

TEST REPORT

Product Name: Bluetooth bracelet FCC ID: 2A6EO-MT12

Trademark: N/A

MT12, MT13, MT18, MT19, MT20, MT21, MT22, MT23 Model Number: Prepared For: SHENZHEN MLIB AGE TECHNOLOGY CO., LTD.

701 Yingdefeng Chuangzhi Park, No. 7 aimin Road, Hourui Address: Community, Hangcheng Street, Bao'an District, Shenzhen China

SHENZHEN MLIB AGE TECHNOLOGY CO., LTD. Manufacturer:

701 Yingdefeng Chuangzhi Park, No. 7 aimin Road, Hourui Address:

Community, Hangcheng Street, Bao'an District, Shenzhen China

Shenzhen CTB Testing Technology Co., Ltd. Prepared By:

Floor 1&2, Building A, No. 26 of Xinhe Road, Xingiao Community, Address:

Xingiao Street, Baoan District, Shenzhen, Guangdong China

Sample Received Date: Apr. 6, 2022

Sample tested Date: Apr. 6, 2022 to Apr. 7, 2022

Issue Date: Apr. 7, 2022

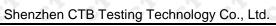
Test Results

Chan Than

Report No.: CTB220407043RF FCC Part15.247 **Test Standards** ANSI C63.10:2013

PASS

Remark: This is Bluetooth radio test report.


Reviewed by: Approved by: Compiled by:

Agron Itu

Chen Zheng Arron Liu

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Report Tel: 4008-707-283 Bin Mei / Director

TABLE OF CONTENT

Į	est F	Report Declaration F	Page
	1. 0	VERSION	4
	2.	TEST SUMMARY	5
	3.	MEASUREMENT UNCERTAINTY	6
	4.	PRODUCT INFORMATION AND TEST SETUP	7
	4.1	Product Information	
	4.2	Test Setup Configuration	7
	4.3	Support Equipment	7
	4.4	Channel List	
	4.5	Test Mode	
	4.6	Test Environment	8
		TEST FACILITY AND TEST INSTRUMENT USED	
	5.1	Test Facility	
		Test Instrument Used	
		AC POWER LINE CONDUCTED EMISSION	
	6.1	Block Diagram Of Test Setup	
	6.2		
	6.3	Test procedure	
	6.4	Test Result	
	7.	RADIATED SPURIOUS EMISSION	
	7.1	Block Diagram Of Test Setup	
	7.2	Limit	
	7.3	Test procedure	17
	7.4		18
	8.	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	
	8.1	Block Diagram Of Test Setup	
	8.2	Limit	
	8.3		
	8.4	Test Result COUDUCTED PEAK OUTPUT POWER	
	9. 9.1		
	9.1	Block Diagram Of Test Setup	
	9.2	Limit Test procedure	
	9.4	Test Result	
	10.	6DB OCCUPIED BANDWIDTH	31
	10.1	Block Diagram Of Test Setup	
	10.1		
	10.2		
	10.3		
	11.	POWER SPECTRAL DENSITY	
	11.1		
		Limit	
	11.3		
		. 55. p. 555 dai 5	

	<u> </u>	Shenzhen CTB Testing Technology Co., Ltd.	Report No.:CTB220407043RF
11	.4 Test Re	esult	33
12	2. ANTENN	NA REQUIREMENT	
13	B. EUT TE	ST SETUP PHOTOGRAPHS	
			C. V. V. V. V. V.

(Note: N/A means not applicable)

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 3 of 37

1. VERSION

Report No.	Issue Date	Description	Approved
CTB220407043RF	Apr. 7, 2022	Original	Valid

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 4 of 37

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	Pass
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Band edge and RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)/15.205(a)	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v05r02	PASS
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (b)	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density , Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(9K-30MHz)	4.8dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63℃
frequency	1×10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 6 of 37

PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): MT12, MT13, MT18, MT19, MT20, MT21, MT22, MT23

All the model are the same circuit and RF module, only for model Model Description:

name. Test sample model: MT12

Bluetooth Version: Bluetooth V5.0

Hardware Version: V1.0 Software Version: V1.0

Bluetooth: 2402-2480MHz Operation Frequency:

