

FCC Test Report

Report No. : 1812C50369712502

Applicant : CiVinTec Global Co., Limited.

Address : FLAT/RM 19H MAXGRAND PLAZA 3 TAI YAU
STREET SAN PO KONG HONGKONG, CHINA

Product Name : CRYSTAL TOUCH KEYPAD TERMINAL

Report Date : 2025-09-18

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

Contents

1. General Information5
1.1. Client Information5
1.2. Description of Device (EUT)5
1.3. Auxiliary Equipment Used During Test.....	.6
1.4. Description of Test Modes.....	.6
1.5. Measurement Uncertainty6
1.6. Test Summary6
1.7. Description of Test Facility7
1.8. Disclaimer.....	.7
1.9. Test Equipment List.....	.8
2. Antenna requirement	10
2.1. Conclusion.....	10
3. Conducted Emission at AC power line	11
3.1. EUT Operation	11
3.2. Test Setup	11
3.3. Test Data.....	11
4. 20dB Occupied Bandwidth	12
4.1. EUT Operation	13
4.2. Test Setup	13
4.3. Test Data.....	13
5. Emissions in restricted frequency bands (below 30MHz).....	14
5.1. EUT Operation	14
5.2. Test Setup	14
5.3. Test Data.....	15
6. Emissions in restricted frequency bands (30MHz - 1GHz).....	17
6.1. EUT Operation	17
6.2. Test Setup	18
6.3. Test Data.....	19
APPENDIX I -- TEST SETUP PHOTOGRAPH	21
APPENDIX II -- EXTERNAL PHOTOGRAPH	21
APPENDIX III -- INTERNAL PHOTOGRAPH.....	21

TEST REPORT

Applicant : CiVinTec Global Co., Limited.

Manufacturer : C-TECH INTELLIGENCE & TECHNOLOGY CO., LTD

Product Name : CRYSTAL TOUCH KEYPAD TERMINAL

Model No. : CT9E-HW-QP, CT9E-XX-XX-X (First X: is H for 4G module, Second X: is WiFi module, Third X: is Q for QR module, Fourth X: is P for POE module, Fifth X: is 2R for double relays), CT9E-T-P, CT9E-W-P, CT9E-T-P-2R, CT9E-W-P-2R, CT9E-T-QP, CT9E-W-QP, CT9E-T-QP-2R, CT9E-W-QP-2R, CT9E-H-P, CT9E-H-QP, CT9E-HW-P, CT9E-H-P-2R, CT9E-HW-P-2R

Trade Mark : CIVINTEC

Rating(s) : Input: 12-24V=800mA

Test Standard(s) : **47 CFR Part 15.209**
ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt: 2025-07-30

Date of Test: 2025-07-30 to 2025-08-13

Prepared By:

(Lene Chen)

Approved & Authorized Signer:

(Hugo Chen)

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	2025-09-18

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1. General Information

1.1. Client Information

Applicant	:	CiVinTec Global Co., Limited.
Address	:	FLAT/RM 19H MAXGRAND PLAZA 3 TAI YAU STREET SAN PO KONG HONGKONG, CHINA
Manufacturer	:	C-TECH INTELLIGENCE & TECHNOLOGY CO., LTD
Address	:	F20,Huatong Building,No.8,Ganli Road 2,Jihua Street,Longgang District,Shenzhen,Guangdong,518112,China
Factory	:	C-TECH INTELLIGENCE & TECHNOLOGY CO., LTD
Address	:	F20,Huatong Building,No.8,Ganli Road 2,Jihua Street,Longgang District,Shenzhen,Guangdong,518112,China

1.2. Description of Device (EUT)

Product Name	:	CRYSTAL TOUCH KEYPAD TERMINAL
Model No.	:	CT9E-HW-QP, CT9E-XX-XX-X (First X: is H for 4G module, Second X: is WiFi module, Third X: is Q for QR module, Fourth X: is P for POE module, Fifth X: is 2R for double relays), CT9E-T-P, CT9E-W-P, CT9E-T-P-2R, CT9E-W-P-2R, CT9E-T-QP, CT9E-W-QP, CT9E-T-QP-2R, CT9E-W-QP-2R, CT9E-H-P, CT9E-H-QP, CT9E-HW-P, CT9E-H-P-2R, CT9E-HW-P-2R (Note: All samples are the same except the model number, so we prepare "CT9E-HW-QP" for test only.)
Trade Mark	:	CIVINTEC
Test Power Supply	:	DC 12V
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A

