

TEST REPORT

Applicant Name: Suzhou Ruibetaike Electronic Technology Co., Ltd.

Address: Nanan Intelligent Science and Technology Port, U Valley of

Liandong Nanan, Guangzhou city, China

Report Number: XMTN1220526-23042E-SA

FCC ID: 2A6SY-VP398

Test Standard (s) FCC Part 2.1093

Sample Description

Product Type: 4G network walkie talkie

 Model No.:
 VP398

 Trade Mark:
 KAILIJIE

 Date Received:
 2022/05/27

 Date of Test:
 2022/06/25

 Report Date:
 2022/06/27

Test Result: Pass*

Prepared and Checked By:

Curceli

Approved By:

Candy Li

Lance Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

^{*} In the configuration tested, the EUT complied with the standards above.

Attestation of Test Results							
MO	DE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)				
WCDMA Band 5	1g Face up SAR	0.45					
WCDMA Band 5	1g Body SAR	1.36	1.6				
LTE Band 5	1g Face up SAR	0.47	1.6				
LIE Danu 5	1g Body SAR	1.39					
	FCC 47 CFR part 2.1 Radiofrequency radiat	093 ion exposure evaluation: portable devices					
	RF Exposure Procedures: TCB Workshop April 2015(Overlapping LTE Bands)						
	IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques						
Applicable Standards	IEC 62209-1:2016 Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)						
	KDB 648474 D04 Har KDB 865664 D01 SA KDB 865664 D02 RF KDB 941225 D01 3G	erim General RF Exposure Guidance v01 ndset SAR v01r03 R Measurement 100 MHz to 6 GHz v01r04 Exposure Reporting v01r02 SAR Procedures v03r01 R for LTE Devices v02r05					

Report No.: XMTN1220526-23042E-SA

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in **FCC 47 CFR part 2.1093** and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUIDELINES	
SAR LIMITS	
FACILITIES	
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	14
EQUIPMENTS LIST & CALIBRATION INFORMATION	14
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATIONSAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
TEST DISTANCE FOR SAR EVALUATION	20
SAR EVALUATION PROCEDURE	21
CONDUCTED OUTPUT POWER MEASUREMENT	
TEST PROCEDURE	
RADIO CONFIGURATION	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS:	
SAR MEASUREMENT RESULTS	33
SAR TEST DATA	33
SAR MEASUREMENT VARIABILITY	36
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	37
SAR PLOTS	38
APPENDIX A MEASUREMENT UNCERTAINTY	39
APPENDIX B EUT TEST POSITION PHOTOS	41
APPENDIX C PROBE CALIBRATION CERTIFICATES	42
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	43

Report No.: XMTN1220526-23042E-SA

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	XMTN1220526-23042E-SA	Original Report	2022/06/27	

EUT DESCRIPTION

This report has been prepared on behalf of *Suzhou Ruibetaike Electronic Technology Co., Ltd.*. and their product *4G network walkie talkie*, Model: *VP398*, FCC ID: *2A6SY-VP398* or the EUT (Equipment under Test) as referred to in the rest of this report.

Technical Specification

Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
DTM Type:	Class B
Body-Worn Accessories:	Headset
Face-Head Accessories:	None
Operation Mode :	HSDPA/HSUPA, FDD-LTE
Frequency Band:	WCDMA Band 5: 824-849 MHz(TX); 869-894 MHz(RX) LTE Band 5: 824-849 MHz(TX); 869-894 MHz(RX)
Power Source:	Rechargeable Battery: Normal Voltage 4.2V _{DC}
Normal Operation:	Face Up and Body-worn

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No.: XMTN1220526-23042E-SA

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

FCC Limit (1g Tissue)

Report No.: XMTN1220526-23042E-SA

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.6	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

CE Limit (10g Tissue)

	SAR (W/kg)				
	(General Population /	(Occupational /			
EXPOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 10 g of tissue)	2.0	10			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

FACILITIES

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

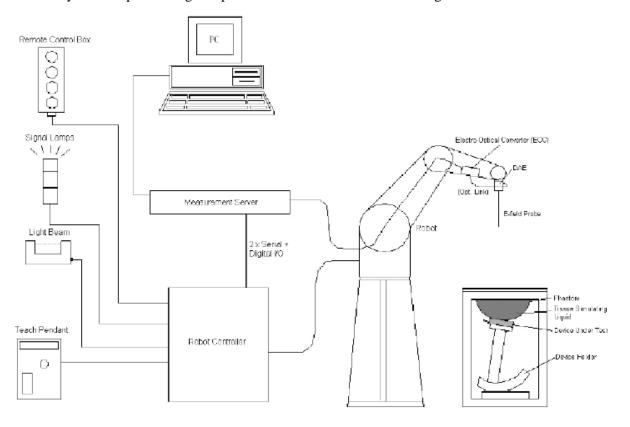
The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01

Report No.: XMTN1220526-23042E-SA

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

The test site has been registered with ISED Canada under ISED Canada Registration Number CN0016.

Version 801: 2021-11-09 Page 8 of 43 FCC SAR 4G


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- Report No.: XMTN1220526-23042E-SA
- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY5) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm.

When the phantom is mounted inside allocated slot of the DASY5 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY5 platform is used to mount the

Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.

In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

Calibration Frequency	Frequency	Range(MHz)	Cor	nversion Fac	ctor
Point(MHz)	From	To	X	Y	Z
750 Head	650	850	10.04	10.04	10.04
900 Head	850	1000	9.61	9.61	9.61
1450 Head	1350	1550	8.52	8.52	8.52
1750 Head	1650	1850	8.32	8.32	8.32
1900 Head	1850	1950	7.94	7.94	7.94
2000 Head	1950	2100	7.99	7.99	7.99
2300 Head	2200	2400	7.78	7.78	7.78
2450 Head	2400	2550	7.54	7.54	7.54
2600 Head	2550	2700	7.30	7.30	7.30
3300 Head	3200	3400	7.09	7.09	7.09
3500 Head	3400	3600	6.89	6.89	6.89
3700 Head	3600	3800	6.55	6.55	6.55
3900 Head	3800	4000	6.60	6.60	6.60
4400 Head	4300	4500	6.34	6.34	6.34
4600 Head	4500	4700	6.26	6.26	6.26
4800 Head	4700	4900	6.16	6.16	6.16
4950 Head	4900	5050	5.85	5.85	5.85
5250 Head	5140	5360	5.35	5.35	5.35
5600 Head	5490	5700	4.85	4.85	4.85
5750 Head	5700	5860	4.83	4.83	4.83

Report No.: XMTN1220526-23042E-SA

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Version 801: 2021-11-09 Page 12 of 43 FCC SAR 4G

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC 62209-1:2016

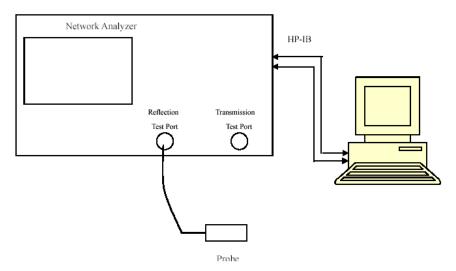
Recommended Tissue Dielectric Parameters for Head