Max. RF output power: Bluetooth: 1.727dBm

Type of Modulation: Bluetooth: GFSK

Antenna installation: Internal antenna Antenna Gain: Bluetooth:1.0dBi

Ratings: DC 5V charging from adapter

Battery DC 3.7V

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1.	AC adapter	SHENZHEN ENGINE ELECTRONIC CO.,LTD	EE-0501000E	N/A	AE

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Report Tel: 4008-707-283

4.4 Channel List

CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
_12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting (GFSK)	2402MHz	2440MHz	2480MHz

4.6 Test Environment

Humidity(%):	55
Atmospheric Pressure(kPa):	101.1
Normal Voltage(AC):	120V
Normal Temperature(°C)	25 4 4 4 4
Low Temperature(°C)	0
High Temperature(°C)	40

Report Tel: 4008-707-283

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

No	Equipment	Manufactur er	Model No.	Serial No.	Calibrated date	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	2021.09.27	2022.08.05
2	Power Sensor	Agilent	U2021XA	MY56120032	2021.09.27	2022.08.05
3	Power Sensor	Agilent	U2021XA	MY56120034	2021.09.27	2022.08.05
4	Communicati on test set	R&S	CMW500	108058	2021.09.27	2022.08.05
5	Spectrum Analyzer	R&S	FSP40	100550	2021.09.27	2022.08.05
6	Signal Generator	Agilent	N5181A	MY49060920	2021.09.27	2022.08.16
7	Signal Generator	Agilent	N5182A	MY47420195	2021.09.27	2022.08.05
8	Communicati on test set	Agilent	E5515C	MY50102567	2021.09.27	2022.08.16
9	band rejection filter	Shenxiang	MSF2400-2483.5M S-1154	20181015001	2021.09.27	2022.08.05
10	band rejection filter	Shenxiang	MSF5150-5850MS- 1155	20181015001	2021.09.27	2022.08.05
11	band rejection filter	Xingbo	XBLBQ-DZA120	190821-1-1	2021.09.27	2022.08.05
12	BT&WI-FI Automatic test software	Micowave	MTS8310	Ver. 2.0.0.0	2021.09.27	2022.08.05
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2021.09.27	2022.08.05
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2021.09.27	2022.08.05
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	2021.09.27	2022.08.05

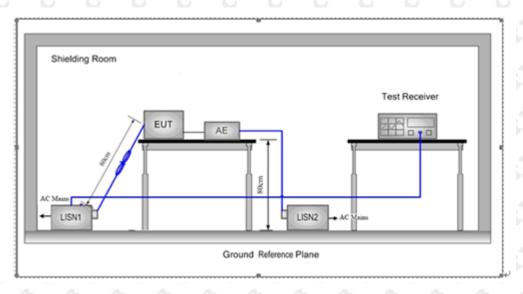
Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 9 of 37

Shenzhen CTB Testing Technology Co., Ltd. Report No.:CTB220407043RF

				0, , 1		
16	966 chamber	C.R.T.	966 Room	966	2021.09.27	2024.08.11
17	Receiver	R&S	ESPI	100362	2021.09.27	2022.08.05
18	Amplifier	HP	8447E	2945A02747	2021.09.27	2022.08.05
19	Amplifier	Agilent	8449B	3008A01838	2021.09.27	2022.08.05
20	TRILOG Broadband Antenna	Schwarzbe ck	VULB 9163	869	2021.09.27	2022.08.07
21	Horn Antenna	Schwarzbe ck	BBHA9120D	1911	2021.09.27	2022.08.08
22	Software	Fala	EZ-EMC	FA-03A2 RE	2021.09.27	2022.08.05
23	3-Loop Antenna	Daze	ZN30401	17014	2021.09.27	2022.08.05
24	loop antenna	ZHINAN	ZN30900A	9 69169	2021.09.27	2022.08.05
25	Horn antenna	A/H/System	SAS-574	588	2021.09.27	2022.08.05
26	Amplifier	AEROFLEX		S/N/ 097	2021.09.27	2022.08.05

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 10 of 37

	Continuous disturbance									
No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated date	Calibrated until				
1	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	2021.09.27	2022.08.05				
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	2021.09.27	2022.08.05				
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2021.09.27	2022.08.05				
4	Coaxial cable	ZDECL	Z302S	18091904	2021.09.27	2022.08.05				
5	AAN	Schwarzbeck	NTFM8158	183	2021.09.27	2022.08.05				
6	Communication test set	Agilent	E5515C	MY50102567	2021.09.27	2022.08.16				
7	Communication test set	R&S	CMW500	108058	2021.09.27	2022.08.05				
8	EZ-EMC	Frad	EMC-con3A1.1	010	67 6	1				


