

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)
7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.290.6654
http://www.element.com

RF Exposure SAR Test Report

Applicant Name: BH EVS Co.,Ltd 5, Magokjungang 8-ro 5-gil, Gangseo-gu, Seoul, 07794, Republic of Korea Date of Testing: 05/06/2025 Test Site/Location: Element, Columbia, MD, USA Document Serial No.: 1M2503170029-01.2A6WX

FCC ID: 2A6WXWCNIS31SS

APPLICANT: BH-EVS CO., LTD

DUT Type: Wireless Charger
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model(s): WCNIS31S

Equipment			SAR
Class	Band & Mode	Tx Frequency	1g Body (W/kg)
DXX	NFC	13.56 MHz	0.10

This wireless charger has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 2.6 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager	
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 1 of 16	

TABLE OF CONTENTS

1	TEST LA	BORATORY INFORMATION	3
2	DEVICE	UNDER TEST	4
3	INTRODU	JCTION	6
4	DOSIME	TRIC ASSESSMENT	7
5	RF EXPO	SURE LIMITS	8
6	SYSTEM	VERIFICATION	9
7	SAR DAT	A SUMMARY	10
8	SAR MEA	ASUREMENT VARIABILITY	11
9	EQUIPM	ENT LIST	12
10		EMENT UNCERTAINTIES	
11	CONCLU	SION	14
12	REFERE	NCES	15
APPEN APPEN APPEN APPEN	NDIX A: NDIX B: NDIX C: NDIX D: NDIX E: NDIX F:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS SAR SYSTEM VALIDATION DUT ANTENNA DIAGRAM AND SAR TEST SETUP PHOTOGRAPHS	

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01 2A6WX	DUT Type: Wireless Charger	Page 2 of 16

1 TEST LABORATORY INFORMATION

1.1 Introduction

This test report for device subject to testing at an accredited testing laboratory has been generated by the testing laboratory that tested the device. Detailed location and accredited information regarding the testing laboratories are provided below.

1.2 **Test Laboratories Information**

1.2.1 **Testing Laboratory 1**

Test Firm Name	ELEMENT MATERIALS TECHNOLOGY WASHINGTON DC LLC			
Test Lab Location	7185 Oakland Mills Road, Columbia, MD 21046, United States Tel. +1.410.290.6652 / Fax +1.410.290.6654			
	Lab Code. (ISED): 2451B			
	CAB Identifier (NIST): US0110			
Accreditation Info	ISO/IEC 17025 (A2LA): CERT #2041.01			
Accreditation Info.	ACCREDITED CERT #2041.01			
Measurement System No.	G			

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 3 of 16

2 DEVICE UNDER TEST

2.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
NFC	Data	13.56 MHz

2.2 Maximum Output Power Specifications

The NFC maximum output power for this device is specified in the Operational Descriptions Document.

2.3 DUT Antenna Locations

The overall dimensions of this device are < 200 mm. A diagram showing the location of the device antennas can be found in the DUT Antenna Diagram and SAR Test Setup Photographs Appendix. Exact dimensions and separation distances are shown in the Technical Descriptions in the FCC fillings.

Table 2-1
Device Edges/Sides for SAR Testing

F	Antenna	Back	Front	Тор	Bottom	Right	Left
	NFC	Yes	Yes	Yes	Yes	Yes	Yes

2.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in the DUT Antenna Diagram and SAR Test Setup Photographs Appendix.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager	
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 4 of 16	

Guidance Applied 2.5

- IEEE 1528-2013
- FCC KDB Publication 447498 D04v01 (Interim General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 616217 D04v01r02
- IEC/IEEE 63195-1:2022
- IEC 62479:2010
- SPEAG DASY6 System Handbook

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 5 of 16

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Device Under Test (DUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager	
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 6 of 16	

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

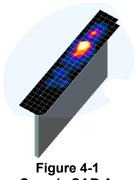


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

Maximum Area Scan Frequency Resolution (mm)		Maximum Zoom Scan Resolution (mm)	Max	Minimum Zoom Scan		
Frequency	(Δx _{area} , Δy _{area})	(Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
	,,	,	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, .,, ,
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 7 of 16

5 RF EXPOSURE LIMITS

5.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

5.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS									
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)							
Peak Spatial Average SAR Head	1.6	8.0							
Whole Body SAR	0.08	0.4							
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20							

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 8 of 16

The Spatial Average value of the SAR averaged over the whole body.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6 SYSTEM VERIFICATION

6.1 Tissue Verification

Table 6-1
Measured Head Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			12	0.718	53.091	0.750	55.000	-4.27%	-3.47%
05/06/2025 30 Head	30 Head	22.4	13	0.718	53.401	0.750	55.000	-4.27%	-2.91%
			14	0.718	53.403	0.750	55.000	-4.27%	-2.90%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2. The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

6.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in the SAR System Validation Appendix.

