-007



Date: 2022-05-25



Outside View – Model: ANC-001



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2022-05-25



Outside View - Model: ANC-001



The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Report No.: TW2205221E Page 49 of 49

Date: 2022-05-25



Outside View - Model: ANC-001



-- End of the report--