			Radiated emission				
No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated date	Calibrated until	
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	1911	2021.09.27	2022.08.08	
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	869	2021.09.27	2022.08.05	
3	Amplifier	Agilent	8449B	3008A01838	2021.09.27	2022.08.05	
4	Amplifier	HP	8447E	2945A02747	2021.09.27	2022.08.05	
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI7	100362	2021.09.27	2022.08.05	
6	Coaxial cable	ETS	RFC-SNS-100-NMS-80 NI	59/59	2021.09.27	2022.08.05	
7	Coaxial cable	ETS	RFC-SNS-100-NMS-20 NI	8/ 8	2021.09.27	2022.08.05	
8	Coaxial cable	ETS	RFC-SNS-100-SMS-20 NI	0,10,	2021.09.27	2022.08.05	
9	Coaxial cable	ETS	RFC-NNS-100-NMS-300 NI	C 1 C	2021.09.27	2022.08.05	
10	Communication test set	Agilent	E5515C	MY50102567	2021.09.27	2022.08.16	
11	Communication test set	R&S	CMW500	108058	2021.09.27	2022.08.05	
12	EZ-EMC	Frad	EMC-con3A1.1	0'/0'	61,61	C/ C	

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 11 of 37

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

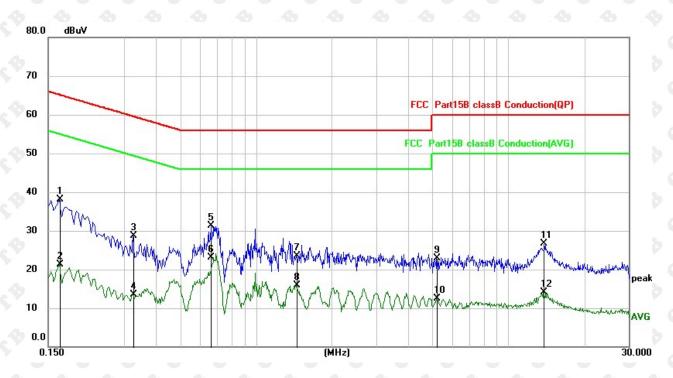
equency (MHz)	Conducted limit (dBµV)	Conducted limit (dBµV)				
	Quasi-peak	Average				
15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}				
5 – 5	56	46				
- 30	60	50				

^{*} Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

- The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

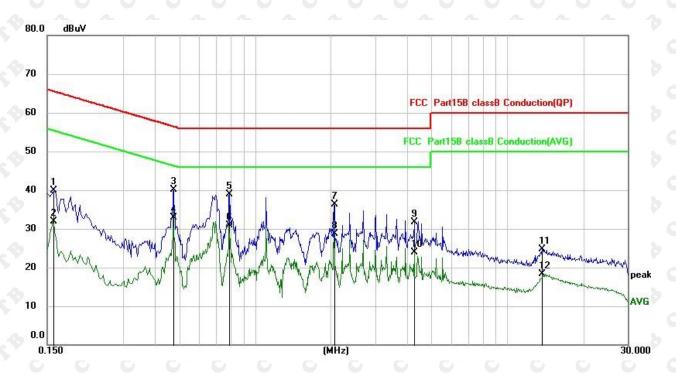
Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 12 of 37


- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 13 of 37

6.4 Test Result

L:


No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1660	27.31	10.71	38.02	65.16	-27.14	QP
2	0.1660	10.62	10.71	21.33	55.16	-33.83	AVG
3	0.3260	18.06	10.62	28.68	59.55	-30.87	QP
4	0.3260	2.87	10.62	13.49	49.55	-36.06	AVG
5	0.6620	20.83	10.55	31.38	56.00	-24.62	QP
6 *	0.6620	12.54	10.55	23.09	46.00	-22.91	AVG
7	1.4460	12.94	10.62	23.56	56.00	-32.44	QP
8	1.4460	5.19	10.62	15.81	46.00	-30.19	AVG
9	5.2180	12.25	10.66	22.91	60.00	-37.09	QP
10	5.2180	1.88	10.66	12.54	50.00	-37.46	AVG
11	13.8180	15.74	10.88	26.62	60.00	-33.38	QP
12	13.8180	3.31	10.88	14.19	50.00	-35.81	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

N:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.1582	29.18	10.72	39.90	65.56	-25.66	QP
	2		0.1582	21.16	10.72	31.88	55.56	-23.68	AVG
	3		0.4740	29.64	10.53	40.17	56.44	-16.27	QP
	4	*	0.4740	22.34	10.53	32.87	46.44	-13.57	AVG
•	5		0.7900	28.29	10.58	38.87	56.00	-17.13	QP
	6		0.7900	20.35	10.58	30.93	46.00	-15.07	AVG
	7		2.0579	25.59	10.63	36.22	56.00	-19.78	QP
	8		2.0579	18.05	10.63	28.68	46.00	-17.32	AVG
	9		4.2780	21.14	10.64	31.78	56.00	-24.22	QP
	10		4.2780	13.17	10.64	23.81	46.00	-22.19	AVG
•	11		13.7500	13.84	10.88	24.72	60.00	-35.28	QP
	12		13.7500	7.37	10.88	18.25	50.00	-31.75	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

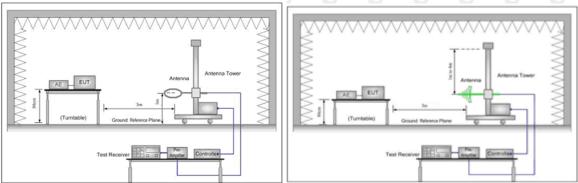
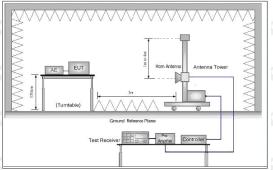



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	4 4 TO	A C. A	300
0.490MHz-1.705MHz	24000/F(kHz)	b 20	A - A	30
1.705MHz-30MHz	30	S- S	3	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

7.3 Test procedure

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

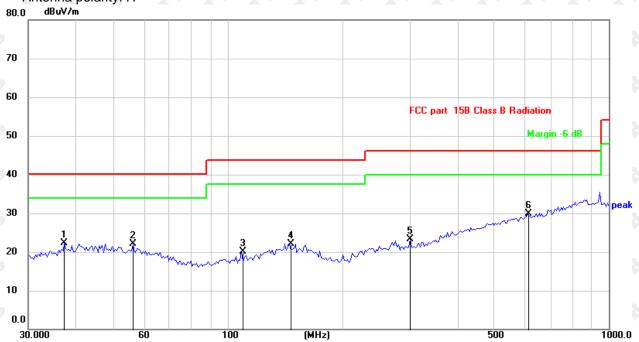
g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel

j.Repeat above procedures until all frequencies measured was complete.

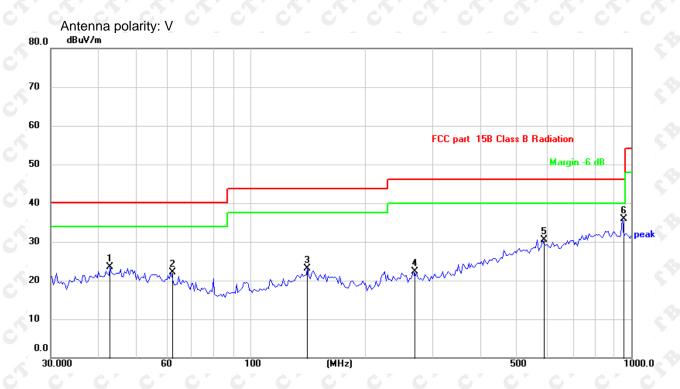
j. Full battery is usedduring test

Receiver set:


Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 4011=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 17 of 37

7.4 Test Result


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		37.3509	28.13	-5.91	22.22	40.00	-17.78	QP
2		56.3948	28.09	-5.98	22.11	40.00	-17.89	QP
3		108.8377	28.08	-8.07	20.01	43.50	-23.49	QP
4		145.3506	27.65	-5.47	22.18	43.50	-21.32	QP
5		300.8943	28.55	-5.19	23.36	46.00	-22.64	QP
6	*	612.0642	27.10	2.74	29.84	46.00	-16.16	QP