RF Specification

Operation Frequency	:	125KHz
Number of Channel	:	1
Modulation Type	:	ASK
Antenna Type	:	Inductive loop coil Antenna

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
/	/	/	/

1.4. Description of Test Modes

Pretest Modes	Descriptions
TM1	Standby Mode

1.5. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.2dB
Occupied Bandwidth	925Hz
Radiated emissions (Below 30MHz)	3.26dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB
The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.	

1.6. Test Summary

Test Items	Test Modes	Status
Antenna requirement	/	P
Conducted Emission at AC power line	/	N
20dB Occupied Bandwidth	Mode1	P
Emissions in restricted frequency bands (below 30MHz)	Mode1	P
Emissions in restricted frequency bands (30MHz - 1GHz)	Mode1	P
Note: P: Pass N: N/A, not applicable		

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1.7. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:279531

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 279531.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.8. Disclaimer

1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
2. The test report is invalid if there is any evidence and/or falsification.
3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.
7. The data in this report will be synchronized with the corresponding national market supervision and management departments and cross-border e-commerce platforms as required by regulatory agencies.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

1.9. Test Equipment List

Conducted Emission at AC power line						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
3	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08
4	Three Phase V-type Artificial Power Network LISN 200A	EMtrace	PWL-50-3200A	2404	2025-02-21	2026-02-20

20dB Occupied Bandwidth						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2025-04-25	2026-04-24
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2025-01-14	2026-01-13

Emissions in frequency bands (below 30MHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13
3	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

Emissions in frequency bands (30MHz - 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

2. Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

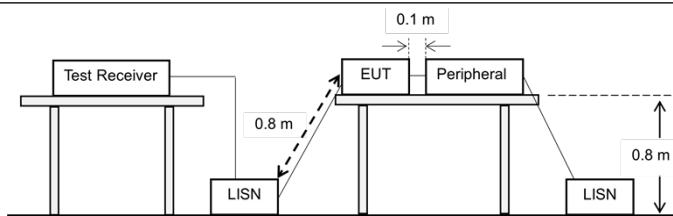
2.1. Conclusion

The antenna is a **Inductive loop coil antenna** which permanently attached. It complies with the standard requirement.

3. Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).			
Test Limit:	Frequency of emission (MHz)		Conducted limit (dB μ V)	
	Quasi-peak		Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	

*Decreases with the logarithm of the frequency.


| Test Method: | ANSI C63.10-2020 section 6.2 | | |
| Procedure: | Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices | | |

3.1. EUT Operation

Operating Environment:

Test mode: /

3.2. Test Setup

3.3. Test Data

Not applicable for equipment operated with DC power supply.

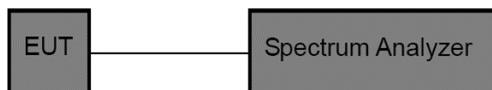
4. 20dB Occupied Bandwidth

Test Requirement:	47 CFR Part 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2020, section 6.9.2
Procedure:	<p>a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.</p> <p>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.</p> <p>c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (OBW/RBW)]$ below the reference level. Specific guidance is given in 4.1.5.2.</p> <p>d) Steps a) through c) might require iteration to adjust within the specified tolerances.</p> <p>e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target “-xx dB down” requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.</p> <p>f) Set detection mode to peak and trace mode to max hold.</p> <p>g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).</p> <p>h) Determine the “-xx dB down amplitude” using $[(\text{reference value}) - xx]$. Alternatively, this calculation may be made by using the marker-delta function of the instrument.</p> <p>i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).</p> <p>j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “-xx dB down amplitude” determined in step h). If a marker is below this “-xx dB down amplitude” value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the “-xx dB down amplitude” determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this</p>

