

Shenzhen HUAK Testing Technology Co., Ltd. Report No.: HK2203211049-11E

TEST REPORT FCC Part 27

 Report Reference No.......
 HK2203211049-11E

 FCC ID.......
 2A6DD-WRS225

Compiled by

( position+printed name+signature)... File administrators Gary Qian

Supervised by

( position+printed name+signature)..: Technique principal Eden Hu

Approved by

( position+printed name+signature)..: Manager Jason Zhou

Date of issue...... Apr. 02, 2022

Testing Laboratory Name ...... Shenzhen HUAK Testing Technology Co., Ltd.

China

Applicant's name...... Wicrypt Labs Limited

Address ...... Vistra Corporate Services Centre, Wickhams Cay II, Road Town,

Tortola, VG1110, British Virgin Islands, United Kingdom

Test specification ....:

Standard FCC CFR Title 47 Part 2, Part 27

TRF Originator...... Shenzhen HUAK Testing Technology Co., Ltd.

### Shenzhen HUAK Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description ................: Wicrypt Spider Duo

Trade Mark ...... N/A

Manufacturer ...... Wicrypt Tech Limited

Model/Type reference...... WRS225

Series Models ...... N/A

Modulation Type ...... QPSK, 16QAM

Rating ...... DC 12V from adapter

Hardware version ...... V2.0

Software version ...... V2.0

Result..... PASS

Page 2 of 72

## TEST REPORT

| Took Day and No.  | UK2202244040 44F | Apr. 02, 2022 |
|-------------------|------------------|---------------|
| Test Report No. : | HK2203211049-11E | Date of issue |

Equipment under Test : Wicrypt Spider Duo

Model /Type : WRS225

Series Models : N/A

Applicant : Wicrypt Labs Limited

Address : Vistra Corporate Services Centre, Wickhams Cay II, Road

Town, Tortola, VG1110, British Virgin Islands, United

Report No.: HK2203211049-11E

Kingdom

Manufacturer : Wicrypt Tech Limited

Address : No. 36 Garden Avenue, Bethel Plaza, Enugu, Nigeria

|             | .6    |
|-------------|-------|
| Test result | Pass  |
|             | - War |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.





# **Contents**

Report No.: HK2203211049-11E

| 1 Dan    | SUMMARY                                                   | HUAN HUAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AD HO. | 4     |
|----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
|          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |
| 1.1      | Test Standards                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 4     |
| 1.2      | Test Description                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 4     |
| 1.3      | Information of The Test Laboratory                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5     |
| 1.4      | Statement of The Measurement Uncertainty                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5     |
| 2        | GENERAL INFORMATION                                       | ESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 6     |
|          | THE HUART                                                 | THUAK I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STING  |       |
| 2.1      | Environmental Conditions                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 6     |
| 2.2      | Description of Test Modes                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 6     |
| 2.3      | Test Frequency List                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 6     |
| 2.4      | Equipments Used during the Test                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7     |
| 2.5      | Related Submittal(s) / Grant (s)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7     |
| 2.6      | Modifications                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7     |
| <u>3</u> | TEST CONDITIONS AND RESULTS                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8     |
|          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |
| 3.1      | Output Power                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8     |
| 3.2      | Peak-to-Average Ratio (PAR)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 14    |
| 3.3      | Occupied Bandwidth and Emission Bandwidth                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 21    |
| 3.4      | Band Edge Compliance                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 28    |
| 3.5      | Spurious Emission                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 35    |
| 3.6      | Frequency Stability under Temperature & Voltage Variation | าร                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 69    |
|          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |
| 4        | TEST SETUP PHOTOS OF THE EUT                              | TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 71    |
| _        | THE HUME                                                  | The contract of the contract o |        | G GB. |
| e cm     | DUOTOS OF THE EUT                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7.2   |



## 1 SUMMARY

### 1.1 Test Standards

The tests were performed according to following standards: FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES.

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards 47 CFR FCC Part 15 Subpart B: - Unintentional Radiators.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS.

KDB971168 D01: v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS.

### 1.2 Test Description

| Test Item                              | Section in CFR 47               | Result |
|----------------------------------------|---------------------------------|--------|
| RF Output Power                        | Part 2.1046<br>Part 27.50(d)(4) | Pass   |
| Peak-to-Average Ratio                  | Part 27.50(d)(4)                | Pass   |
| 99% & -26 dB Occupied Bandwidth        | Part 2.1049<br>Part 27.53(h)    | Pass   |
| Spurious Emissions at Antenna Terminal | Part 2.1051<br>Part 27.53(h)    | Pass   |
| Field Strength of Spurious Radiation   | Part 2.1053<br>Part 27.53(h)    | Pass   |
| Out of band emission, Band Edge        | Part 2.1051<br>Part 27.53(h)    | Pass   |
| Frequency stability                    | Part 2.1055<br>Part 27.54       | Pass   |

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com



### 1.3 Information of The Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

### 1.4 Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen HUAK Testing Technology Co., Ltd.is reported:

| Test                  | Range      | Measurement<br>Uncertainty | Notes |
|-----------------------|------------|----------------------------|-------|
| Radiated Emission     | 30~1000MHz | 4.10dB                     | (1)   |
| Radiated Emission     | Above 1GHz | 4.32dB                     | (1)   |
| Conducted Disturbance | 0.15~30MHz | 3.20dB                     | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com



# **GENERAL INFORMATION**

### 2.1 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

| Normal Temperature: | 25°C    | -       |          |
|---------------------|---------|---------|----------|
| Relative Humidity:  | 55 %    | -olG    | anG      |
| Air Pressure:       | 101 kPa | LAKTEST | MAKTESTI |

#### **Description of Test Modes** 2.2

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

- Note: For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst resulton this report.
- Test method and refer to 3GPP TS136521.

### 2.3 Test Frequency List

| SILL                    | STILL              | STILL   |
|-------------------------|--------------------|---------|
| TX Channel<br>Bandwidth | Frequency<br>(MHz) | channel |
|                         | TING HUAKTEE       | -CTING  |
| 1.4 MHz                 | 1710.7             | 131979  |
| 1.4 IVITZ               | 1745               | 132322  |
|                         | 1779.3             | 132665  |
| -47                     | 1711.5             | 131987  |
| 3 MHz                   | 1745               | 132322  |
| MAKTES MAKE             | 1778.5             | 132657  |
|                         | 1712.5             | 131997  |
| 5 MHz                   | 1745               | 132322  |
|                         | 1777.5             | 132647  |
| STING                   | 1715.0             | 132022  |
| 10 MHz                  | 1745               | 132322  |
|                         | 1775.0             | 132622  |
| TING                    | 1717.5             | 132047  |
| 15 MHz                  | 1745               | 132322  |
|                         | 1772.5             | 132597  |
| (i)                     | 1720.0             | 132072  |
| 20 MHz                  | 1745               | 132322  |
| -1G                     | 1770.0             | 132572  |