Table 6-2 System Verification Results

												System Verif TARGET & ME									
SAR System	Tissue Frequency (MHz)	Tissue Type	Date		Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 1g (W/kg)		1W Normalized SAR 1g (W/kg)		Measured SAR 10g (W/kg)		1W Normalized SAR 10g (W/kg)			1W Target 4cm2 APD (W/m2)		Deviation 4cm2 APD (%)
G	13	HEAD	05/06/2025	23.3	22.4	1.00	1002	7539	1415	0.50	0.52	0.50	-3.08%	0.31	0.33	0.31	-3 38%	N/A	N/A	N/A	N/A

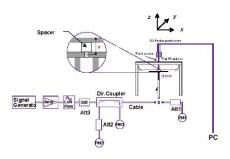


Figure 6-1
System Verification Setup Diagram

Figure 6-2
System Verification Setup Photo

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 9 of 16

7 SAR DATA SUMMARY

7.1 NFC Standalone SAR

Table 7-1
Wireless Charging NFC

Exposure	Band / Mode	Signal Type	Ant.	Serial Number	Power Drift [dB]	Frequency [MHz]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]
Body	NFC	В	NFC	MD01	0.06	13.60	Back	0	0.003
Body	NFC	В	NFC	MD01	-0.02	13.60	Front	0	0.095
Body	NFC	В	NFC	MD01	0.00	13.60	Тор	0	0.032
Body	NFC	В	NFC	MD01	0.02	13.60	Bottom	0	0.033
Body	NFC	В	NFC	MD01	0.02	13.60	Right	0	0.026
Body	NFC	В	NFC	MD01	0.02	13.60	Left	0	0.022

7.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Publication 447498 D04v01, and FCC KDB Publication 616217 D04v01r02.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. Per FCC KDB 865664 D01v01r04, variability SAR tests are not required when the measured SAR results for a frequency band were less than 0.8 W/kg. Please see Section 10 for variability analysis.
- 6. FCC KDB Publication 616217 D04v01r02 Section 4.3, SAR tests are required for the back surface and edges of device with the device touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D04v01 was applied to determine SAR test exclusion for adjacent edge configurations.
- 7. The orange highlights throughout the report represent the highest SAR per Equipment Class.

NFC Notes

1. NFC antennas were tested against the flat phantom at 0mm for all configurations.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 10 of 16

8 SAR MEASUREMENT VARIABILITY

8.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥
- 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

8.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 11 of 16

9 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent	E4438C	ESG Vector Signal Generator	11/15/2024	Annual	11/15/2025	MY45092078
Agilent	N5182A	MXG Vector Signal Generator	5/16/2024	Annual	5/16/2025	MY47420837
Agilent	8753ES	S-Parameter Vector Network Analyzer	9/25/2024	Annual	9/25/2025	MY40003841
Agilent	E5515C	Wireless Communications Test Set	CBT	N/A	CBT	GB41450275
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Mini-Circuits	PWR-4GHS	USB Power Sensor	6/12/2024	Annual	6/12/2025	12001070013
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	240174346
Control Company	4040	Therm./ Clock/ Humidity Monitor	4/15/2024	Biennial	4/15/2026	240310280
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits	VLF-6000+	Low Pass Filter DC to 6000 MHz	7/10/2024	Annual	7/10/2025	31634
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Seekonk	NC-100	Torque Wrench	4/2/2024	Biennial	4/2/2026	1262
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1390
SPEAG	DAK-12	Dielectric Assessment Kit (4MHz - 3GHz)	3/10/2025	Annual	3/10/2026	1102
SPEAG	CLA-13	Confined Loop Antenna	9/4/2024	Annual	9/4/2025	1002
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/11/2025	Annual	3/11/2026	1415
SPEAG	EX3DV4	SAR Probe	11/11/2024	Annual	11/11/2025	7539

Note: 1) All equipment was used solely within its respective calibration period. 2) CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 12 of 16

10 MEASUREMENT UNCERTAINTIES

Applicable for SAR Measurements < 6 GHz:

				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		c _i	Ci	1gm	10gms	
Uncertainty Component	1528	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	vi
,	Sec.	(± /0)	Dist.	Div.	Igiii	TO gills	(± %)	(± %)	v _i
Measurement System				l			(± /0)	(± /0)	
Probe Calibration	E.2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞
Test Sample Related								•	
Test Sample Positioning	E.4.2	3.12	Ν	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	Ν	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	Ν	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	Ν	1	0.23	0.26	1.0	1,1	75
Liquid Conductivity - Temperature Uncertainty	E.3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)	1		RSS				12.2	12.0	191
Expanded Uncertainty			k=2				24.4	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 13 of 16

11 CONCLUSION

11.1 Measurement Conclusion

The SAR evaluation indicates that the DUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 14 of 16

REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 15 of 16
	·	DE1/ 00 0

- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Power Mode 1, Notebook, Netbook and Power Mode 2 Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: 2A6WXWCNIS31SS	RF Exposure Test Report	Approved by: Technical Manager
Document S/N: 1M2503170029-01.2A6WX	DUT Type: Wireless Charger	Page 16 of 16