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

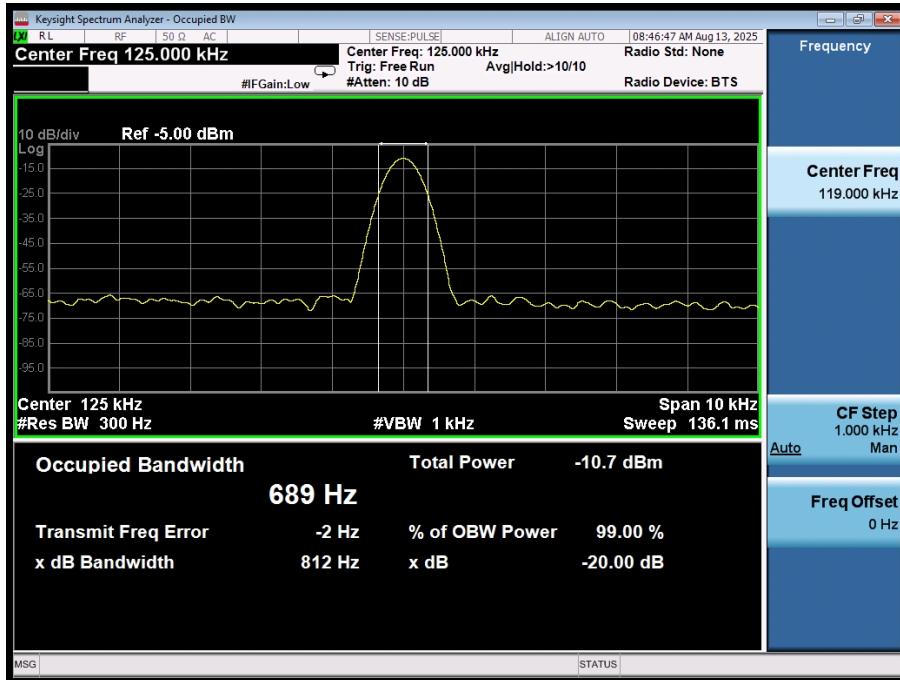
Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com


	point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
--	---

4.1. EUT Operation

Operating Environment:

Test mode:	1: TM1: Standby Mode
------------	----------------------

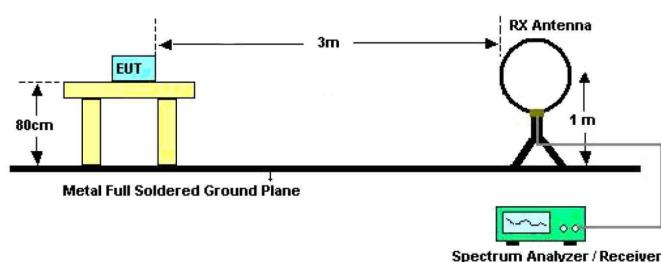

4.2. Test Setup

4.3. Test Data

Temperature:	26.1 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Freq.(MHz)	Bandwidth (kHz)	Results
0.125	0.812	PASS