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Report

Tel: 4008-707-283

	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	1		42.9750	28.83	-5.38	23.45	40.00	-16.55	QP
	2		62.1039	28.73	-6.54	22.19	40.00	-17.81	QP
Ī	3		141.5777	28.65	-5.45	23.20	43.50	-20.30	QP
	4		268.4853	27.86	-5.52	22.34	46.00	-23.66	QP
	5		585.8157	28.14	2.31	30.45	46.00	-15.55	QP
	6	*	948.7610	30.08	5.91	35.99	46.00	-10.01	QP

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Above 1 GHz Test Results: CH Low (2402MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	109.75	-5.84	103.91	N/A	N/A	peak
2402	93.50	-5.84	87.66	N/A	N/A	AVG
4804	56.52	-3.64	52.88	74	-21.12	peak
4804	49.33	-3.64	45.69	54	-8.31	AVG
7206	60.31	-0.95	59.36	74	-14.64	peak
7206	50.66	-0.95	49.71	54	-4.29	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	108.40	-5.84	102.56	N/A	N/A	peak
2402	94.30	-5.84	88.46	N/A	N/A	AVG
4804	56.54	-3.64	52.90	74	-21.10	peak
4804	48.81	-3.64	45.17	54	-8.83	AVG
7206	60.48	-0.95	59.53	74	-14.47	peak
7206	50.88	-0.95	49.93	54	-4.07	AVG

CH Middle (2440MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2440	107.26	-5.71	101.55	N/A	N/A	peak
2440	91.27	-5.71	85.56	N/A	N/A	AVG
4880	54.64	-3.51	51.13	74	-22.87	peak
4880	45.87	-3.51	42.36	54	-11.64	AVG
7320	57.52	-0.82	56.70	74	-17.30	peak
7320	47.83	-0.82	47.01	54	-6.99	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	106.59	-5.71	100.88	N/A	N/A	peak
2440	92.20	-5.71	86.49	N/A	N/A	AVG
4880	55.05	-3.51	51.54	74	-22.46	peak
4880	46.33	-3.51	42.82	54	-11.18	AVG
7320	57.64	-0.82	56.82	74	-17.18	peak
7320	46.74	-0.82	45.92	54	-8.08	AVG

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 21 of 37

CH High (2480MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2480	108.23	-5.65	102.58	N/A	N/A	peak
2480	92.76	-5.65	87.11	N/A	N/A	AVG
4960	56.19	-3.43	52.76	74	-21.24	peak
4960	46.46	-3.43	43.03	54	-10.97	AVG
7440	57.24	-0.75	56.49	74	-17.51	peak
7440	47.10	-0.75	46.35	54	-7.65	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	105.83	-5.65	100.18	N/A	N/A	peak
2480	92.01	-5.65	86.36	N/A	N/A	AVG
4960	54.52	-3.43	51.09	74	-22.91	peak
4960	45.67	-3.43	42.24	54	-11.76	AVG
7440	55.85	-0.75	55.10	74	-18.90	peak
7440	46.40	-0.75	45.65	54	-8.35	AVG

Remark:

- (1) Measuring frequencies from 9KHz to the 25 GHz.
- (2). All modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported for below 1GHz test.
- (3). For BT above 1GHz test all modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported.
- (4). By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- (5). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Restricted bands around fundamental frequency (Radiated)

Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.91	-5.81	50.10	74	-23.90	peak
2310		-5.81	8/ 4	54	8/	AVG
2390	54.81	-5.84	48.97	74	-25.03	peak
2390		-5.84	3/ 4	54	0/4	AVG
2400	53.15	-5.84	47.31	74	-26.69	peak
2400	41	-5.84	41 4	54	45/4	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.33	-5.81	50.52	74	-23.48	peak
2310	1	-5.81		54	1	AVG
2390	54.68	-5.84	48.84	74	-25.16	peak
2390	1	-5.84		54	40/	AVG
2400	56.91	-5.84	51.07	74	-22.93	peak
2400		-5.84	1	54		AVG

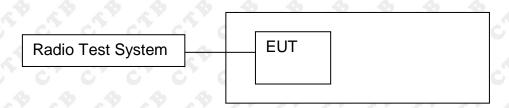
Operation Mode: TX CH High (2480MHz) Horizontal (Worst case)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.12	-5.65	49.47	74	-24.53	peak
2483.50	29/	-5.65	(P)	54		AVG
2500.00	55.48	-5.65	49.83	74	-24.17	peak
2500.00	291	-5.65	201	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.75	-5.65	49.10	74	-24.90	peak
2483.50	/	-5.65	1	54	1	AVG
2500.00	56.52	-5.65	50.87	74	-23.13	peak
2500.00	, ,	-5.65	/	54	,	AVG


Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS

Block Diagram Of Test Setup

8.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

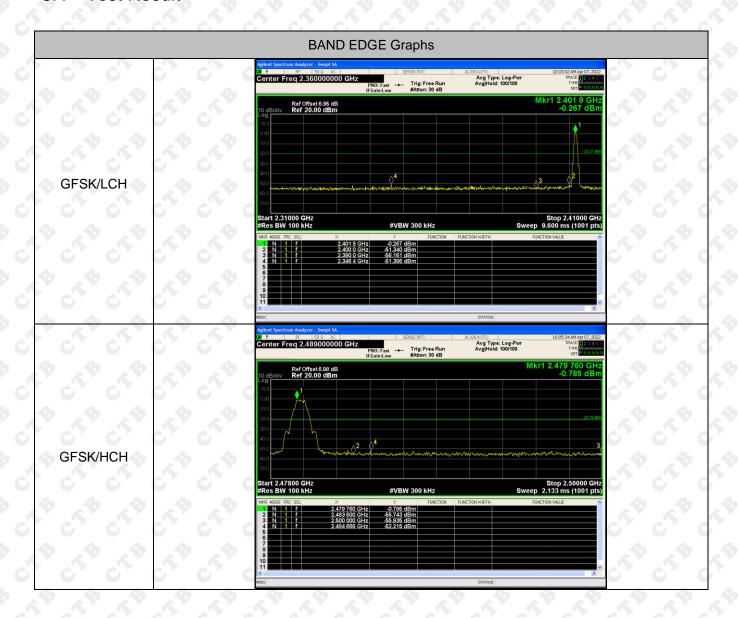
Test procedure 8.3

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

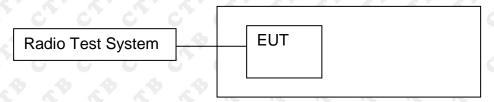
Detector function = peak, Trace = max hold


Above 30MHz:

RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold

Test Result



9. COUDUCTED OUTPUT POWER

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247), Subpart C							
Section Test Item		Limit	Frequency Range (MHz)	Result			
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS			

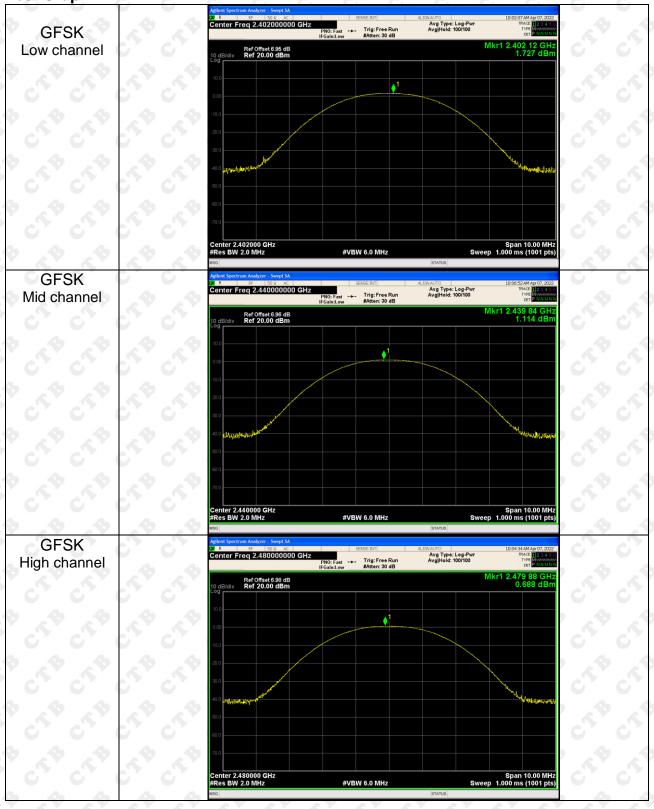
9.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Channel power measurement. Sweep = auto; Detector Function = peak.
- 3. Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 28 of 37