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Report No.: XMTN1220526-23042E-SA

Frequency	Relative permittivity	Conductivity (σ)
MHz	$arepsilon_{ ext{r}}$	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 640	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.4	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1211	2022/03/01	2023/02/28
E-Field Probe	EX3DV4	7441	2022/05/16	2023/05/15
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V5.0	1744	NCR	NCR
Dipole,835MHz	D835V2	4d103	2021/10/27	2024/10/26
Simulated Tissue Liquid Head(500-9500MHz)	HBBL600-10000V6	180622-2	Each Time	/
Network Analyzer	8753D	3410A08288	2021/7/07	2022/7/06
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
Signal Generator	SMB100A	108362	2021/12/23	2022/12/22
USB wideband power sensor	U2021XA	MY52350001	2021/12/23	2022/12/22
Power Amplifier	CBA 1G-070	T44328	2021/12/23	2022/12/22
Linear Power Amplifier	AS0860-40/45	1060913	2021/12/23	2022/12/22
Directional Coupler	4223-20	3.113.277	2021/12/23	2022/12/22
6dB Attenuator	8493B	2708A 04769	2021/12/23	2022/12/22
Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
Wideband Radio Communication Tester	CMW500	143458	2022/02/27	2023/02/26

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

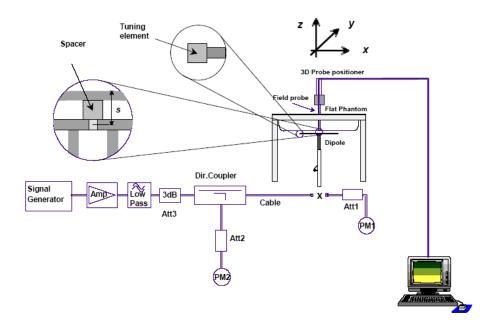
Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	I i anni d Trom a	Liquid Parameter		Target	Value	alue Delta (%)		Tolerance
(MHz)	Liquid Type	$\epsilon_{ m r}$	O' (S/m)	$\epsilon_{ m r}$	O' (S/m)	$\Delta \epsilon_{ m r}$	ΔΟ΄ (S/m)	(%)
826.4	Simulated Tissue Liquid Head	41.651	0.903	41.54	0.9	0.27	0.33	±5
829	Simulated Tissue Liquid Head	42.092	0.915	41.53	0.9	1.35	1.67	±5
835	Simulated Tissue Liquid Head	41.093	0.92	41.5	0.9	-0.98	2.22	±5
836.5	Simulated Tissue Liquid Head	41.285	0.922	41.5	0.9	-0.52	2.44	±5
836.6	Simulated Tissue Liquid Head	41.886	0.927	41.5	0.9	0.93	3	±5
844	Simulated Tissue Liquid Head	41.429	0.934	41.5	0.91	-0.17	2.64	±5
846.6	Simulated Tissue Liquid Head	41.519	0.936	41.5	0.91	0.05	2.86	±5

^{*}Liquid Verification above was performed on 2022/06/25.

System Accuracy Verification


Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Report No.: XMTN1220526-23042E-SA

The spacing distances in the **System Verification Setup Block Diagram** is given by the following:

- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm} \text{ for } 1000 \text{ MHz} < \cancel{\leq} 3000 \text{ MHz};$
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3000 \text{ MHz} < \cancel{E} 6000 \text{ MHz}$.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band(MHz)	Liquid Type	Input Power (mW)		sured SAR 7/kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2022/6/25	835	Head	100	1g	0.931	9.31	9.65	-3.523	±10

^{*}The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 835 MHz

DUT: Dipole D835V2; Type: 835MHz; Serial: 4d103

Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 41.093$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1211; Calibrated: 2022/03/01

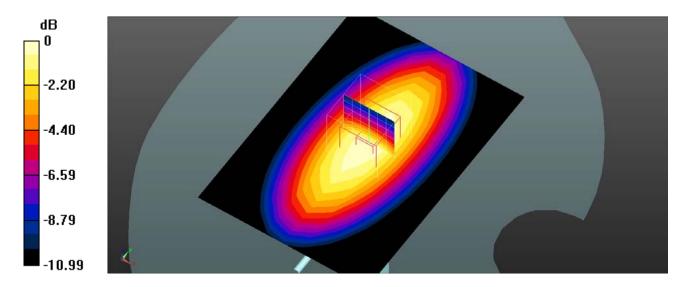
• Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744

• Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Cheek at 835MHz/d=15mm, Pin=100mw/Area Scan (71x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.972 W/kg

System Performance Cheek at 835MHz/d=15mm, Pin=100mw/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

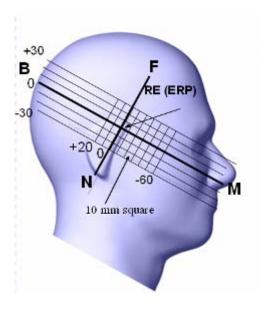

dx=5mm, dy=5mm, dz=5mm

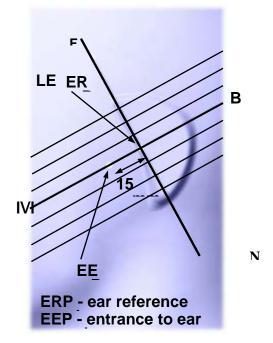
Reference Value = 33.24 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.931 W/kg; SAR(10 g) = 0.606 W/kg

Maximum value of SAR (measured) = 1.08 W/kg


0 dB = 1.08 W/kg = 0.33 dBW/kg


EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

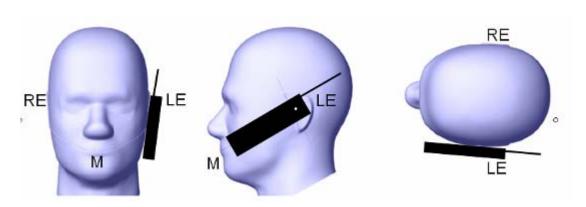
This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ½ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the \$\text{SCC-34/SC-2}\$ head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

Report No.: XMTN1220526-23042E-SA

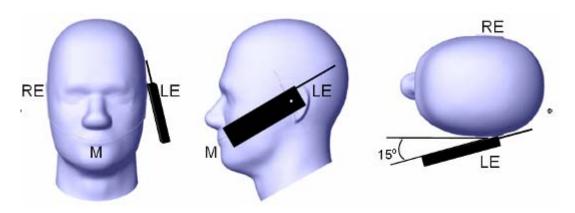

This test position is established:

When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

(or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek / Touch Position



Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.
- If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

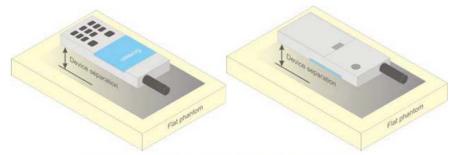


Figure 5 - Test positions for body-worn devices

Test Distance for SAR Evaluation

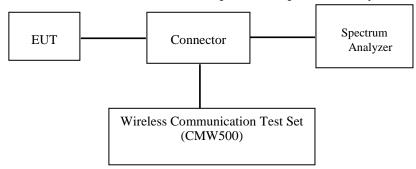
In this case the DUT(Device Under Test) is set directly against the phantom, the test distance is 0mm for Body Back mode; for Face Up mode the distance is 25mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No.: XMTN1220526-23042E-SA


- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Test Procedure

The RF output of the transmitter was connected to the input of the Spectrum Analyzer through Connector.