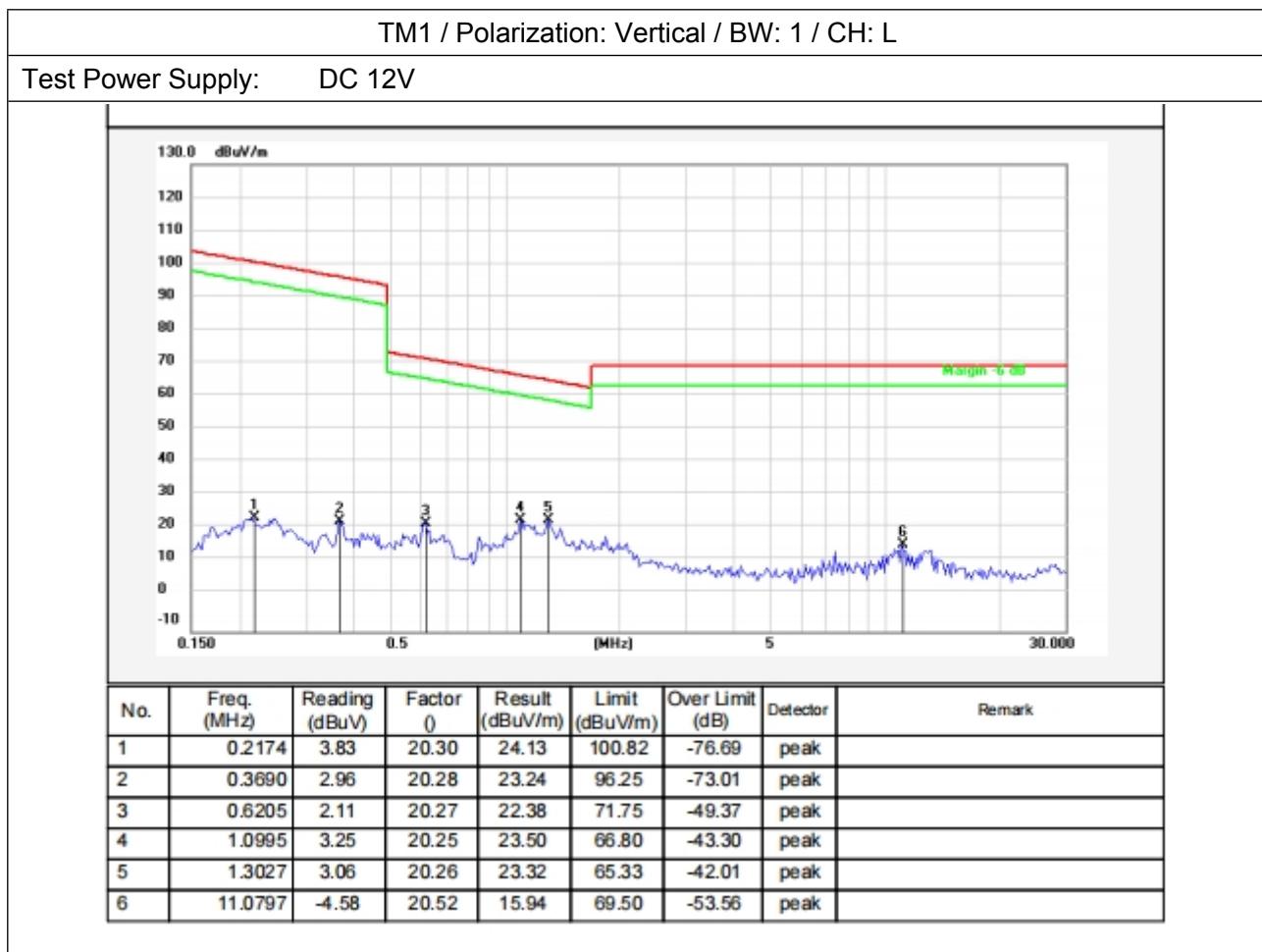
Note: The measured signal is Cw-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 3kHz to perform the occupied bandwidth test.


5. Emissions in restricted frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Limit:	<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p> <p>As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.</p>		
Test Method:	ANSI C63.10-2020 section 6.4		
Procedure:	ANSI C63.10-2020 section 6.4		