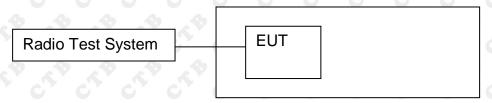
9.4 Test Result

Mode	Channel.	Maximum Output Power [dBm]	Limit[dBm]	Verdict
TO STORY	LCH	1.727	30	PASS
GFSK	MCH	1.114	30	PASS
	HCH	0.688	30	PASS


Duty Cycle

Mode	Channel.	Duty Cycle(%)	Correction Factor (dB)
A KA KA	LCH	100	\$ \$ 0 \$ \$
GFSK	MCH	100	A A 0 A A
Con con c	НСН	100	0 0

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 29 of 37


Test Graph:

10. 6DB OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247), Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

10.3 Test procedure

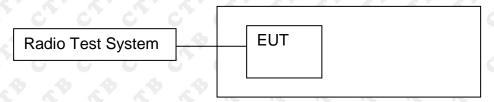
- 1. Rem1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Test Mode	Frequency	6dB Bandwidth (MHz)	Result
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Low channel	0.64	PASS
GFSK	Mid channel	0.549	PASS
	High channel	0.562	PASS

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

Report Tel: 4008-707-283


Test Graph:

11. POWER SPECTRAL DENSITY

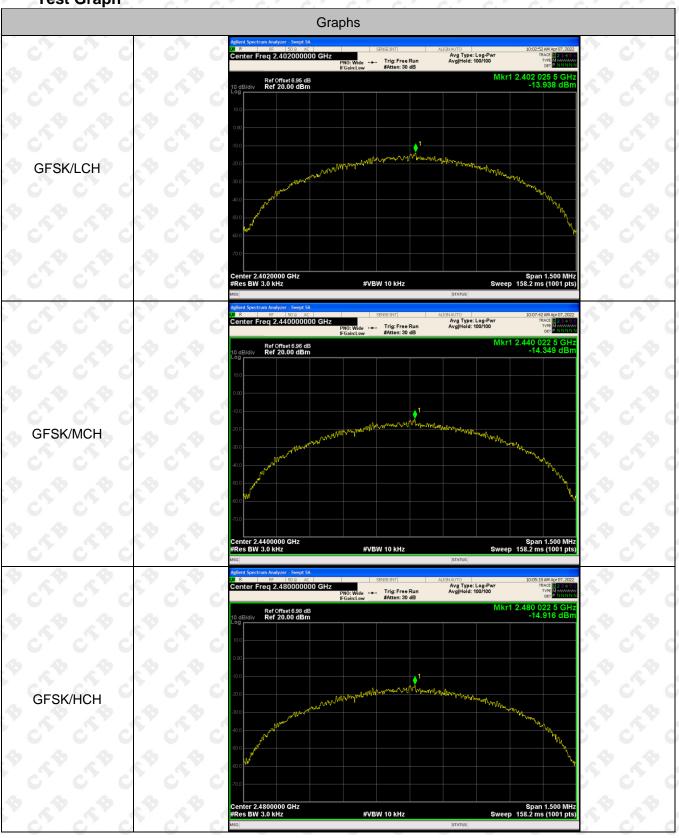
11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

11.3 Test procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


11.4 Test Result

Mode	Channel.	Power Spectral Density (dBm/3KHz)	Limit(dBm/3KHz)	Verdict
GFSK	LCH	-13.938	8	PASS
GFSK	MCH	-14.349	8	PASS
GFSK	НСН	-14.916	8	PASS

Report Tel: 4008-707-283

Test Graph

12. ANTENNA REQUIREMENT

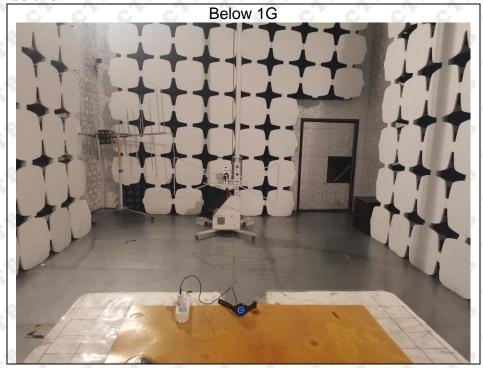
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The EUT antenna is Internal antenna. The best case gain of the antenna is 1.0dBi.


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 35 of 37

EUT TEST SETUP PHOTOGRAPHS 13.

Radiated Emissions

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 36 of 37

Conducted emission

**** END OF REPORT ***