Report No.: XMTN1220526-23042E-SA

WCDMA/LTE

Radio Configuration

The power measurement was configured by the Wireless Communication Test Set.

WCDMA Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
General Settings	Power Control Algorithm	Algorithm2
	β_c/β_d	8/15

HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subset	1	2	3	4		
	Loopback Mode			Test Mode	1		
	Rel99 RMC		-	12.2kbps RM	1C		
	HSDPA FRC			H-Set1			
WCDMA	Power Control Algorithm			Algorithm2	2		
General	$\beta_{\rm c}$	2/15	12/15	15/15	15/15		
Settings	β_d	15/15	15/15	8/15	4/15		
	$\beta_d(SF)$	64					
	$\beta_{\rm c}/\beta_{\rm d}$	2/15	12/15	15/8	15/4		
	$eta_{ m hs}$	4/15	24/15	30/15	30/15		
	MPR(dB)	0	0	0.5	0.5		
	DACK			8			
HSDPA	DNAK			8			
Specifi	DCQI			8			
Specifi	Ack-Nack repetition			3			
Setting	factor						
S	CQI Feedback	4ms					
3	CQI Repetition Factor			2			
	Ahs=βhs/ βc			30/15			

HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA
	Subset	1	2	3	4	5
	Loopback Mode			Test Mode 1		
	Rel99 RMC		1	2.2kbps RM	C	
	HSDPA FRC			H-Set1		
	HSUPA Test		HS	UPA Loopb	ack	
	Power Control			Algorithm2		
WCDMA	Algorithm		T		T	T
General	$\beta_{\rm c}$	11/15	6/15	15/15	2/15	15/15
Settings	β_d	15/15	15/15	9/15	15/15	0
	$eta_{ m ec}$	209/225	12/15	30/15	2/15	5/15
	β_c/β_d	11/15	6/15	15/9	2/15	-
	$eta_{ m hs}$	22/15	12/15	30/15	4/15	5/15
	CM(dB)	1.0	3.0	2.0	3.0	1.0
	MPR(dB)	0	2	1	2	0
	DACK			8		
	DNAK			8		
	DCQI			8		
HSDPA	Ack-Nack			3		
Specific	repetition factor			3		
Settings	CQI Feedback			4ms		
	CQI Repetition			2		
	Factor					
	Ahs= β_{hs}/β_{c}			30/15		
	DE-DPCCH	6	8	8	5	7
	DHARQ	0	0	0	0	0
	AG Index	20	12	15	17	21
	ETFCI	75	67	92	71	81
	Associated Max					
	UL Data Rate	242.1	174.9	482.8	205.8	308.9
	kbps					
HSUPA		E-TFC		E-TFCI		CI 11 E
Specific		E-TFC		11		CI PO 4
Settings		E-TF		E-TFCI		CI 67
Sectings		E-TFC		PO4		I PO 18
		E-TF		E-TFCI	E-TF	
	Reference E_FCls	E-TFC		92		I PO23
		E-TF		E-TFCI		CI 75
		E-TFC		PO 18		I PO26
		E-TF			E-TF	CI 81 I PO 27
		E-TFC	1 PU 21		E-IFC	1 PU 2/

FDD-LTE

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (N _{RB})									
	1.4										
	MHz	MHz	MHz	MHz	MHz	MHz					
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1				
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1				
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2				

For UE Power Class 1 and 3 the specific requirements and identified sub clauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in sub clause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤ 1
		2 4 40 22 25	5	>6	≤1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
		33, 30	15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.2	41	5	>6	≤ 1
_			10, 15, 20		6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2
NS_10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table	6.2.4-6
NS_13	6.6.3.3.6	26	5	Table	6.2.4-7
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15		6.2.4-9 6.2.4-10
NS_16	6.6.3.3.9	27	3, 5, 10		Table 6.2.4-12, 6.2.4-13
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥2 ≥1	≤ 1 ≤ 4
NS_19	6.6.3.3.12	44	10, 15, 20	Table (6.2.4-14
NS_20	6.2.2 6.6.2.2.1 6.6.3.2	23	5, 10, 15, 20		6.2.4-15
NS_32	-	-	-	-	-

Version 801: 2021-11-09 Page 25 of 43 FCC SAR 4G

Maximum Target Output Power

Max Target Power(dBm)								
Mada/Dand Channel								
Wiode/Band	ode/Band Low Middle High							
WCDMA Band 5	23.0	23.0	23.0					
HSDPA	23.0	23.0	23.0					
HSUPA	23.0	23.0	23.0					
LTE Band 5	23.1	23.1	23.1					

Test Results:

WCDMA Band 5:

Test	Test Mode		Averaged Mean Power (dBm)				
Condition	Test Wiode	Sub Test	Low Frequency	Mid Frequency	High Frequency		
	RMC1	2.2k	22.75	22.91	22.89		
		1	21.43	22.10	21.53		
	Habby	2	21.43	21.66	21.93		
	HSDPA	3	22.46	22.39	22.36		
Normal		4	21.91	21.25	22.20		
Normai		1	22.28	22.33	21.31		
		2	22.29	21.62	21.67		
HS	HSUPA	3	22.16	22.37	22.20		
		4	21.30	21.14	21.49		
		5	21.12	21.66	21.49		

Note:

- 1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.
- 2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA when the maximum average output of each RF channel is less than $\frac{1}{4}$ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is <75% of SAR limit.