5.1. EUT Operation

Operating Environment:	
Test mode:	1: TM1: Standby Mode


5.2. Test Setup

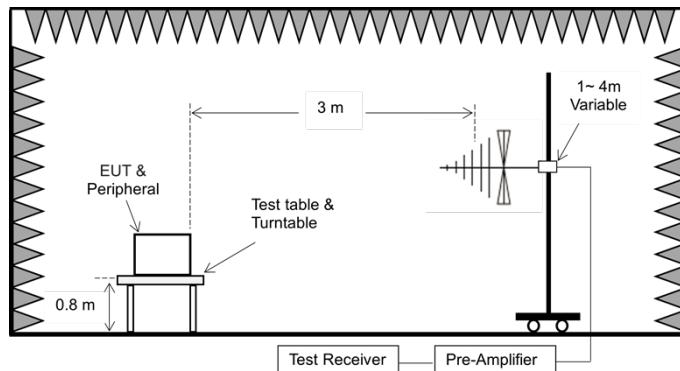
5.3. Test Data

Temperature:	24 °C	Humidity:	52 %	Atmospheric Pressure:	101 kPa																																																															
TM1 / Polarization: Horizontal / BW: 1 / CH: L																																																																				
Test Power Supply:	DC 12V																																																																			
Fundamental																																																																				
<table border="1"> <thead> <tr> <th>No.</th> <th>Freq. (MHz)</th> <th>Reading (dBuV)</th> <th>Factor 0</th> <th>Result (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit (dB)</th> <th>Detector</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>0.0108</td> <td>-3.97</td> <td>20.06</td> <td>16.09</td> <td>126.73</td> <td>-110.64</td> <td>peak</td> <td></td> </tr> <tr> <td>2</td> <td>0.0199</td> <td>-4.03</td> <td>20.29</td> <td>16.26</td> <td>121.46</td> <td>-105.20</td> <td>peak</td> <td></td> </tr> <tr> <td>3</td> <td>0.0321</td> <td>-4.83</td> <td>20.56</td> <td>15.73</td> <td>117.33</td> <td>-101.60</td> <td>peak</td> <td></td> </tr> <tr> <td>4</td> <td>0.0423</td> <td>7.63</td> <td>20.43</td> <td>28.06</td> <td>114.95</td> <td>-86.89</td> <td>peak</td> <td></td> </tr> <tr> <td>5</td> <td>0.0864</td> <td>-8.35</td> <td>20.38</td> <td>12.03</td> <td>108.78</td> <td>-96.75</td> <td>peak</td> <td></td> </tr> <tr> <td>6</td> <td>0.1250</td> <td>43.58</td> <td>20.33</td> <td>63.91</td> <td>105.59</td> <td>-41.68</td> <td>peak</td> <td></td> </tr> </tbody> </table>						No.	Freq. (MHz)	Reading (dBuV)	Factor 0	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark	1	0.0108	-3.97	20.06	16.09	126.73	-110.64	peak		2	0.0199	-4.03	20.29	16.26	121.46	-105.20	peak		3	0.0321	-4.83	20.56	15.73	117.33	-101.60	peak		4	0.0423	7.63	20.43	28.06	114.95	-86.89	peak		5	0.0864	-8.35	20.38	12.03	108.78	-96.75	peak		6	0.1250	43.58	20.33	63.91	105.59	-41.68	peak	
No.	Freq. (MHz)	Reading (dBuV)	Factor 0	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark																																																												
1	0.0108	-3.97	20.06	16.09	126.73	-110.64	peak																																																													
2	0.0199	-4.03	20.29	16.26	121.46	-105.20	peak																																																													
3	0.0321	-4.83	20.56	15.73	117.33	-101.60	peak																																																													
4	0.0423	7.63	20.43	28.06	114.95	-86.89	peak																																																													
5	0.0864	-8.35	20.38	12.03	108.78	-96.75	peak																																																													
6	0.1250	43.58	20.33	63.91	105.59	-41.68	peak																																																													

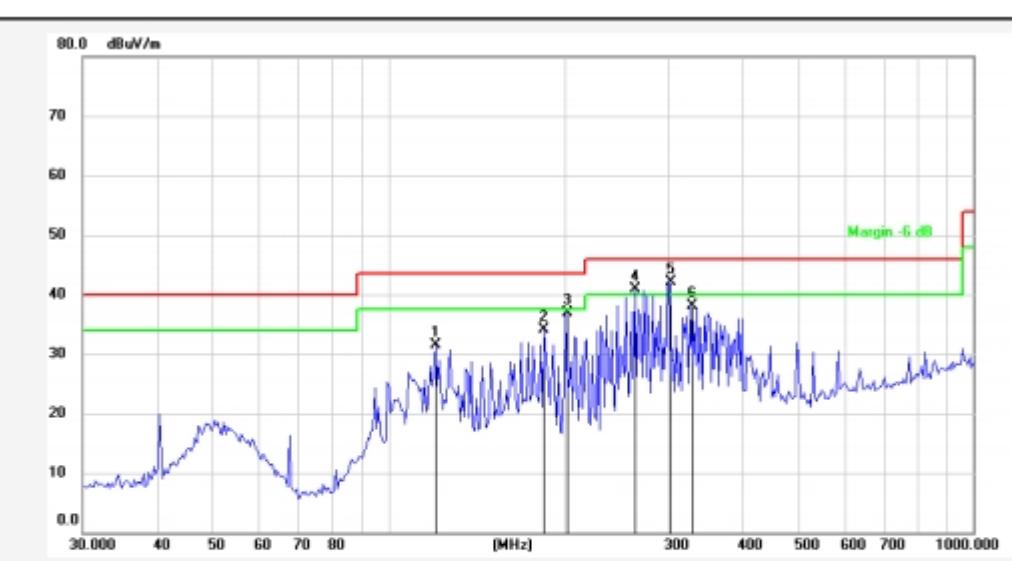
Temperature:	24 °C	Humidity:	52 %	Atmospheric Pressure:	101 kPa
--------------	-------	-----------	------	-----------------------	---------

