

TEST REPORT

Product : Wireless car charger

Trade mark : ROMOSS

Model/Type reference : AW15C-10

Serial Number : N/A

 Report Number
 : EED32R80600801

 FCC ID
 : 2A6QM-AW15C-10

Date of Issue : Aug. 13, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Romoss Technology Co., Ltd.
Room1601, BLOCK B, Building 7, Shenzhen International Innovation
Valley, Dashi 1st Road Xili community, Xili Street, Nanshan, Shenzhen,
Guangdong, P.R.China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	keven Jan.	Reviewed by:	Firazer. Li	
TERNATION	Keven Tan		Frazer Li	
Approved by:	Japon Ma	Date:	Aug. 13, 2025	
E (CTI) E	Aaron Ma			

Check No.: 4500230425

Page 2 of 30

Report No.: EED32R80600801

1 **Test Summary**

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10:2013	PASS	
AC Power Line 47 CFR Part 15 Subpart C Section Conducted Emission 15.207		ANSI C63.10:2013	PASS	
Radiated Emissions	47 CFR Part 15 Subpart C Section 15.209	ANSI C63.10:2013	PASS	

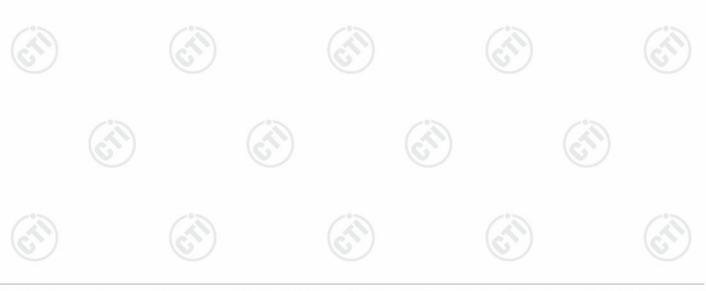
Report No.: EED32R80600801 Page 3 of 30

Contents

1 TEST SUMMARY	••••••	2
2 CONTENTS		3
3 GENERAL INFORMATION		4
3.1 CLIENT INFORMATION 3.2 GENERAL DESCRIPTION OF EUT 3.3 TEST ENVIRONMENT AND MODE 3.4 DESCRIPTION OF SUPPORT UNITS 3.5 TEST LOCATION 3.6 DEVIATION FROM STANDARDS 3.7 ABNORMALITIES FROM STANDARD CONDITIONS 3.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER		
3.9 Measurement Uncertainty (95% confidence levels, K=2)		6
4 EQUIPMENT LIST		7
5 TEST RESULTS AND MEASUREMENT DATA		9
5.1 Antenna Requirement		10
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP		19
APPENDIX 2 PHOTOGRAPHS OF EUT		21