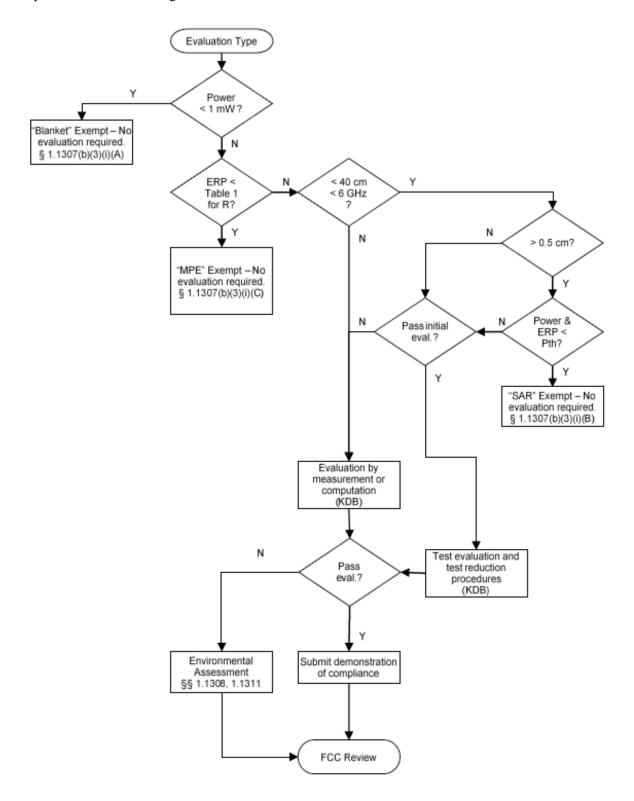
LTE Band 5:

TD 4	TD 4	Resource			Low	Middle	High
Test	Test	Block &	Target MPR	Meas MPR	Channel	Channel	Channel
Bandwidth	Modulation	RB offset	MILK	IVIT K	(dBm)	(dBm)	(dBm)
		RB1#0	0	0	21.49	21.88	22.42
		RB1#2	0	0	22.53	22.54	22.48
		RB1#5	0	0	22.48	21.54	22.83
	QPSK	RB3#0	1	1	21.30	21.21	22.20
		RB3#1	1	1	22.41	21.66	22.31
		RB3#2	1	1	22.16	21.94	21.57
1.43.6		RB6#0	1	1	21.71	22.48	22.68
1.4M		RB1#0	1	1	21.84	21.74	21.98
		RB1#2	1	1	22.51	22.41	22.91
		RB1#5	1	1	21.26	22.68	22.12
	16-QAM	RB3#0	2	2	22.55	22.96	21.34
		RB3#1	2	2	21.80	21.78	21.73
		RB3#2	2	2	21.51	22.69	21.94
		RB6#0	2	2	21.55	22.17	22.35
		RB1#0	0	0	22.37	22.47	21.84
		RB1#7	0	0	21.62	22.37	21.63
	QPSK	RB1#14	0	0	21.58	21.67	22.45
		RB8#0	1	1	22.70	22.25	22.89
		RB8#4	1	1	21.47	21.68	21.91
		RB8#7	1	1	22.66	21.84	22.60
23.5		RB15#0	1	1	21.32	22.77	22.56
3M		RB1#0	1	1	22.59	22.67	22.40
		RB1#7	1	1	21.36	21.79	21.54
		RB1#14	1	1	23.03	22.34	22.83
	16-QAM	RB8#0	2	2	22.71	21.49	22.20
		RB8#4	2	2	22.93	21.95	22.18
		RB8#7	2	2	21.42	22.48	21.40
		RB15#0	2	2	22.04	21.38	21.42
		RB1#0	0	0	23.05	21.56	22.61
		RB1#12	0	0	21.82	22.34	21.71
		RB1#24	0	0	22.29	22.00	22.29
	QPSK	RB12#0	1	1	22.69	21.52	21.70
		RB12#6	1	1	21.81	21.43	22.58
		RB12#11	1	1	22.15	22.58	22.18
53.4		RB25#0	1	1	21.64	21.67	21.70
5M		RB1#0	1	1	22.76	22.53	21.66
		RB1#12	1	1	22.27	21.96	21.79
		RB1#24	1	1	22.57	22.33	22.03
	16-QAM	RB12#0	2	2	22.05	21.81	21.40
		RB12#6	2	2	21.99	22.05	22.53
		RB12#11	2	2	21.56	22.92	21.77
		RB25#0	2	2	21.41	22.55	21.98

Test Bandwidth	Test Modulation	Resource Block & RB offset	Target MPR	Meas MPR	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		RB1#0	0	0	22.56	22.78	22.92
		RB1#24	0	0	22.04	22.99	21.59
		RB1#49	0	0	21.81	21.34	21.24
	QPSK	RB25#0	1	1	22.25	22.27	22.72
		RB25#12	1	1	21.17	22.94	22.47
		RB25#24	1	1	21.64	22.98	22.22
10M		RB50#0	1	1	21.65	22.74	21.80
TOM		RB1#0	1	1	22.89	21.27	21.54
		RB1#24	1	1	21.57	21.71	22.85
		RB1#49	1	1	22.89	21.86	21.85
16-QA	16-QAM	RB25#0	2	2	22.65	21.62	22.79
		RB25#12	2	2	22.32	21.77	23.00
		RB25#24	2	2	21.76	22.58	21.30
		RB50#0	2	2	22.07	22.31	22.74

Standalone SAR test exclusion considerations

Antennas Location:


WCDMA /LTE Main Antenna

LTE DIV Antenna

Note: The DIV antenna can only receive LTE signals.

Standalone SAR test exclusion considerations:

General Sequence for Determination of Procedure (exemption or evaluation) to Establish Compliance with Exposure Limits for a Single RF Source:

248.31

< 0.5

23.95

Report No.: XMTN1220526-23042E-SA

9.03

No

Note:

Mode

LTE Band 5

1. ERP= Max Target Power+ Antenna gain-2.15

0.849

23.1

P_{Max} refers to the greater value in the Max Target Power and ERP.
 The formula for calculating P_{th} is given below, with distances ranging from 20cm to 40cm.

$$P_{\rm th}~(\mathrm{mW}) = ERP_{\rm 20~cm}~(\mathrm{mW}) = \begin{cases} 2040f & 0.3~\mathrm{GHz} \le f < 1.5~\mathrm{GHz} \\ \\ 3060 & 1.5~\mathrm{GHz} \le f \le 6~\mathrm{GHz} \end{cases}$$

3

4. The formula for calculating P_{th} is given below, with distances ranging from 0.5cm to 40cm.

$$P_{\rm th} \; ({\rm mW}) = \begin{cases} ERP_{\rm 20 \; cm} (d/20 \; {\rm cm})^x & d \le 20 \; {\rm cm} \\ \\ ERP_{\rm 20 \; cm} & 20 \; {\rm cm} < d \le 40 \; {\rm cm} \end{cases}$$

where

$$\chi = -\log_{10}\left(\frac{60}{ERP_{20}\,\mathrm{cm}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (Note 3). 5. When the separation distance is less than 0.5cm, 0.5cm is used as the calculation distance

Report No.: XMTN1220526-23042E-SA

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.0-23.6 °C
Relative Humidity:	53-61%
ATM Pressure:	101.4 kPa
Test Date:	2022/6/25

Testing was performed by Seven Liang.