Note:

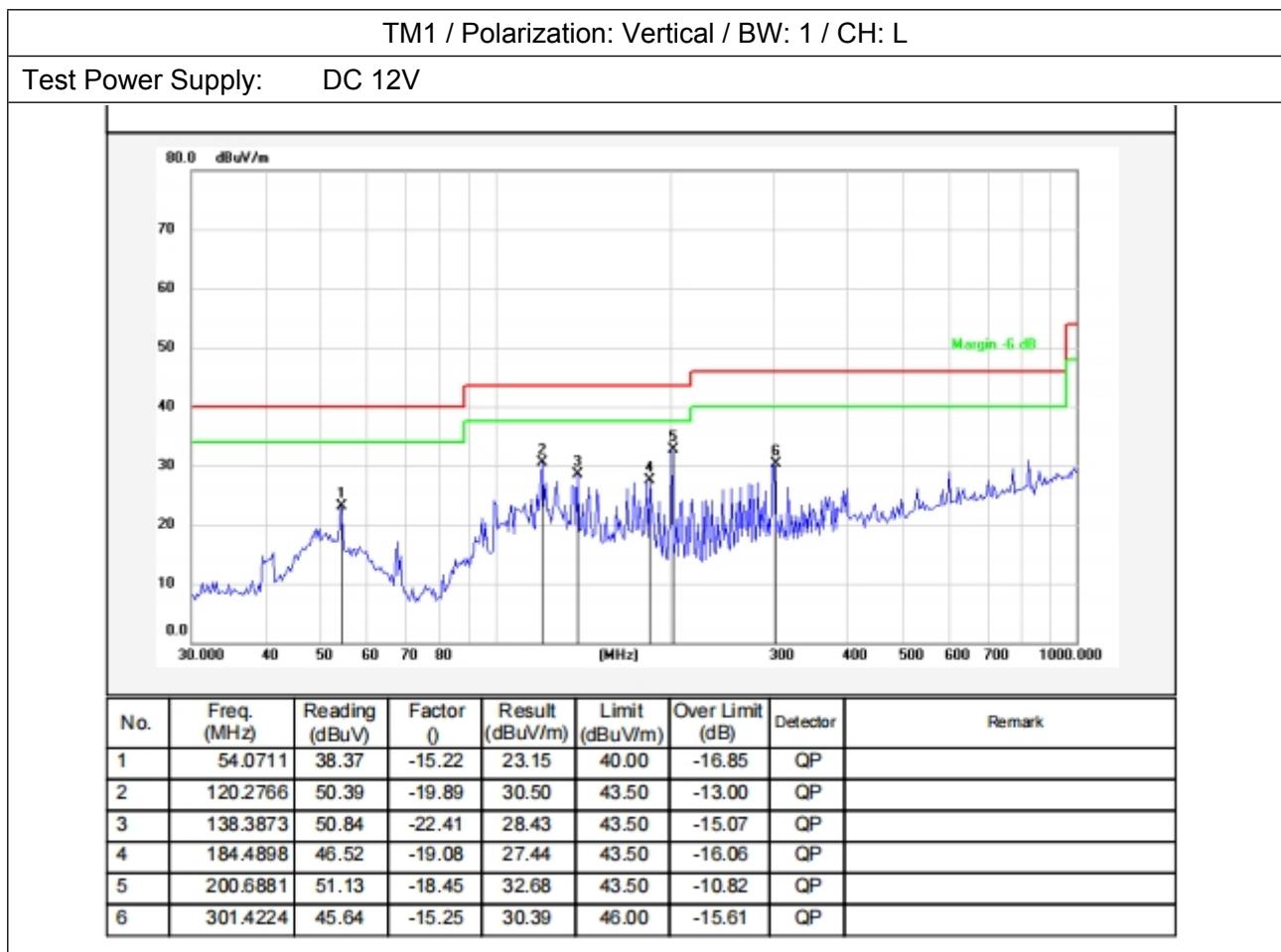
1. Result(dB μ V/m) = Reading(dB μ V) + Factor(dB/m);
Over Limit(dB) = Result(dB μ V/m) - Limit(dB μ V/m)