Report No. : EED32R80600801 Page 4 of 30

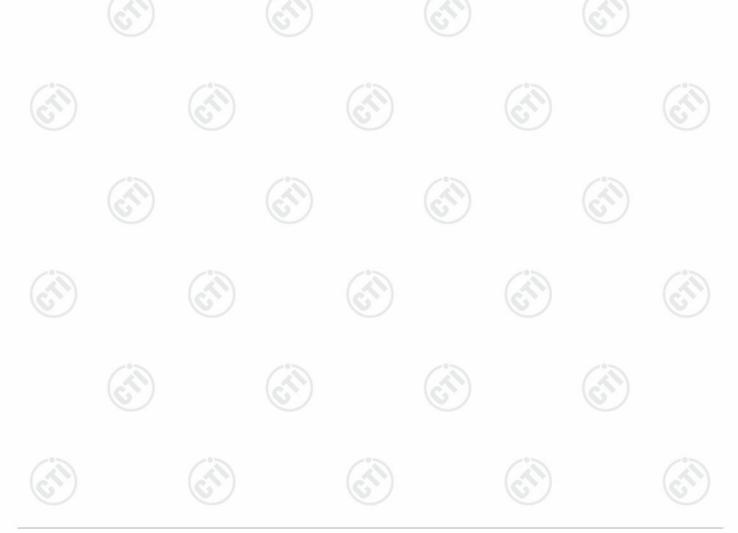

3 General Information

3.1 Client Information

Applicant:	Shenzhen Romoss Technology Co., Ltd.					
Address of Applicant:	Room1601, BLOCK B, Building 7, Shenzhen International Innovation Valley, Dashi 1st Road Xili community, Xili Street, Nanshar Shenzhen, Guangdong, P.R.China					
Manufacturer:	Jiangmen Romoss Technology Co., Ltd.					
Address of Manufacturer:	Room 01-2, First floor, Building 8, No. 80, Renhe Road, Tangxia Town, Pengjiang District, Jiangmen City					
Factory:	Jiangmen Romoss Technology Co., Ltd.					
Address of Factory:	Room 01-2, First floor, Building 8, No. 80, Renhe Road, Tangxia Towr Pengjiang District, Jiangmen City					

3.2 General Description of EUT

Product Name:	Wireless car charger		12
Model No.:	ROMOSS	(0,	(0)
Trade Mark:	AW15C-10		
Device type:	Desktop applications device		
Frequency Range:	111kHz-200kHz	(cri)	
Center Frequency:	127kHz		
Modulation Type:	ASK		
Antenna Type:	Coil antenna		
Power Supply:	TYPE-C: DC 5V, 3A / 9V,3A Wireless output: 5W/7.5W/10W/15W		03
Test Power Grade:	Default		
Test Software of EUT:	N/A		
Sample Received Date:	Apr. 23, 2025	(0,	
Sample tested Date:	Apr. 25, 2025 to May 20, 2025		



Report No.: EED32R80600801 Page 5 of 30

3.3 Test Environment and Mode

	Operating Environment:						
	Radiated Spurious Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH					
À	Atmospheric Pressure:	1010mbar		(P)	12		
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH					
	Atmospheric Pressure:	1010mbar	(3)	(3)			
	Test mode:Transmitting i	mode					
	Mode a:	Wireless char	ging mode(Null load)(Co	nnect to adapter)			
	Mode b:	Wireless char	ging mode(Half load)(Co	onnect to adapter)			
	Mode c:	onnect to adapter)	_0~				
-	Mode d:	Wireless char	ging mode(Full load)(Co	nnect to adapter)	(4)		
Nista	(63.)	163	10		100		

- 1.Wireless output:2.5W,5W,7.5W,10W,15W(maximum wireless output 15W during charging);
- 2.Through Pre-scan, when EUT power by DC 12.0V was the worst case, only the worst case data was recorded in the report.

Report No. : EED32R80600801 Page 6 of 30

3.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
AC adapter	MI	MDY-11-EF	FCC ID and DOC	CTI
Intelligent wireless charging full	YBZ	/	FCC ID and DOC	СТІ
function test module				

3.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

3.6 Deviation from Standards

None.

3.7 Abnormalities from Standard Conditions

None.

3.8 Other Information Requested by the Customer

None.

3.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
		-0-

Report No. : EED32R80600801

Equipment List

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date		
Receiver	R&S	ESCI	100435	04-08-2025	04-07-2026		
Temperature/ Humidity Indicator	Defu	TH128	/	03-31-2025	03-30-2026		
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025		
Barometer	changchun	DYM3	1188		(~17)		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1) <u></u>		
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025		
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025		