WCDMA Band 5:

EUT	Frequency	Test	Max. Meas.	Max. Rated		1g SAR	(W/kg)	
Position	(MHz)	Mode			Scaled Factor	Meas. SAR	Scaled SAR	Plot
	826.4	RMC	/	/	/	/	/	/
Face Up (25mm)	836.6	RMC	22.91	23.0	1.021	0.444	0.45	1#
(2311111)	846.6	RMC	/	/	/	/	/	/
D 1 D 1	826.4	RMC	22.75	23.0	1.059	1.28	1.36	2#
Body Back (0mm)	836.6	RMC	22.91	23.0	1.021	1.30	1.33	3#
(omm)	846.6	RMC	22.89	23.0	1.026	1.02	1.05	4#

Note

- 1. When the 1-g SAR is ≤ 0.8 W/Kg, testing for other channels are optional.
- 2. The EUT transmit and receive through the same antenna while testing SAR.
- 3. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model.
- 4. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/ when the maximum average output of each RF channel is less than ¼ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

LTE Band 5:

EUT	Frequency	Bandwidth	Max. Test Meas.		Max. Rated	1g SAR (W/kg)			
Position	(MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	829	10	1RB	/	/	/	/	/	/
Face Up	836.5	10	1RB	22.78	23.1	1.076	0.377	0.41	5#
(25mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	22.27	23.1	1.211	0.388	0.47	6#
	829	10	1RB	22.56	23.1	1.132	1.23	1.39	7#
	836.5	10	1RB	22.78	23.1	1.076	1.26	1.36	8#
	844	10	1RB	22.92	23.1	1.042	1.17	1.22	9#
Body Back (0mm)	829	10	50%RB	22.25	23.1	1.216	1.05	1.28	10#
(Ollill)	836.5	10	50%RB	22.27	23.1	1.211	1.08	1.31	11#
	844	10	50%RB	22.72	23.1	1.091	1.01	1.10	12#
	836.5	10	100%RB	22.74	23.1	1.086	1.02	1.11	13#

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02.
- 3. KDB941225D05-SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > 0.5 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg
- 4. KDB941225D05-For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional.
- 5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.
- 6. KDB941225D05- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel.
- 7. KDB941225D05- other channel bandwidths SAR test is required when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 0.5 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.
- 8. Worst case SAR for 50% RB allocation is selected to be tested.

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

Report No.: XMTN1220526-23042E-SA

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR i≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The Highest Measured SAR Configuration in Each Frequency Band

Head

SAR probe calibration point	Frequency Band	Freq.(MHz)	EUT Position	Meas. SAR (W/kg)		Largest to
				Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Body

SAR probe calibration point	Frequency Band	Freq.(MHz)	EUT Position	Meas. SAR (W/kg)		Largest to
				Original	Repeated	Smallest SAR Ratio
750MHz (650-850MHz)	WCDMA Band 5	836.6	Body Back	1.30	1.25	1.04
750MHz (650-850MHz)	LTE Band 5	836.5	Body Back	1.26	1.22	1.03

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.
- 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements..

Report No.: XMTN1220526-23042E-SA

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities				
Transmitter Combination	Simultaneous?	Hotspot?		
3G WWAN + 4G WWAN	×	×		

NOTE: This portable device has no Simultaneous Transmission.

Shenzhen Accurate Technology Co., Ltd.	Report No.: XMTN1220526-23042E-S/
SAR Plots	
Please Refer to the Attachment.	

APPENDIX A MEASUREMENT UNCERTAINTY

Report No.: XMTN1220526-23042E-SA

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertaint y ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	system				
Probe calibration	6.55	N	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
Detection limits	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions—reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	related				
Test sample positioning	2.8	N	1	1	1	2.8	2.8
Device holder uncertainty	6.3	N	1	1	1	6.3	6.3
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom and	set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9

Measurement uncertainty evaluation for IEC 62209-2 SAR test

Source of uncertainty	Tolerance/ uncertai nty ± %	Probability distributio n	Divisor	ci (1 g)	ci (10 g)	Standard uncertai nty ± %, (1 g)	Standard uncertai nty ± %, (10 g)
		Measurement	system	•	•		<u> </u>
Probe calibration	6.55	N	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Linearity	4.7	R	√3	1	1	2.7	2.7
Modulation Response	0.0	R	√3	1	1	0.0	0.0
Detection limits	1.0	R	√3	1	1	0.6	0.6
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	related				
Device holder Uncertainty	6.3	N	1	1	1	6.3	6.3
Test sample positioning	2.8	N	1	1	1	2.8	2.8
Power scaling	4.5	R	√3	1	1	2.6	2.6
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom and	set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.1	0.9
Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Temp. unc Conductivity	1.7	R	√3	0.78	0.71	0.8	0.7
Temp. unc Permittivity	0.3	R	√3	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.2	12.1
Expanded uncertainty 95 % confidence interval)						24.5	24.2

Shenzhen Accurate Technology Co., Ltd.	Report No.: XMTN1220526-23042E-S			
APPENDIX D DIPOLE CALIBRATION CERTIFICATES				
Please Refer to the Attachment.				
***** END OF REPO	DT ****			

Version 801: 2021-11-09 Page 43 of 43 FCC SAR 4G

Plot 1#: WCDMA Band 5_Face up_Mid

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 41.886$; $\rho = 1000$ kg/m³

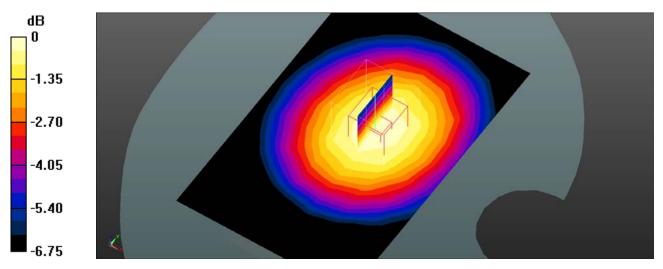
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Face Up/WCDMA Band 5 Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.473 W/kg


Face Up/WCDMA Band 5 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.04 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.530 W/kg

SAR(1 g) = 0.444 W/kg; SAR(10 g) = 0.343 W/kg

Maximum value of SAR (measured) = 0.461 W/kg

0 dB = 0.461 W/kg = -3.36 dBW/kg

Plot 2#: WCDMA Band 5_Body Back_Low

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.903 \text{ S/m}$; $\varepsilon_r = 41.651$; $\rho = 1000 \text{ kg/m}^3$

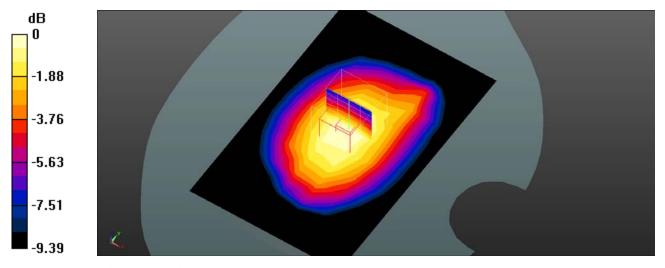
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WCDMA Band 5 Low/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.35 W/kg


Body Back/WCDMA Band 5 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 38.61 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.929 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