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,





## 2.4 Equipments Used during the Test

| Test Equipment                        | Manufacturer | Model No.   | Serial No. | Calibration<br>Date | Calibration Due Date |
|---------------------------------------|--------------|-------------|------------|---------------------|----------------------|
| LISN                                  | ENV216       | R&S         | HKE-059    | 2022/02/18          | 2023/02/17           |
| LISN                                  | R&S          | ENV216      | HKE-002    | 2022/02/18          | 2023/02/17           |
| Broadband antenna                     | Schwarzbeck  | VULB 9163   | HKE-012    | 2022/02/18          | 2023/02/17           |
| Receiver                              | R&S          | ESCI 7      | HKE-010    | 2022/02/18          | 2023/02/17           |
| Spectrum analyzer                     | Agilent      | N9020A      | HKE-048    | 2022/02/18          | 2023/02/17           |
| RF automatic control unit             | Tonscend     | JS0806-2    | HKE-060    | 2022/02/18          | 2023/02/17           |
| Horn antenna                          | Schwarzbeck  | 9120D       | HKE-013    | 2022/02/18          | 2023/02/17           |
| Loop antenna                          | Schwarzbeck  | FMZB 1519 B | HKE-014    | 2022/02/18          | 2023/02/17           |
| Preamplifier                          | EMCI         | EMC051845SE | HKE-015    | 2022/02/18          | 2023/02/17           |
| Preamplifier                          | Agilent      | 83051A      | HKE-016    | 2022/02/18          | 2023/02/17           |
| Temperature and humidity meter        | Boyang       | HTC-1       | HKE-075    | 2022/02/18          | 2023/02/17           |
| High pass filter unit                 | Tonscend     | JS0806-F    | HKE-055    | 2022/02/18          | 2023/02/17           |
| RF cable                              | Times        | 1-40G       | HKE-034    | 2022/02/18          | 2023/02/17           |
| Power meter                           | Agilent      | E4419B      | HKE-085    | 2022/02/18          | 2023/02/17           |
| Power Sensor                          | Agilent      | E9300A      | HKE-086    | 2022/02/18          | 2023/02/17           |
| Wireless<br>Communication<br>Test Set | R&S          | CMW500      | HKE-026    | 2022/02/18          | 2023/02/17           |
| Wireless<br>Communication<br>Test Set | R&S          | CMU200      | HKE-029    | 2022/02/18          | 2023/02/17           |
| High gain antenna                     | Schwarzbeck  | LB-180400KF | HKE-054    | 2022/02/18          | 2023/02/17           |
| Horn antenna                          | Schwarzbeck  | 9120D       | HKE-135    | 2022/02/18          | 2023/02/17           |
| High gain antenna                     | Schwarzbeck  | LB-180400KF | HKE-128    | 2022/02/18          | 2023/02/17           |
| Broadband antenna                     | Schwarzbeck  | VULB 9163   | HKE-087    | 2022/02/18          | 2023/02/17           |
| Signal generator                      | Agilent      | E4433B      | HKE-120    | 2022/02/18          | 2023/02/17           |
| Signal generator                      | Agilent      | E4421B      | HKE-121    | 2022/02/18          | 2023/02/17           |
|                                       |              | -           |            |                     |                      |

## 2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2A6DD-WRS225 filing to comply with of the FCC Part 27 Rules.

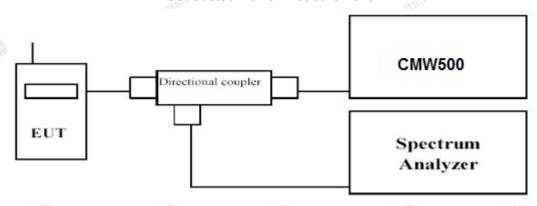
### 2.6 Modifications

No modifications were implemented to meet testing criteria.

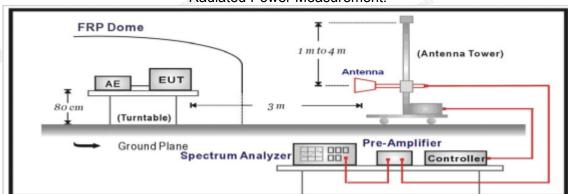
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



## 3 TEST CONDITIONS AND RESULTS


### 3.1 Output Power

#### LIMIT


According to §27.50 (d) (4): Fixed, mobile, and portable (hand- held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP.

#### **TEST CONFIGURATION**

#### **Conducted Power Measurement**



#### Radiated Power Measurement:



### **TEST PROCEDURE**

The EUT was setup according to EIA/TIA 603D.

#### **Conducted Power Measurement:**

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

### **Radiated Power Measurement:**

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter.
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal

- level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal leve is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- g. Test site anechoic chamber refer to ANSI C63.4.

#### **TEST RESULTS**

#### **Conducted Measurement:**

| TESTING      | HUAR       | LTE FDD Band 66 | WAL                 | TESTING |  |
|--------------|------------|-----------------|---------------------|---------|--|
| TX Channel   | Frequency  | RB Size/Offset  | Average Power [dBm] |         |  |
| Bandwidth    | (MHz)      | NB Size/Oliset  | QPSK                | 16QAM   |  |
|              |            | 1 RB low        | 24.70               | 23.65   |  |
|              | 1710.7     | 1 RB high       | 24.54               | 23.78   |  |
| TESTING TEST | 17 10.7    | 50% RB mid      | 24.71               | 23.50   |  |
| UAK TE HUA   | T MAK      | 100% RB         | 24.63               | 23.37   |  |
|              |            | 1 RB low        | 24.52               | 23.35   |  |
| 1.4 MHz      | 1745       | 1 RB high       | 24.55               | 23.24   |  |
|              | 1745       | 50% RB mid      | 23.58               | 22.67   |  |
| TING         |            | 100% RB         | 24.47               | 23.35   |  |
| KTES!"       | ED. COKTES | 1 RB low        | 24.43               | 23.69   |  |
| W Hore       | 1779.3     | 1 RB high       | 24.58               | 23.33   |  |
| W3           | 1779.3     | 50% RB mid      | 24.55               | 23.19   |  |
|              |            | 100% RB         | 24.44               | 23.18   |  |
| PING         | - WAKTE    | 1 RB low        | 24.50               | 23.55   |  |
| MAKTES       | 1711.5     | 1 RB high       | 24.66               | 23.83   |  |
| AND HO.      |            | 50% RB mid      | 24.55               | 23.69   |  |
|              |            | 100% RB         | 23.73               | 22.84   |  |
|              | MAKTE      | 1 RB low        | 23.62               | 22.73   |  |
| 2 MI I-      | 1745       | 1 RB high       | 23.73               | 22.85   |  |
| 3 MHz        |            | 50% RB mid      | 23.73               | 22.74   |  |
|              |            | 100% RB         | 24.32               | 23.39   |  |
|              |            | 1 RB low        | 24.31               | 23.32   |  |
|              | 1770 E     | 1 RB high       | 24.39               | 23.49   |  |
| A)G          | 1778.5     | 50% RB mid      | 23.50               | 22.61   |  |
| TESTIN-      |            | 100% RB         | 23.50               | 22.61   |  |
| HI MA        | HUA        | 1 RB low        | 24.35               | 23.52   |  |
| 5 MI I-      | 1710 F     | 1 RB high       | 24.44               | 23.66   |  |
| 5 MHz        | 1712.5     | 50% RB mid      | 24.45               | 23.51   |  |
| -1Gs         |            | 100% RB         | 23.48               | 22.56   |  |