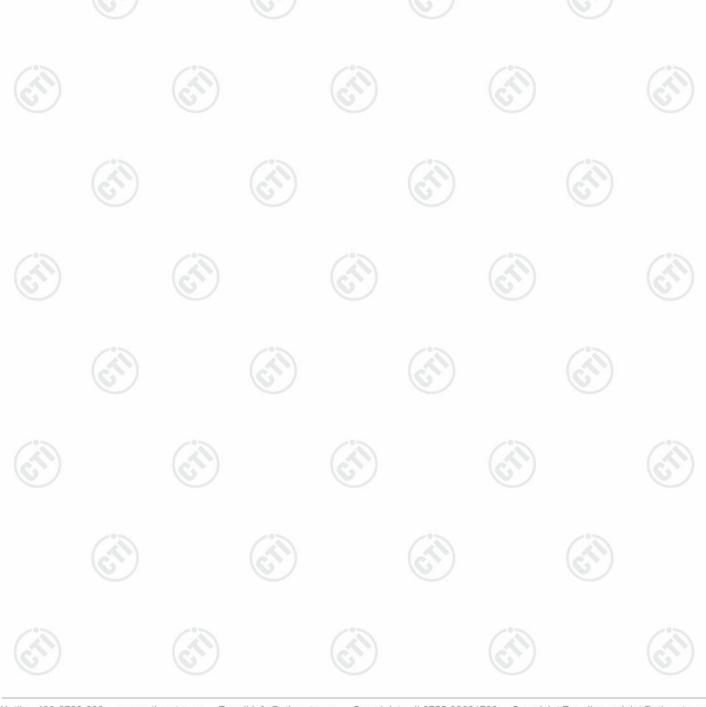
Report No.: EED32R80600801 Page 8 of 30

3M	Semi-anechoic	Chamber (2)- Rad	diated distur	bance Test	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
BM Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/07/2025	04/06/2026
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/07/2025	04/06/2026
Preamplifier	Agilent	11909A	12-1	03/03/2025	03/02/2026
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		(
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025

Report No. : EED32R80600801 Page 9 of 30

5 Test results and Measurement Data

5.1 Antenna Requirement


Standard requirement:	47 CFR Part 15C Section 15.203
Otaliaala logaliolilolit.	1 47 OI IVI dit 100 000tion 10.200

15.203 requirement:

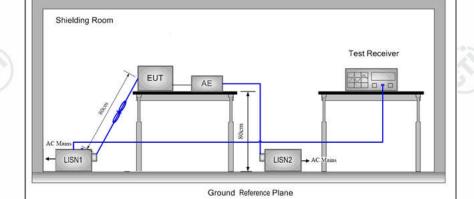
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is Coil antenna and no consideration of replacement.

5.2 Conducted Emissions

Test Requirement: 47 CFR Part 15C Section 15.207


Test Method: ANSI C63.10: 2013
Test Frequency Range: 150kHz to 30MHz

Fraguency range (MUz)	Limit (dBµV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

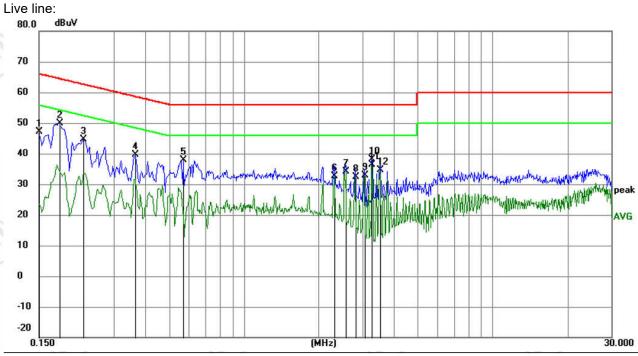
^{*} Decreases with the logarithm of the frequency.

- The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

Test Procedure:

Test Setup:

Test Mode: Transmitting mode,refer to section 4.3


Test Results: Pass

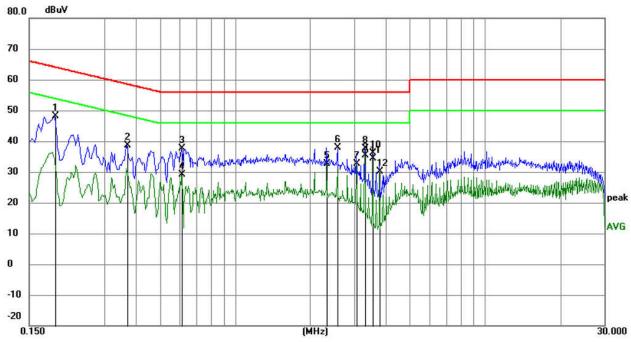
Hotline:400-6788-333 www.cti-cert.com

Measurement Data (Mode d):