0 dB = 1.36 W/kg = 1.34 dBW/kg

Plot 3#: WCDMA Band 5_Body Back_Mid

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.927 \text{ S/m}$; $\varepsilon_r = 41.886$; $\rho = 1000 \text{ kg/m}^3$

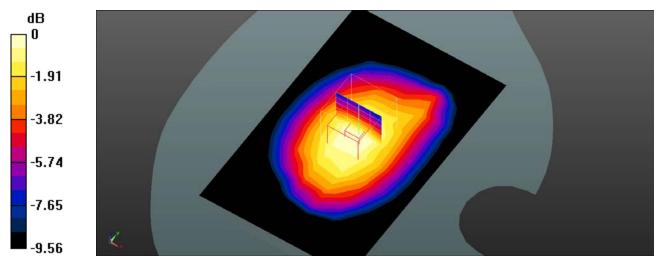
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WCDMA Band 5 Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.36 W/kg


Body Back/WCDMA Band 5 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 41.54 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.3 W/kg; SAR(10 g) = 0.950 W/kg

Maximum value of SAR (measured) = 1.38 W/kg

0 dB = 1.38 W/kg = 1.40 dBW/kg

Plot 4#: WCDMA Band 5_Body Back_High

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, WCDMA (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.936 \text{ S/m}$; $\varepsilon_r = 41.519$; $\rho = 1000 \text{ kg/m}^3$

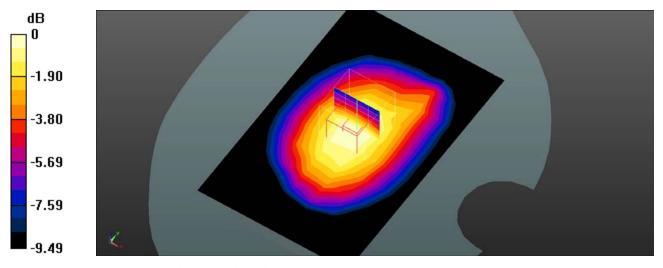
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WCDMA Band 5 High/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.05 W/kg


Body Back/WCDMA Band 5 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.09 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.732 W/kg

Maximum value of SAR (measured) = 1.07 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

Plot 5#: LTE Band 5_1RB_Face Up_Mid

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.922 S/m; ϵ_r = 41.285; ρ = 1000 kg/m³

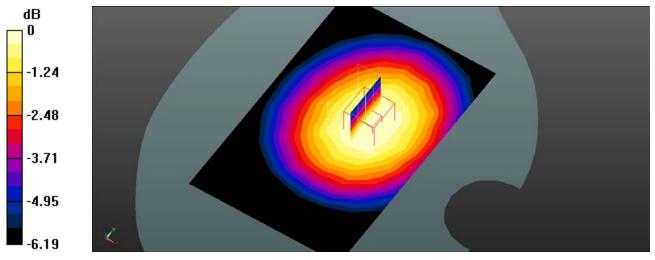
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Face Up/LTE Band 5 1RB Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.416 W/kg


Face Up/LTE Band 5 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.24 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.377 W/kg; SAR(10 g) = 0.296 W/kg

Maximum value of SAR (measured) = 0.390 W/kg

0 dB = 0.390 W/kg = -4.09 dBW/kg

Plot 6#: LTE Band 5_50%RB_Face Up_Mid

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.922 S/m; ϵ_r = 41.285; ρ = 1000 kg/m³

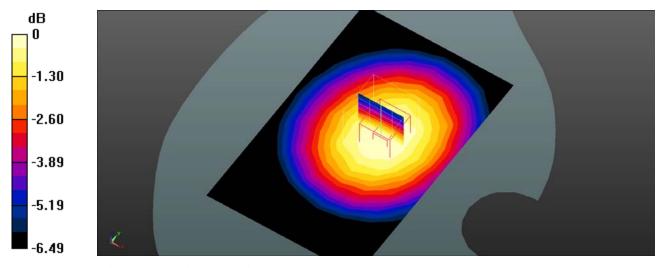
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Face Up/LTE Band 5 50%RB Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.421 W/kg


Face Up/LTE Band 5 50%RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.79 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.459 W/kg

SAR(1 g) = 0.388 W/kg; SAR(10 g) = 0.303 W/kg

Maximum value of SAR (measured) = 0.401 W/kg

0 dB = 0.401 W/kg = -3.97 dBW/kg

Plot 7#: LTE Band 5_1RB_Body Back_Low

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 829 MHz; σ = 0.915 S/m; ϵ_r = 42.092; ρ = 1000 kg/m³

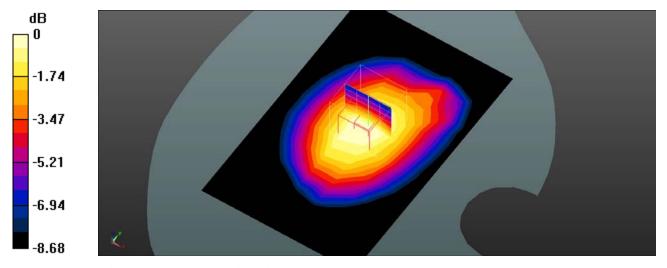
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 1RB Low/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.42 W/kg


Body Back/LTE Band 5 1RB Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 38.66 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 1.23 W/kg; SAR(10 g) = 0.912 W/kg

Maximum value of SAR (measured) = 1.39 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

Plot 8#: LTE Band 5_1RB_Body Back_Mid

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.922$ S/m; $\epsilon_r = 41.285$; $\rho = 1000$ kg/m³

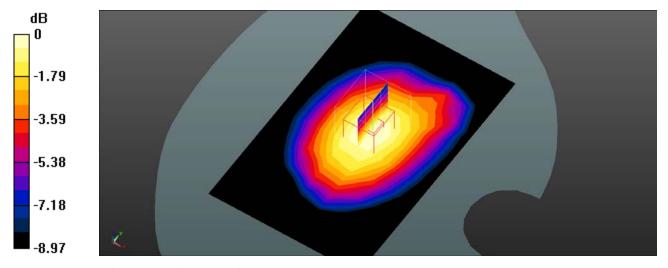
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 1RB Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.52 W/kg


Body Back/LTE Band 5 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.68 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.955 W/kg

Maximum value of SAR (measured) = 1.53 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg

Plot 9#: LTE Band 5_1RB_Body Back_High

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 844 MHz; σ = 0.934 S/m; ϵ_r = 41.429; ρ = 1000 kg/m³

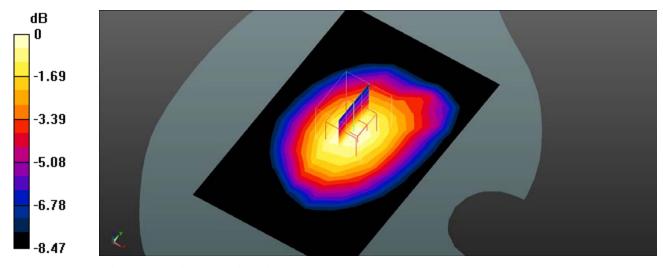
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 1RB High/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.21 W/kg