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com



|                    | TING        |            | CTING |       |
|--------------------|-------------|------------|-------|-------|
|                    | "IAK TEX    | 1 RB low   | 23.48 | 22.47 |
| nNG co             | 174E        | 1 RB high  | 23.54 | 22.56 |
| NY TESTING WAS TES | 1745        | 50% RB mid | 23.57 | 22.79 |
| ALL HOLE           |             | 100% RB    | 24.27 | 23.37 |
|                    |             | 1 RB low   | 24.35 | 23.36 |
|                    | 4777 F      | 1 RB high  | 24.33 | 23.38 |
|                    | 1777.5      | 50% RB mid | 23.40 | 22.39 |
| TESTING            |             | 100% RB    | 23.31 | 22.39 |
| HI AIR             | HUAN        | 1 RB low   | 23.98 | 23.05 |
|                    | 4745.0      | 1 RB high  | 24.41 | 23.57 |
| NG                 | 1715.0      | 50% RB mid | 23.34 | 22.49 |
| .6                 |             | 100% RB    | 23.72 | 22.53 |
| TESTIM             | HUM         | 1 RB low   | 23.62 | 22.69 |
| 40 MALINDAR        | 1715        | 1 RB high  | 23.71 | 22.72 |
| 10 MHz             | 1745        | 50% RB mid | 23.72 | 22.75 |
|                    |             | 100% RB    | 23.59 | 22.71 |
|                    | OIG HUM     | 1 RB low   | 24.73 | 23.85 |
| TESTING            | 4775.0      | 1 RB high  | 24.23 | 23.35 |
| HUA                | 1775.0      | 50% RB mid | 23.45 | 22.43 |
|                    |             | 100% RB    | 23.45 | 22.56 |
|                    |             | 1 RB low   | 24.72 | 23.83 |
|                    | 4747 5      | 1 RB high  | 24.98 | 24.11 |
| CTING              | 1717.5      | 50% RB mid | 21.89 | 21.12 |
| TES WAKT           |             | 100% RB    | 23.88 | 23.89 |
| (I)                | (D)         | 1 RB low   | 24.17 | 24.15 |
| 45 MH-             | 4745        | 1 RB high  | 21.11 | 21.14 |
| 15 MHz             | 1745        | 50% RB mid | 24.56 | 23.66 |
| -SING              |             | 100% RB    | 23.83 | 22.92 |
| MAKTER             |             | 1 RB low   | 24.32 | 25.06 |
| <b>6</b>           | 4770 5      | 1 RB high  | 24.08 | 23.19 |
|                    | 1772.5      | 50% RB mid | 22.89 | 22.91 |
|                    |             | 100% RB    | 25.07 | 25.06 |
| STING              | una (C)     | 1 RB low   | 24.86 | 23.85 |
| AK TES             | 4700 O      | 1 RB high  | 24.53 | 23.56 |
| (III)              | 1720.0      | 50% RB mid | 21.32 | 20.32 |
|                    |             | 100% RB    | 25.10 | 24.13 |
|                    |             | 1 RB low   | 25.05 | 24.17 |
| 20 MH-             | 474F AG     | 1 RB high  | 22.72 | 21.85 |
| 20 MHz             | 1745        | 50% RB mid | 24.05 | 23.14 |
| HI ALL             |             | 100% RB    | 22.93 | 21.90 |
|                    |             | 1 RB low   | 24.42 | 25.15 |
| NG.                | 4770 0 TING | 1 RB high  | 23.67 | 22.65 |
| NG                 | 1770.0      | 50% RB mid | 24.50 | 23.59 |
| TESTAL             |             | 100% RB    | 24 49 | 23 50 |

## **Radiated Measurement:**

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 66; recorded worst case for each Channel Bandwidth of LTE FDD Band 66.
- 2.  $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Aq}(dB)+G_a(dBi)$

#### LTE FDD Band 66\_Channel Bandwidth 1.4MHz\_QPSK

| Frequency (MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|-----------------|---------------------------|----------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
| 1710.7          | -16.85                    | 3.06                 | 9.68                                  | 34.80                | 24.57         | 30.00          | 5.43           | V            |
| 1745            | -16.87                    | 3.17                 | 9.68                                  | 34.80                | 24.44         | 30.00          | 5.56           | V            |
| 1779.3          | -17.62                    | 3.22                 | 9.75                                  | 34.80                | 23.71         | 30.00          | 6.29           | TING V       |
| 1710.7          | -16.49                    | 3.06                 | 9.68                                  | 34.80                | 24.93         | 30.00          | 5.07           | Н            |
| 1745            | -17.18                    | 3.17                 | 9.68                                  | 34.80                | 24.13         | 30.00          | 5.87           | Н            |
| 1779.3          | -17.32                    | 3.22                 | 9.75                                  | 34.80                | 24.01         | 30.00          | 5.99           | Н            |

### LTE FDD Band 66\_Channel Bandwidth 3MHz\_QPSK

| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|--------------------|---------------------------|----------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
| 1711.5             | -16.24                    | 3.06                 | 9.68                                  | 34.80                | 25.18         | 30.00          | 4.82           | V            |
| 1745               | -16.93                    | 3.17                 | 9.68                                  | 34.80                | 24.38         | 30.00          | 5.62           | V            |
| 1778.5             | -16.84                    | 3.22                 | 9.75                                  | 34.80                | 24.49         | 30.00          | 5.51           | V            |
| 1711.5             | -16.54                    | 3.06                 | 9.68                                  | 34.80                | 24.88         | 30.00          | 5.12           | HUPI H       |
| 1745               | -16.72                    | 3.17                 | 9.68                                  | 34.80                | 24.59         | 30.00          | 5.41           | Н            |
| 1778.5             | -16.11                    | 3.22                 | 9.75                                  | 34.80                | 25.22         | 30.00          | 4.78           | Н            |

#### LTE FDD Band 66\_Channel Bandwidth 5MHz\_QPSK

| Frequency (MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|-----------------|---------------------------|----------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
| 1712.5          | -17.57                    | 3.06                 | 9.68                                  | 34.80                | 23.85         | 30.00          | 6.15           | V MH         |
| 1745            | -16.33                    | 3.17                 | 9.68                                  | 34.80                | 24.98         | 30.00          | 5.02           | N TEST V     |
| 1777.5          | -16.42                    | 3.22                 | 9.75                                  | 34.80                | 24.91         | 30.00          | 5.09           | V            |
| 1712.5          | -17.30                    | 3.06                 | 9.68                                  | 34.80                | 24.12         | 30.00          | 5.88           | Н            |
| 1745            | -16.84                    | 3.17                 | 9.68                                  | 34.80                | 24.47         | 30.00          | 5.53           | Н            |
| 1777.5          | -17.89                    | 3.22                 | 9.75                                  | 34.80                | 23.44         | 30.00          | 6.56           | Н            |

### LTE FDD Band 66\_Channel Bandwidth 10MHz\_QPSK

| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub><br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|--------------------|---------------------------|----------------------|---------------------------------------|-------------------------|---------------|----------------|----------------|--------------|
| 1715.0             | -17.06                    | 3.06                 | 9.68                                  | 34.80                   | 24.36         | 30.00          | 5.64           | TING V       |
| 1745               | -15.73                    | 3.17                 | 9.68                                  | 34.80                   | 25.58         | 30.00          | 4.42           | V            |
| 1775.0             | -17.90                    | 3.22                 | 9.75                                  | 34.80                   | 23.43         | 30.00          | 6.57           | V            |
| 1715.0             | -17.01                    | 3.06                 | 9.68                                  | 34.80                   | 24.41         | 30.00          | 5.59           | Н            |
| 1745               | -17.28                    | 3.17                 | 9.68                                  | 34.80                   | 24.03         | 30.00          | 5.97           | Н            |
| 1775.0             | -16.93                    | 3.22                 | 9.75                                  | 34.80                   | 24.40         | 30.00          | 5.60           | TESTINH W    |