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	36.77	10.28	47.05	66.00	-18.95	QP	
2	0.1815	39.76	10.24	50.00	64.42	-14.42	QP	
3	0.2265	34.45	10.19	44.64	62.58	-17.94	QP	
4	0.3660	29.55	10.10	39.65	58.59	-18.94	QP	
5	0.5730	27.84	10.09	37.93	56.00	-18.07	QP	
6	2.3145	22.51	10.16	32.67	46.00	-13.33	AVG	
7	2.5710	23.89	10.15	34.04	46.00	-11.96	AVG	
8	2.8140	22.22	10.14	32.36	46.00	-13.64	AVG	
9	3.0615	22.71	10.13	32.84	46.00	-13.16	AVG	
10	3.2685	28.05	10.12	38.17	56.00	-17.83	QP	
11 *	3.2685	26.33	10.12	36.45	46.00	-9.55	AVG	
12	3.5115	24.52	10.11	34.63	46.00	-11.37	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1905	37.89	10.22	48.11	64.01	-15.90	QP	
2	0.3704	28.42	10.10	38.52	58.49	-19.97	QP	
3	0.6134	27.49	10.10	37.59	56.00	-18.41	QP	
4	0.6134	19.09	10.10	29.19	46.00	-16.81	AVG	
5	2.3280	22.47	10.16	32.63	46.00	-13.37	AVG	
6	2.5710	27.84	10.15	37.99	56.00	-18.01	QP	
7	3.0615	22.56	10.13	32.69	46.00	-13.31	AVG	
8	3.3045	27.44	10.12	37.56	56.00	-18.44	QP	
9 *	3.3045	25.37	10.12	35.49	46.00	-10.51	AVG	
10	3.5520	26.05	10.11	36.16	56.00	-19.84	QP	
11	3.5520	24.17	10.11	34.28	46.00	-11.72	AVG	
12	3.7860	19.97	10.10	30.07	46.00	-15.93	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Radiated Emissions

Test Requirement: 47 CFR Part 15C Section 15.231(b) and 15.209

Test Method: ANSI C63.10 2013

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak

Test Setup:

Receiver Setup:

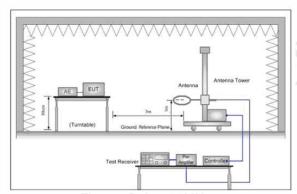


Figure . Below 30MHz

Test Procedure:

Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

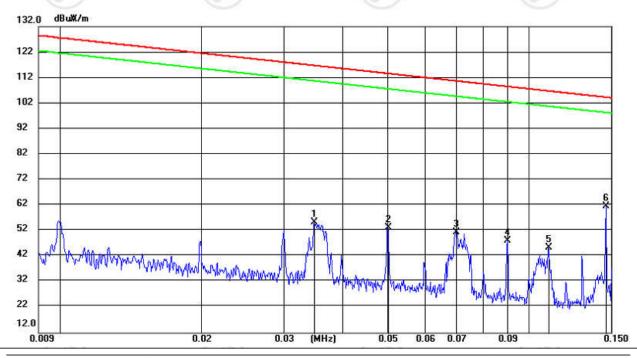
Limit: (Spurious Emissions)

Report No.: EED32R80600801

Page 14 of 30

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)) -	- (0,	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit



Report No.: EED32R80600801

9kHz~150kHz:

Measurement Data (Mode d):

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0349	34.39	20.92	55.31	116.67	-61.36	peak	100	263	
2	0.0501	32.37	20.90	53.27	113.54	-60.27	peak	100	352	
3	0.0700	30.49	20.83	51.32	110.65	-59.33	peak	100	249	
4	0.0901	27.42	20.85	48.27	108.46	-60.19	peak	100	352	
5	0.1101	24.71	20.84	45.55	106.72	-61.17	peak	100	352	
6 *	0.1462	40.75	20.91	61.66	104.27	-42.61	peak	100	220	

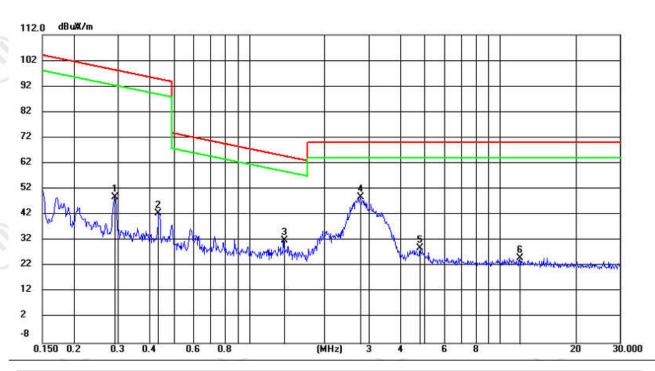
Remark:

- 1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.
- 2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning of horizontal which it is the worst case.