Body Back/LTE Band 5 1RB High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.78 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.851 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

Plot 10#: LTE Band 5_50%RB_Body Back_Low

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 829 MHz; σ = 0.915 S/m; ϵ_r = 42.092; ρ = 1000 kg/m³

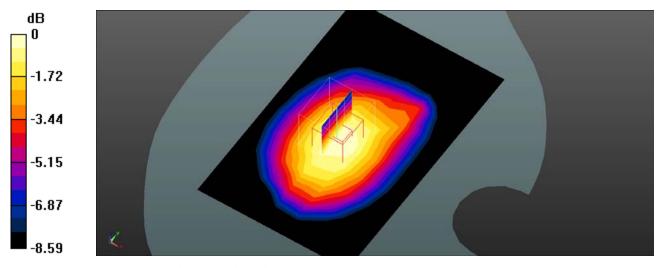
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 50%RB Low/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.43 W/kg


Body Back/LTE Band 5 50%RB Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 43.11 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.832 W/kg

Maximum value of SAR (measured) = 1.53 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg

Plot 11#: LTE Band 5_50%RB_Body Back_Mid

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

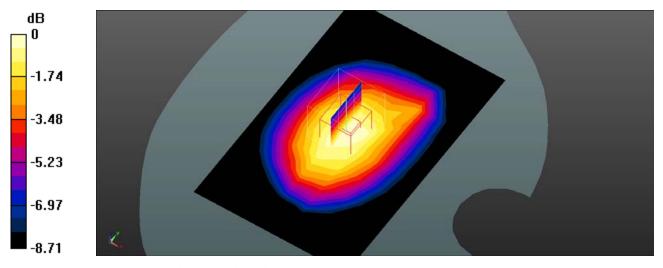
Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.922 S/m; ϵ_r = 41.285; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 50%RB Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.29 W/kg


Body Back/LTE Band 5 50%RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.28 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.824 W/kg

Maximum value of SAR (measured) = 1.46 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 844 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 844 MHz; $\sigma = 0.934 \text{ S/m}$; $\varepsilon_r = 41.429$; $\rho = 1000 \text{ kg/m}^3$

Report No.: XMTN1220526-23042E-SA

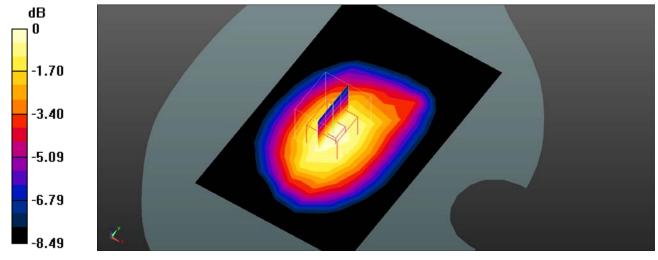
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 50%RB High/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.25 W/kg

Body Back/LTE Band 5 50%RB High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 36.74 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.722 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg

DUT: 4G network walkie talkie; Type: VP398; Serial: XMTN220526-23042E-SA-S1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.922 S/m; ϵ_r = 41.285; ρ = 1000 kg/m³

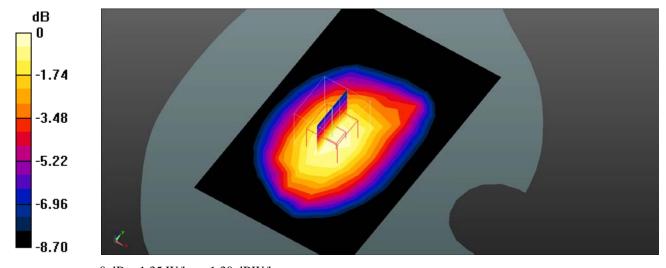
Report No.: XMTN1220526-23042E-SA

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4- SN7441; ConvF(10.04, 10.04, 10.04); Calibrated: 2022/05/16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1211; Calibrated: 2022/03/01
- Phantom: Twin SAM; Type: QD000P40CD; Serial: TP:1744
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 100%RB Mid/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.32 W/kg

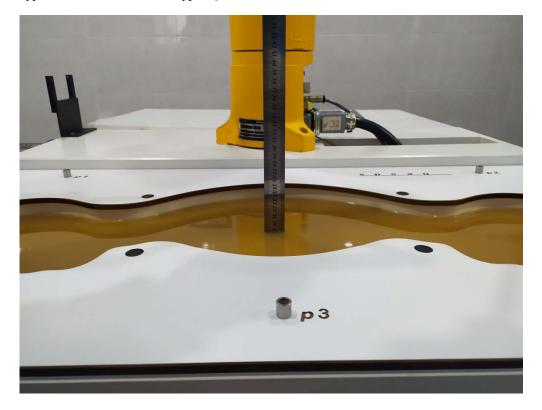

Body Back/LTE Band 5 100%RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 37.56 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.768 W/kg

Maximum value of SAR (measured) = 1.35 W/kg



0 dB = 1.35 W/kg = 1.30 dBW/kg

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth ≥ 15cm

Phantom Type: Twin SAM Phantom; Type: QD000 P40 CD; Serial: TP:1744

Face Up Setup Photo(25mm)

Body Back Setup Photo(0mm)

APPENDIX C PROBE CALIBRATION CERTIFICATES

Certificate No: Z22-60101

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.cn

BACL CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 7441

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

May 16, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

101919	15-Jun-21(CTTL, No.J21X04466)	Jun-22
101547	15-Jun-21(CTTL, No.J21X04466)	Jun-22
101548	15-Jun-21(CTTL, No.J21X04466)	Jun-22
tor 18N50W-10dB	20-Jan-21(CTTL, No.J21X00486)	Jan-23
tor 18N50W-20dB	20-Jan-21(CTTL, No.J21X00485)	Jan-23
/4 SN 7464	26-Jan-22(SPEAG, No.EX3-7464_Jar	n22) Jan-23
SN 1555	20-Aug-21(SPEAG, No.DAE4-1555_A	lug21/2) Aug-22
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
0A 6201052605	16-Jun-21(CTTL, No.J21X04467)	Jun-22
C MY46110673	14-Jan-22(CTTL, No.J22X00406)	Jan-23
Name	Function	Signature
Yu Zongying	SAR Test Engineer	THE PARTY NAMED IN
Lin Hao	SAR Test Engineer	臣 林淮 图
Qi Dianyuan	SAR Project Leader	这是基
	or 18N50W-10dB 18N50W-20dB 18N50W-20dB SN 7464 SN 1555 ID # 0A 6201052605 C MY46110673 Name Yu Zongying	101548 15-Jun-21(CTTL, No.J21X04466) 18N50W-10dB 20-Jan-21(CTTL, No.J21X00486) 18N50W-20dB 20-Jan-21(CTTL, No.J21X00485) 20-Jan-21(CTTL, No.J21X00485) 20-Jan-22(SPEAG, No.EX3-7464_Jar SN 1555 20-Aug-21(SPEAG, No.DAE4-1555_A ID # Cal Date(Calibrated by, Certificate No.) 0A 6201052605 16-Jun-21(CTTL, No.J21X04467) C MY46110673 14-Jan-22(CTTL, No.J22X00406) Name Function Yu Zongying SAR Test Engineer Lin Hao SAR Test Engineer