### LTE FDD Band 66\_Channel Bandwidth 15MHz\_QPSK

| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub><br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|--------------------|---------------------------|----------------------|---------------------------------------|-------------------------|---------------|----------------|----------------|--------------|
| 1717.5             | -17.22                    | 3.06                 | 9.68                                  | 34.80                   | 24.20         | 30.00          | 5.80           | V V          |
| 1745               | -16.00                    | 3.17                 | 9.68                                  | 34.80                   | 25.31         | 30.00          | 4.69           | Norman A     |
| 1772.5             | -16.25                    | 3.22                 | 9.75                                  | 34.80                   | 25.08         | 30.00          | 4.92           | V            |
| 1717.5             | -17.96                    | 3.06                 | 9.68                                  | 34.80                   | 23.46         | 30.00          | 6.54           | Н            |
| 1745               | -17.10                    | 3.17                 | 9.68                                  | 34.80                   | 24.21         | 30.00          | 5.79           | ING H        |
| 1772.5             | -18.02                    | 3.22                 | 9.75                                  | 34.80                   | 23.31         | 30.00          | 6.69           | ы Н          |

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



LTE FDD Band 66\_Channel Bandwidth 20MHz\_QPSK

| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub><br>(dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|--------------------|---------------------------|-------------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
| 1720.0             | -16.99                    | 3.06                    | 9.68                                  | 34.80                | 24.43         | 30.00          | 5.57           | V            |
| 1745               | -16.95                    | 3.17                    | 9.68                                  | 34.80                | 24.36         | 30.00          | 5.64           | V            |
| 1770.0             | -16.36                    | 3.22                    | 9.75                                  | 34.80                | 24.97         | 30.00          | 5.03           | V            |
| 1720.0             | -17.79                    | 3.06                    | 9.68                                  | 34.80                | 23.63         | 30.00          | 6.37           | 45H          |
| 1745               | -16.63                    | 3.17                    | 9.68                                  | 34.80                | 24.68         | 30.00          | 5.32           | AUAK H       |
| 1770.0             | -17.79                    | 3.22                    | 9.75                                  | 34.80                | 23.54         | 30.00          | 6.46           | Н            |

LTE FDD Band 66\_Channel Bandwidth 1.4MHz\_16QAM

|   | Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|---|--------------------|---------------------------|----------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
| Ī | 1710.7             | -17.25                    | 3.06                 | 9.68                                  | 34.80                | 24.17         | 30.00          | 5.83           | V            |
| Ī | 1745               | -16.32                    | 3.17                 | 9.68                                  | 34.80                | 24.99         | 30.00          | 5.01           | V M          |
| Ī | 1779.3             | -17.72                    | 3.22                 | 9.75                                  | 34.80                | 23.61         | 30.00          | 6.39           | TESTIN W     |
| Į | 1710.7             | -15.69                    | 3.06                 | 9.68                                  | 34.80                | 25.73         | 30.00          | 4.27           | H            |
|   | 1745               | -17.31                    | 3.17                 | 9.68                                  | 34.80                | 24.00         | 30.00          | 6.00           | Н            |
|   | 1779.3             | -17.98                    | 3.22                 | 9.75                                  | 34.80                | 23.35         | 30.00          | 6.65           | Н            |

LTE FDD Band 66\_Channel Bandwidth 3MHz\_16QAM

|                    | arra oo_oriar             | mor Banam            | dan on in                             | 0 47 1177               | 411/11/2      | - 1            | 11/10          | 4117         |
|--------------------|---------------------------|----------------------|---------------------------------------|-------------------------|---------------|----------------|----------------|--------------|
| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub><br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
| 1711.5             | -17.21                    | 3.06                 | 9.68                                  | 34.80                   | 24.21         | 30.00          | 5.79           | V            |
| 1745               | -16.45                    | 3.17                 | 9.68                                  | 34.80                   | 24.86         | 30.00          | 5.14           | W V          |
| 1778.5             | -17.98                    | 3.22                 | 9.75                                  | 34.80                   | 23.35         | 30.00          | 6.65           | V            |
| 1711.5             | -18.10                    | 3.06                 | 9.68                                  | 34.80                   | 23.32         | 30.00          | 6.68           | Н            |
| 1745               | -16.53                    | 3.17                 | 9.68                                  | 34.80                   | 24.78         | 30.00          | 5.22           | Н            |
| 1778.5             | -18.02                    | 3.22                 | 9.75                                  | 34.80                   | 23.31         | 30.00          | 6.69           | Н            |

LTE FDD Band 66\_Channel Bandwidth 5MHz\_16QAM

| Frequency (MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub> (dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|-----------------|---------------------------|----------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
| 1712.5          | -15.85                    | 3.06                 | 9.68                                  | 34.80                | 25.57         | 30.00          | 4.43           | V            |
| 1745            | -16.96                    | 3.17                 | 9.68                                  | 34.80                | 24.35         | 30.00          | 5.65           | V            |
| 1777.5          | -17.96                    | 3.22                 | 9.75                                  | 34.80                | 23.37         | 30.00          | 6.63           | WAK V        |
| 1712.5          | -17.13                    | 3.06                 | 9.68                                  | 34.80                | 24.29         | 30.00          | 5.71           | Н            |
| 1745            | -15.89                    | 3.17                 | 9.68                                  | 34.80                | 25.42         | 30.00          | 4.58           | Н            |
| 1777.5          | -16.88                    | 3.22                 | 9.75                                  | 34.80                | 24.45         | 30.00          | 5.55           | Н            |

| LIEFUU D           | and ob_Cna                | nnei banuwi             | <u>uiii iuivinz_</u>                  | TOWAIN                  |               |                | MO HOM         |              |
|--------------------|---------------------------|-------------------------|---------------------------------------|-------------------------|---------------|----------------|----------------|--------------|
| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub><br>(dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub><br>(dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
| 1715.0             | -16.64                    | 3.06                    | 9.68                                  | 34.80                   | 24.78         | 30.00          | 5.22           | TESTIV W     |
| 1745               | -16.70                    | 3.17                    | 9.68                                  | 34.80                   | 24.61         | 30.00          | 5.39           | V            |
| 1775.0             | -16.56                    | 3.22                    | 9.75                                  | 34.80                   | 24.77         | 30.00          | 5.23           | V            |
| 1715.0             | -16.29                    | 3.06                    | 9.68                                  | 34.80                   | 25.13         | 30.00          | 4.87           | Н            |
| 1745               | -17.33                    | 3.17                    | 9.68                                  | 34.80                   | 23.98         | 30.00          | 6.02           | Н            |
| 1775.0             | -18.65                    | 3.22                    | 9.75                                  | 34.80                   | 22.68         | 30.00          | 7.32           | HG           |

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2203211049-11E

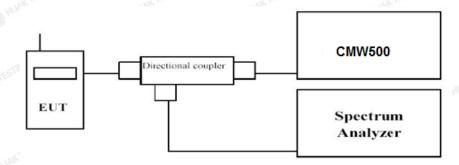


LTE FDD Band 66\_Channel Bandwidth 15MHz\_16QAM

|                    |                           |                         |                                       |                         | / // // // //////// |                | 40/100         | ~,/ // (USD) |
|--------------------|---------------------------|-------------------------|---------------------------------------|-------------------------|---------------------|----------------|----------------|--------------|
| Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub><br>(dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub><br>(dB) | EIRP<br>(dBm)       | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
| 1717.5             | -17.41                    | 3.06                    | 9.68                                  | 34.80                   | 24.01               | 30.00          | 5.99           | V            |
| 1745               | -15.99                    | 3.17                    | 9.68                                  | 34.80                   | 25.32               | 30.00          | 4.68           | V            |
| 1772.5             | -16.76                    | 3.22                    | 9.75                                  | 34.80                   | 24.57               | 30.00          | 5.43           | ZSV°         |
| 1717.5             | -16.53                    | 3.06                    | 9.68                                  | 34.80                   | 24.89               | 30.00          | 5.11           | WAK TH       |
| 1745               | -16.20                    | 3.17                    | 9.68                                  | 34.80                   | 25.11               | 30.00          | 4.89           | Н            |
| 1772.5             | -17.63                    | 3.22                    | 9.75                                  | 34.80                   | 23.70               | 30.00          | 6.30           | Н            |