150kHz~30MHz:

Measurement Data (Mode d):

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.2909	27.94	20.96	48.90	98.31	-49.41	peak	100	251	
2	0.4351	21.79	20.68	42.47	94.83	-52.36	peak	100	100	
3	1.3738	11.65	20.47	32.12	64.87	-32.75	peak	100	158	
4 *	2.7648	28.46	20.42	48.88	70.00	-21.12	peak	100	7	
5	4.7969	8.64	20.41	29.05	70.00	-40.95	peak	100	7	
6	11.9961	4.65	20.49	25.14	70.00	-44.86	peak	100	237	

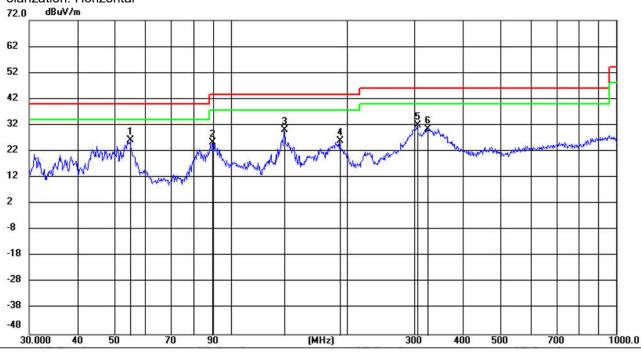
Remark:

- 1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.
- 2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning of horizontal which it is the worst case.



30MHz-1GHz:

Measurement Data (Mode d):

Polarization: Horizontal

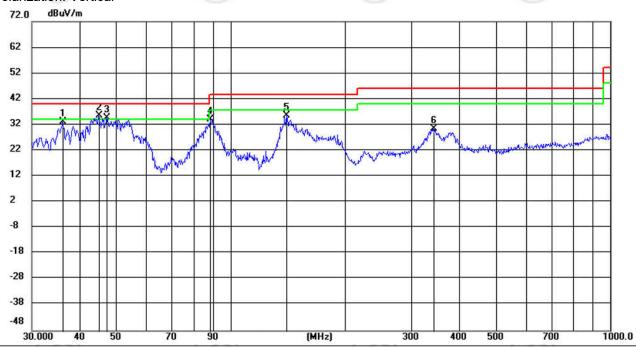
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		54.9021	12.15	13.96	26.11	40.00	-13.89	QP	100	133	
2		89.8574	13.78	11.45	25.23	43.50	-18.27	QP	199	352	
3	*	137.8787	19.62	10.55	30.17	43.50	-13.33	QP	199	56	
4		191.9805	13.28	12.79	26.07	43.50	-17.43	QP	100	28	
5		304.9305	15.23	16.73	31.96	46.00	-14.04	QP	100	175	
6		323.8877	13.07	17.29	30.36	46.00	-15.64	QP	100	207	

Remark:

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Measurement Data (Mode d):

Polarization: Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		36.2159	20.51	12.71	33.22	40.00	-6.78	QP	100	193	
2	*	44.9715	21.68	13.75	35.43	40.00	-4.57	QP	100	183	
3	!	47.3089	20.55	14.13	34.68	40.00	-5.32	QP	100	161	
4		88.5903	22.88	11.20	34.08	43.50	-9.42	QP	100	299	
5		140.5637	25.04	10.45	35.49	43.50	-8.01	QP	100	0	
6		342.5788	12.48	17.86	30.34	46.00	-15.66	QP	100	352	

Remark:

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32R80600801 Page 30 of 30

Statement

- 1. This report is considered invalid without approved signature, special seal and the seal on the perforation;
- 2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. The result(s) shown in this report refer(s) only to the sample(s) tested;
- 4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;

*** End of Report ***

5. Without written approval of CTI, this report can't be reproduced except in full;