Certificate No: Z22-60101

Page 1 of 9

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from

 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NÓRMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z22-60101

Page 2 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.40	0.47	0.39	±10.0%
DCP(mV) ^B	90.9	102.2	105.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	147.5	±2.7%
		Y	0.0	0.0	1.0		169.7	
		z	0.0	0.0	1.0		155.0	7

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:Z22-60101

Page 3 of 9

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441

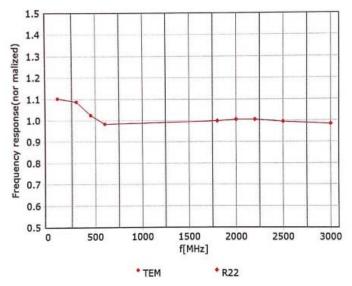
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.04	10.04	10.04	0.12	1.39	±12.1%
900	41.5	0.97	9.61	9.61	9.61	0.16	1.41	±12.1%
1450	40.5	1.20	8.52	8.52	8.52	0.28	0.95	±12.1%
1750	40.1	1.37	8.32	8.32	8.32	0.29	0.88	±12.1%
1900	40.0	1.40	7.94	7.94	7.94	0.27	1.03	±12.1%
2000	40.0	1.40	7.99	7.99	7.99	0.25	1.15	±12.1%
2300	39.5	1.67	7.78	7.78	7.78	0.65	0.65	±12.1%
2450	39.2	1.80	7.54	7.54	7.54	0.65	0.67	±12.1%
2600	39.0	1.96	7.30	7.30	7.30	0.64	0.67	±12.1%
3300	38.2	2.71	7.09	7.09	7.09	0.47	0.89	±13.3%
3500	37.9	2.91	6.89	6.89	6.89	0.42	0.95	±13.3%
3700	37.7	3.12	6.55	6.55	6.55	0.42	1.01	±13.3%
3900	37.5	3.32	6.60	6.60	6.60	0.35	1.35	±13.3%
4400	36.9	3.84	6.34	6.34	6.34	0.35	1.35	±13.3%
4600	36.7	4.04	6.26	6.26	6.26	0.45	1.20	±13.3%
4800	36.4	4.25	6.16	6.16	6.16	0.45	1.25	±13.3%
4950	36.3	4.40	5.85	5.85	5.85	0.50	1.15	±13.39
5250	35.9	4.71	5.35	5.35	5.35	0.55	1.15	±13.3%
5600	35.5	5.07	4.85	4.85	4.85	0.55	1.20	±13.3%
5750	35.4	5.22	4.83	4.83	4.83	0.55	1.20	±13.39

 $^{^{\}circ}$ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Certificate No:Z22-60101

Page 4 of 9


FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

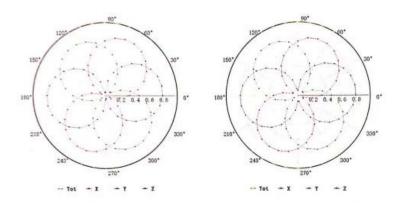
 $^{^{}G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

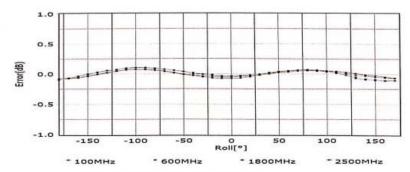
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z22-60101

Page 5 of 9



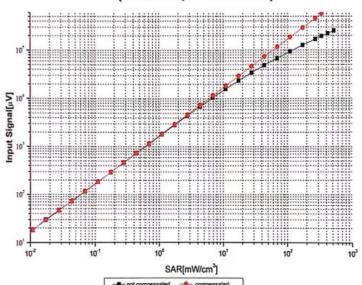


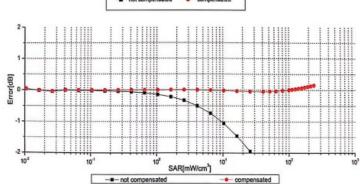
Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)


Certificate No:Z22-60101

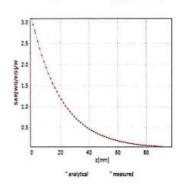

Page 6 of 9

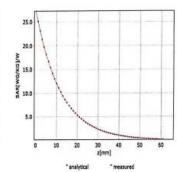
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

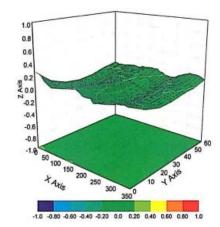
Certificate No:Z22-60101

Page 7 of 9





Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z22-60101

Page 8 of 9

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	100.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z22-60101

Page 9 of 9

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Report No.: XMTN1220526-23042E-SA

Client ATC Certificate No: Z21-60438

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d103

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: October 27, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7517	03-Feb-21(CTTL-SPEAG,No.Z21-60001)	Feb-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
	1		

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hac

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: October 31, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60438

| Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 | Fax: +86-10-62304633-2504 | http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60438

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.65 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.27 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60438

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7Ω- 0.83jΩ	
Return Loss	- 31.3dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.303 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
-----------------	-------	--

Certificate No: Z21-60438

Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 10.27,2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d103

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.904$ S/m; $\epsilon_r = 41.62$; $\rho = 1000$ kg/m³

Phantom section: Right Section

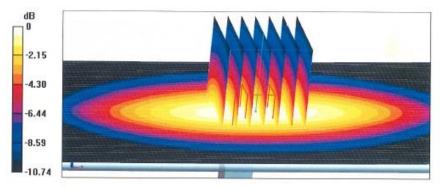
DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(9.81, 9.81, 9.81) @ 835 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 58.95 V/m; Power Drift = 0.00 dB

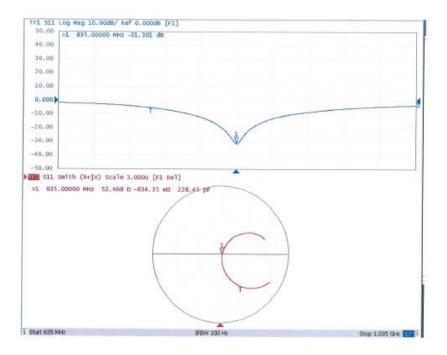

Peak SAR (extrapolated) = 3.77 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg

Smallest distance from peaks to all points 3 dB below = 19,4 mm

Ratio of SAR at M2 to SAR at M1 = 64.3%

Maximum value of SAR (measured) = 3.29 W/kg


0 dB = 3.29 W/kg = 5.17 dBW/kg

Certificate No: Z21-60438

Add; No.52 HuaYuanBei Roaf, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.com

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60438

Page 6 of 6