LTE FDD Band 66\_Channel Bandwidth 20MHz\_16QAM

|   | Frequency<br>(MHz) | P <sub>Mea</sub><br>(dBm) | P <sub>cl</sub><br>(dB) | G <sub>a</sub><br>Antenna<br>Gain(dB) | P <sub>Ag</sub> (dB) | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Polarization |
|---|--------------------|---------------------------|-------------------------|---------------------------------------|----------------------|---------------|----------------|----------------|--------------|
|   | 1720.0             | -17.31                    | 3.06                    | 9.68                                  | 34.80                | 24.11         | 30.00          | 5.89           | V            |
|   | 1745               | -17.19                    | 3.17                    | 9.68                                  | 34.80                | 24.12         | 30.00          | 5.88           | TESTIV W     |
| _ | 1770.0             | -17.83                    | 3.22                    | 9.75                                  | 34.80                | 23.50         | 30.00          | 6.50           | V            |
|   | 1720.0             | -17.61                    | 3.06                    | 9.68                                  | 34.80                | 23.81         | 30.00          | 6.19           | Н            |
|   | 1745               | -17.48                    | 3.17                    | 9.68                                  | 34.80                | 23.83         | 30.00          | 6.17           | Н            |
|   | 1770.0             | -17.90                    | 3.22                    | 9.75                                  | 34.80                | 23.43         | 30.00          | 6.57           | Н            |


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

### 3.2 Peak-to-Average Ratio (PAR)

#### LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

#### **TEST CONFIGURATION**



### **TEST PROCEDURE**

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function:
- Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
  - 1). for continuous transmissions, set to 1 ms;
  - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

### **TEST RESULTS**

### Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 66; recorded worst case for each Channel Bandwidth of LTE FDD Band 66.

|           | LTE FDD Band 66                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency | DR Size/Offeet                                                                                                                 | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (MHz)     | RB Size/Oliset                                                                                                                 | QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1710.7    | -G                                                                                                                             | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1745      | 1RB#0                                                                                                                          | 4.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1779.3    | TESTING                                                                                                                        | 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1711.5    | HUAK                                                                                                                           | 4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1745      | 1RB#0                                                                                                                          | 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1778.5    |                                                                                                                                | 5.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1712.5    | G HUA                                                                                                                          | 4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1745      | 1RB#0                                                                                                                          | 4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1777.5    | UAK TE                                                                                                                         | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1715.0    | 9                                                                                                                              | 4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1745      | 1RB#0                                                                                                                          | 8.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1775.0    |                                                                                                                                | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1717.5    | TING                                                                                                                           | 4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1745      | 1RB#0                                                                                                                          | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1772.5    | AD. HO.                                                                                                                        | 4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1720.0    |                                                                                                                                | 4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1745      | <sup>№</sup> 1RB#0                                                                                                             | 5.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1770.0    | TING                                                                                                                           | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | (MHz) 1710.7 1745 1779.3 1711.5 1745 1778.5 1712.5 1745 1777.5 1715.0 1745 1775.0 1717.5 1717.5 1717.5 1745 1772.5 1720.0 1745 | Frequency (MHz) 1710.7 1745 1779.3 1771.5 1778.5 1778.5 17712.5 1715.0 1775.0 1777.5 1717.5 1745 1745 178#0 1777.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 1717.5 | Frequency (MHz)         RB Size/Offset         PAP QPSK           1710.7         4.23           1745         1RB#0         4.58           1779.3         6.23           1711.5         4.38           1745         1RB#0         4.66           1778.5         5.47           1712.5         4.29           1745         1RB#0         4.69           1777.5         5.77           1715.0         4.55           1745         1RB#0         8.45           1775.0         4.85           1745         1RB#0         5.01           172.5         4.93           1720.0         4.38           1745         1RB#0         5.33 |

NG

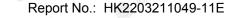
LTE FDD Band 66-1.4MHz Channel Bandwidth PAPR **QPSK** 16QAM Center Freq: 1.710700000 GHz Radio Std: None Trig: Free Run Counts: 1.00 MH.00 Mpt #Atten: 40 dB Average Power Average Power Center Free 23.76 dBm 22.78 dBm 10 % 50.96 % at 0dB 47.99 % at 0dB 10.0 % 2.79 dB 0.1 % 1.0 % 3.94 dB 1.0 % 4.75 dB CF Ste 0.1% 4.23 dB 5.26 dB 0.1% 0.01 % 4.30 dB 0.01 % 5.34 dB 0.001 % 4.35 dB 0.001 % 5.38 dB Freq Offse 0.0001 % 4.36 dB 0.0001 % 5.40 dB 0.001 % 0.001 % 4.37 dB 28.13 dBm 5.41 dB 28.19 dBm 20 dB 1RB#0 1RB#0 Low Channel Center Freq 1.745000000 GHz Average Power 100 9 23.77 dBm Center Free 1.745000000 GH: 22.91 dBm Center Fred 1.745000000 GHz 10% 50.12 % at 0dB 47.13 % at 0dB 1 % 10.0 % 2.36 dB 10.0 % 2.80 dB 0.1 % 1.0 % 4.24 dB 1.0 % 4.95 dB CF Ste 4.58 dB 5.60 dB 0.01 % 0.01 % 5.70 dB 4.66 dB 0.01 % 0.001 % 4.72 dB 0.001 % 5.77 dB Freq Offse 0.0001 % 4.74 dB 0.0001 % 5.79 dB 0.001 9 4.75 dB 5.79 dB 28.52 dBm 28.70 dBm 1RB#0 1RB#0 Middle Channel ter Freq 1.779300000 GHz nter Freq 1.779300000 GHz Average Power Average Power 19.88 dBm 19.90 dBm 49.85 % at 0dB 47.27 % at 0dB 10.0 % 3.49 dB 10.0 % 3.35 dB 1.0 % 5.63 dB 1.0 % 5.60 dB CF Ste 0.1% 6.23 dB 0.1% 6.31 dB 0.01 % 0.01 % 6.54 dB 0.01 % 6.43 dB 0.001 % 6.69 dB 0.001 % 6.50 dB Freq Offset Freq Offse 0.0001 % 6.71 dB 0.0001 % 6.52 dB 0.001 % 0.001 9 7.17 dB 27.05 dBm 6.65 dB 26.55 dBm 0.0001 % 0.0001 9 0 dB Info BW 25.000 MHz BW 25.000 MHz


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High Channel

1RB#0

1RB#0










The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.