6. Emissions in restricted frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209		
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Test Limit:	<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.</p> <p>As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.</p>		
Test Method:	ANSI C63.10-2020 section 6.5		
Procedure:	ANSI C63.10-2020 section 6.5		


6.1. EUT Operation

Operating Environment:	
Test mode:	1: TM1: Standby Mode


6.2. Test Setup

6.3. Test Data

Temperature:	24 °C	Humidity:	52 %	Atmospheric Pressure:	101 kPa																																																															
TM1 / Polarization: Horizontal / BW: 1 / CH: L																																																																				
Test Power Supply:	DC 12V																																																																			
<table border="1"> <thead> <tr> <th>No.</th> <th>Freq. (MHz)</th> <th>Reading (dBuV)</th> <th>Factor ()</th> <th>Result (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit (dB)</th> <th>Detector</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>120.2766</td> <td>51.34</td> <td>-19.89</td> <td>31.45</td> <td>43.50</td> <td>-12.05</td> <td>QP</td> <td></td> </tr> <tr> <td>2</td> <td>184.4898</td> <td>53.41</td> <td>-19.39</td> <td>34.02</td> <td>43.50</td> <td>-9.48</td> <td>QP</td> <td></td> </tr> <tr> <td>3</td> <td>200.6881</td> <td>55.36</td> <td>-18.45</td> <td>36.91</td> <td>43.50</td> <td>-6.59</td> <td>QP</td> <td></td> </tr> <tr> <td>4</td> <td>263.8190</td> <td>57.04</td> <td>-16.11</td> <td>40.93</td> <td>46.00</td> <td>-5.07</td> <td>QP</td> <td></td> </tr> <tr> <td>5</td> <td>301.4224</td> <td>57.29</td> <td>-15.25</td> <td>42.04</td> <td>46.00</td> <td>-3.96</td> <td>QP</td> <td></td> </tr> <tr> <td>6</td> <td>327.8873</td> <td>52.66</td> <td>-14.64</td> <td>38.02</td> <td>46.00</td> <td>-7.98</td> <td>QP</td> <td></td> </tr> </tbody> </table>						No.	Freq. (MHz)	Reading (dBuV)	Factor ()	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark	1	120.2766	51.34	-19.89	31.45	43.50	-12.05	QP		2	184.4898	53.41	-19.39	34.02	43.50	-9.48	QP		3	200.6881	55.36	-18.45	36.91	43.50	-6.59	QP		4	263.8190	57.04	-16.11	40.93	46.00	-5.07	QP		5	301.4224	57.29	-15.25	42.04	46.00	-3.96	QP		6	327.8873	52.66	-14.64	38.02	46.00	-7.98	QP	
No.	Freq. (MHz)	Reading (dBuV)	Factor ()	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark																																																												
1	120.2766	51.34	-19.89	31.45	43.50	-12.05	QP																																																													
2	184.4898	53.41	-19.39	34.02	43.50	-9.48	QP																																																													
3	200.6881	55.36	-18.45	36.91	43.50	-6.59	QP																																																													
4	263.8190	57.04	-16.11	40.93	46.00	-5.07	QP																																																													
5	301.4224	57.29	-15.25	42.04	46.00	-3.96	QP																																																													
6	327.8873	52.66	-14.64	38.02	46.00	-7.98	QP																																																													

Temperature:	24 °C	Humidity:	52 %	Atmospheric Pressure:	101 kPa
--------------	-------	-----------	------	-----------------------	---------

Shenzhen Anbotek Compliance Laboratory Limited

Any unauthorized modification, forgery, or falsification of this document constitutes a violation of law and is subject to legal penalties. If you have any questions, you may scan the QR code to download the report for verification or contact us via email.

Hotline: 400-003-0500 web: www.anbotek.com E-mail: service@anbotek.com

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----