0.0001 %

BW 25.000 MHz

1RB#0

Report No.: HK2203211049-11E LTE FDD Band 66-20MHz Channel Bandwidth PAPR **QPSK** 16QAM Center Freq: 1.720 Trig: Free Run #Atten: 40 dB Average Power Average Power Center Free 14.46 dBm 13.09 dBm 10 % 51.73 % at 0dB 47.86 % at 0dB 1 % 2.47 dB 10.0 % 3.28 dB 0.1 % 5.30 dB 1.0 % 4.18 dB 1.0 % CF Ste 0.1% 4.38 dB 5.81 dB 0.1% 0.01 % 4.54 dB 0.01 % 5.95 dB 0.001 % 4.66 dB 0.001 % 6.05 dB Freq Offse 0.0001 % 4.71 dB 0.001 % 0.0001 % 6.08 dB 0.001 % 4.79 dB 6.45 dB 19.25 dBm 19.54 dBm 0.0001 9 20 dB 1RB#0 1RB#0 Low Channel enter Freq 1.745000000 GHz Average Power 100 9 11.57 dBm Center Free 1.745000000 GH: 10.79 dBm Center Fred 1.745000000 GHz 10 % 10 % 52.56 % at 0dB 47.31 % at 0dB 1 % 10.0 % 3.02 dB 10.0 % 3.34 dB 0.1 % 1.0 % 5.03 dB 1.0 % 5.44 dB CF Ste CF Step 5.33 dB 6.17 dB 0.01 % 0.01 % 5.56 dB 0.01 % 6.40 dB 0.001 % 5.72 dB 0.001 % 6.54 dB Freq Offse 0.0001 % 5.79 dB 0.001 9 0.0001 % 6.60 dB 7.38 dB 7.78 dB 18.95 dBm 18.57 dBm 1RB#0 1RB#0 Middle Channel nter Freg 1.770000000 GHz ter Freg 1,770000000 GHz Average Power Average Power 11.25 dBm 10.66 dBm 54.59 % at 0dB 49.08 % at 0dB 10.0 % 2.80 dB 10.0 % 3.05 dB 1.0 % 4.46 dB 1.0 % 4.92 dB CF Ste 0.1% 4.70 dB 0.1% 5.39 dB 0.01 % 4.80 dB 0.01 % 5.51 dB 0.001 % 4.88 dB 0.001 % 5.60 dB Freq Offse Freq Offse 0.0001 % 4.91 dB 0.0001 % 5.63 dB 0.001 % 0.001 9 5.24 dB 16.49 dBm 5.80 dB

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

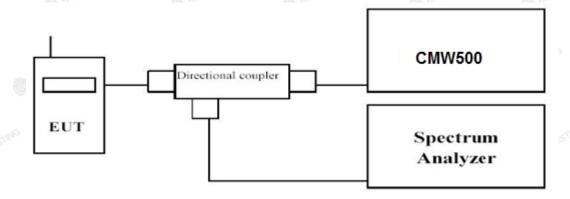
High Channel

16.46 dBm

0.0001 9

0 dB Info BW 25.000 MHz

1RB#0




### 3.3 Occupied Bandwidth and Emission Bandwidth

### LIMIT

N/A

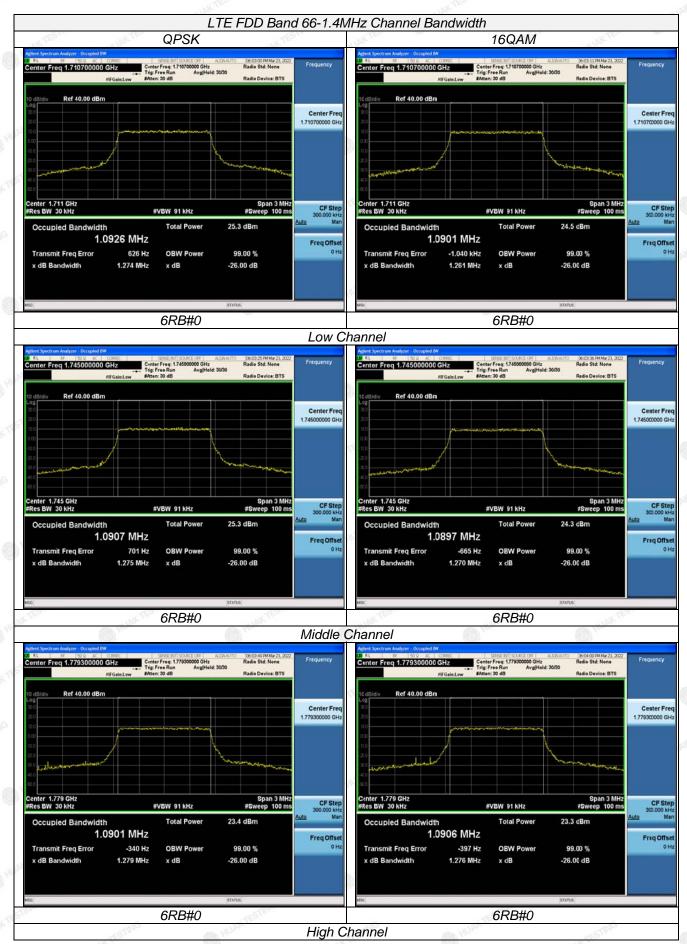
#### **TEST CONFIGURATION**



### **TEST PROCEDURE**

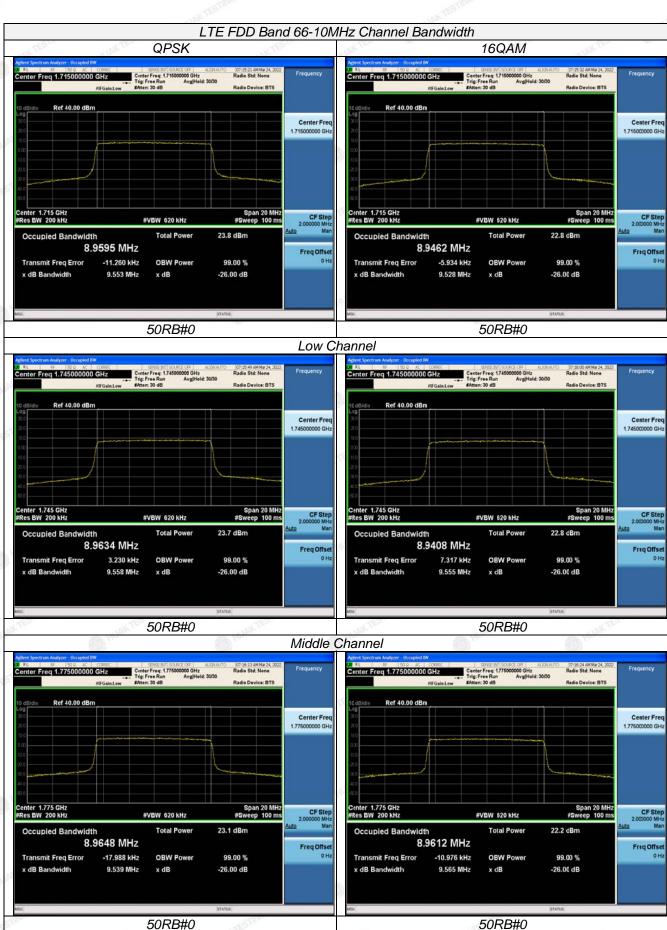
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.


### **TEST RESULTS**

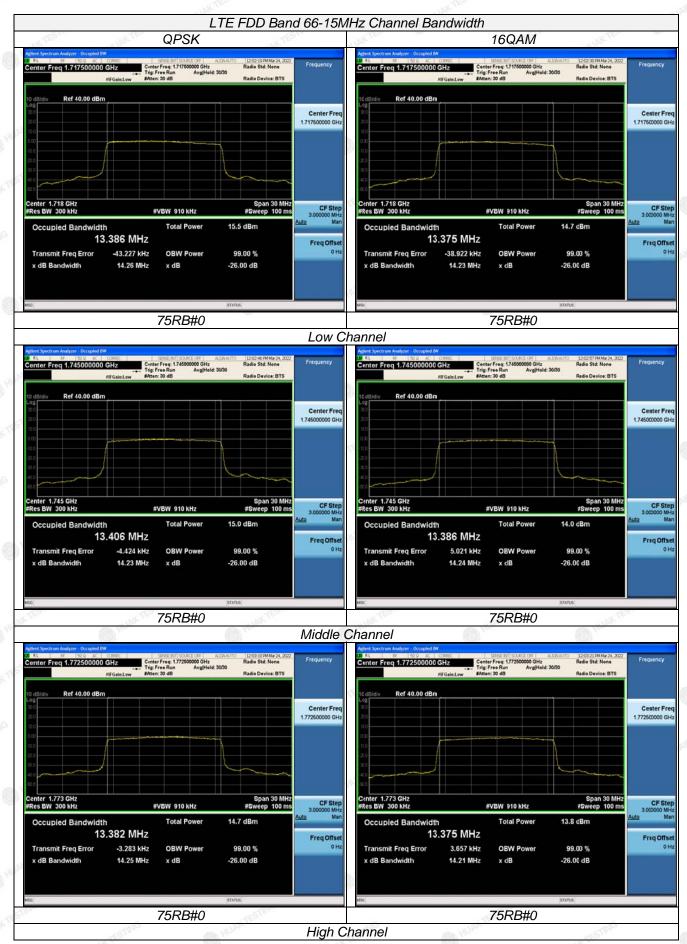
Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 66; recorded worst case for each Channel Bandwidth of LTE FDD Band 66.


|               |                | LTE FDD   | Band 66 |                       |                              |        |  |
|---------------|----------------|-----------|---------|-----------------------|------------------------------|--------|--|
| TX<br>Channel | RB Size/Offset | Frequency |         | Emission<br>Ith (MHz) | 99% Occupied bandwidth (MHz) |        |  |
| Bandwidth     |                | (MHz)     | QPSK    | 16QAM                 | QPSK                         | 16QAM  |  |
|               |                | 1710.7    | 1.274   | 1.261                 | 1.0926                       | 1.0901 |  |
| 1.4 MHz       | 6RB#0          | 1745      | 1.275   | 1.270                 | 1.0907                       | 1.0897 |  |
|               | STING HUAK     | 1779.3    | 1.279   | 1.276                 | 1.0901                       | 1.0906 |  |
| - W           | are a          | 1711.5    | 2.923   | 2.920                 | 2.7005                       | 2.6872 |  |
| 3 MHz         | 15RB#0         | 1745      | 2.924   | 2.906                 | 2.6983                       | 2.6917 |  |
|               | TESTING        | 1778.5    | 2.922   | 2.923                 | 2.7006                       | 2.6912 |  |
|               | HUAN           | 1712.5    | 4.909   | 4.886                 | 4.4981                       | 4.4991 |  |
| 5 MHz         | 25RB#0         | 1745      | 4.912   | 4.874                 | 4.5001                       | 4.5035 |  |
| MAKTES        | HUAK           | 1777.5    | 4.923   | 4.918                 | 4.5018                       | 4.5048 |  |
| ),            | <i>y</i> (3)   | 1715.0    | 9.553   | 9.528                 | 8.9595                       | 8.9462 |  |
| 10 MHz        | 50RB#0         | 1745      | 9.558   | 9.555                 | 8.9634                       | 8.9408 |  |
|               |                | 1775.0    | 9.539   | 9.565                 | 8.9648                       | 8.9612 |  |
| TNG.          | -m/G           | 1717.5    | 14.26   | 14.23                 | 13.386                       | 13.375 |  |
| 15 MHz        | 75RB#0         | 1745      | 14.23   | 14.24                 | 13.406                       | 13.386 |  |
| ) }**         | MINT HOLE      | 1772.5    | 14.25   | 14.21                 | 13.382                       | 13.375 |  |
|               |                | 1720.0    | 18.93   | 18.91                 | 17.826                       | 17.826 |  |
| 20 MHz        | 100RB#0        | 1745      | 18.90   | 18.89                 | 17.806                       | 17.800 |  |
|               | TING           | 1770.0    | 18.97   | 18.95                 | 17.850                       | 17.851 |  |

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.










The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High Channel

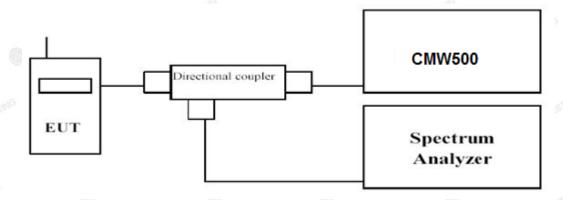


NG



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High Channel




### 3.4 Band Edge Compliance

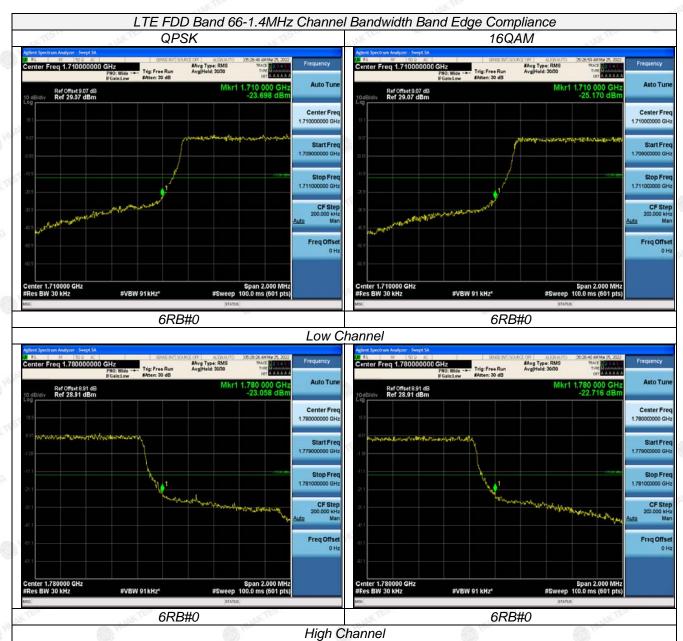
#### LIMIT

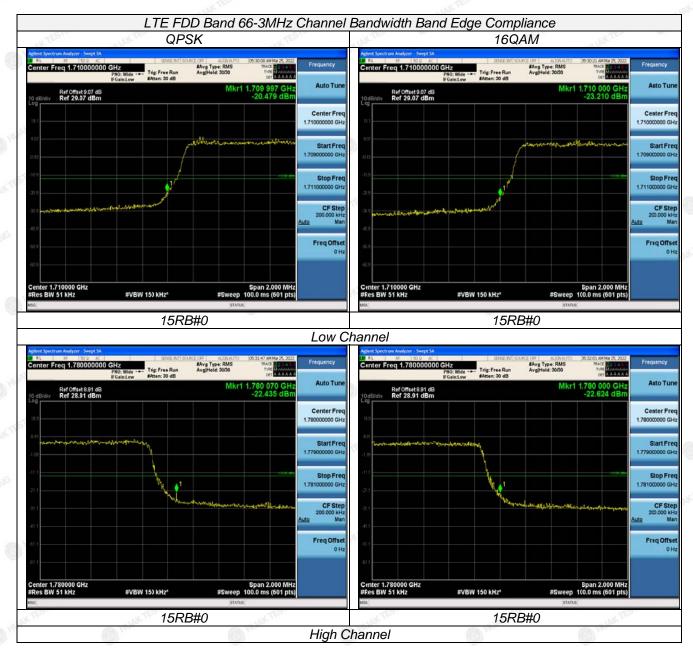
According to §27.53 (h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

#### **TEST CONFIGURATION**

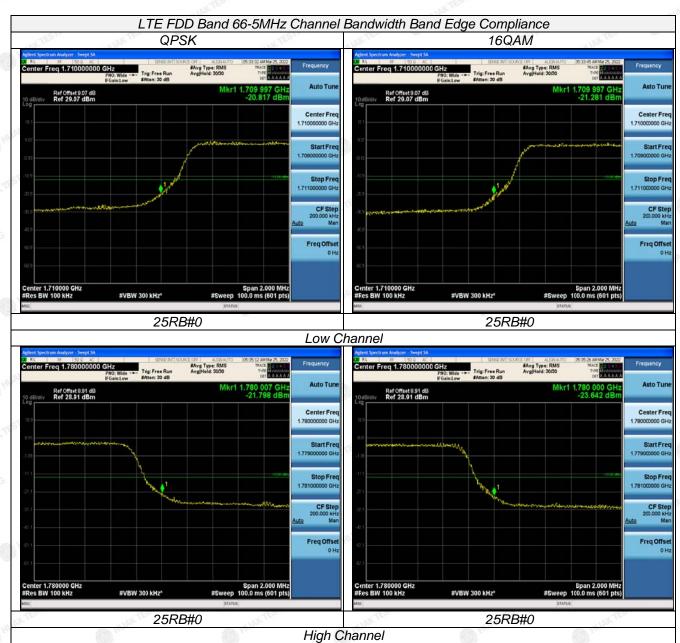


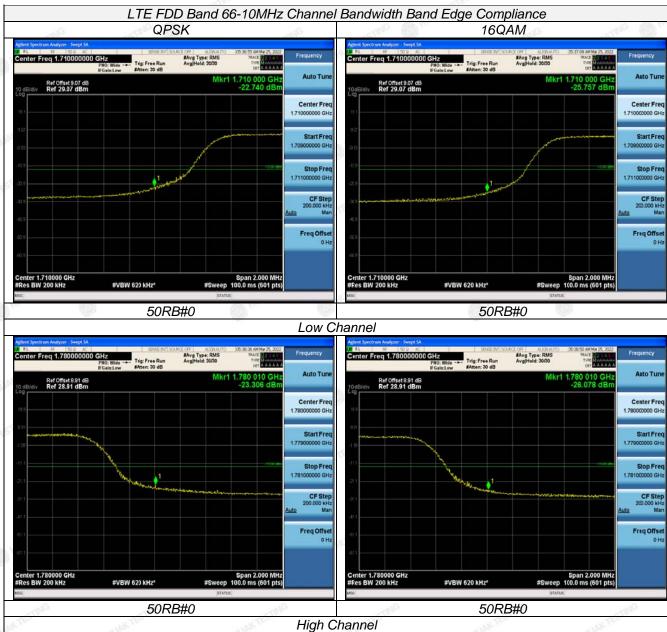
#### **TEST PROCEDURE**

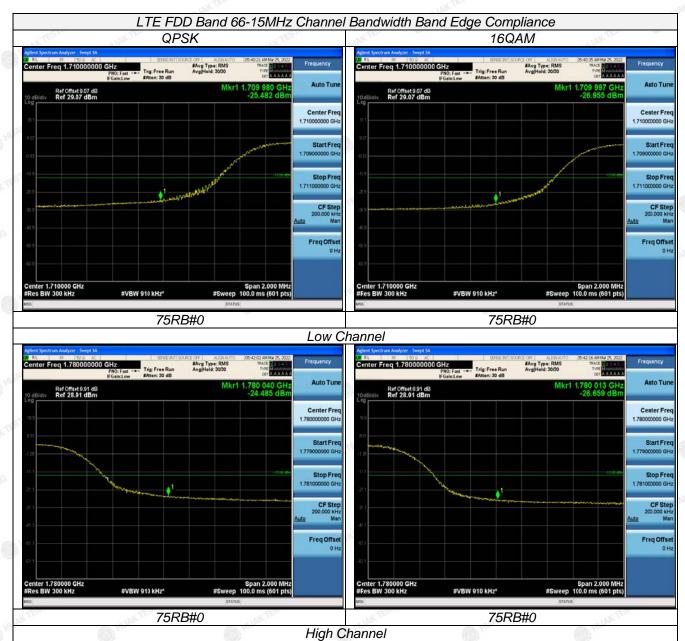

- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum.

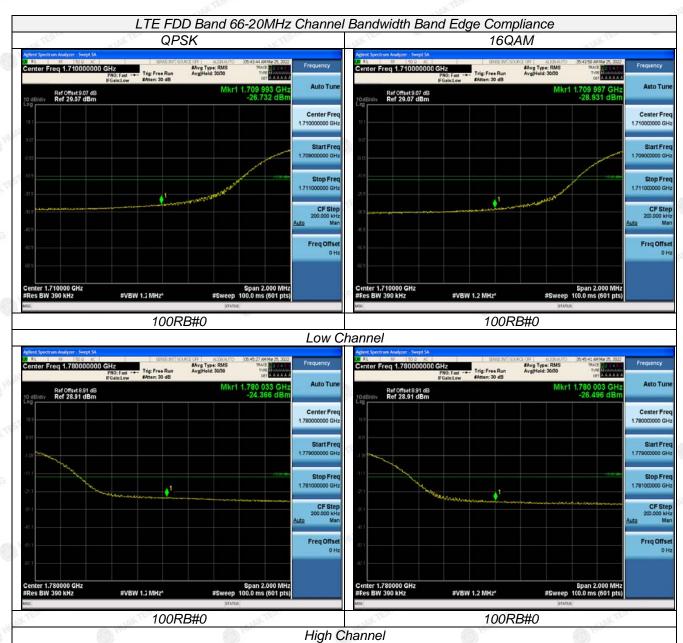

### **TEST RESULTS**

Remark:


1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 66; recorded worst case for each Channel Bandwidth of LTE FDD Band 66.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

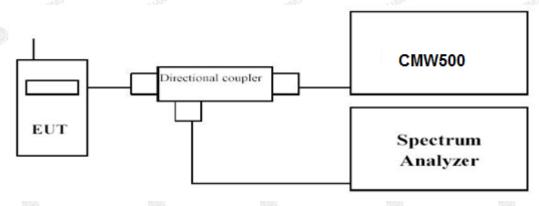




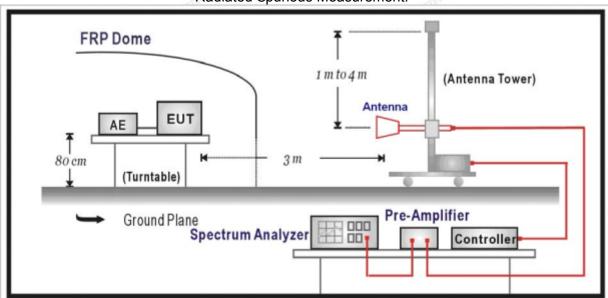







### 3.5 Spurious Emission

#### LIMIT


According to §27.53 (h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

#### **TEST CONFIGURATION**

### Conducted Spurious Measurement:



### Radiated Spurious Measurement:



#### **TEST PROCEDURE**

The EUT was setup according to EIA/TIA 603D.

#### **Conducted Spurious Measurement:**

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10<sup>th</sup> harmonic.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



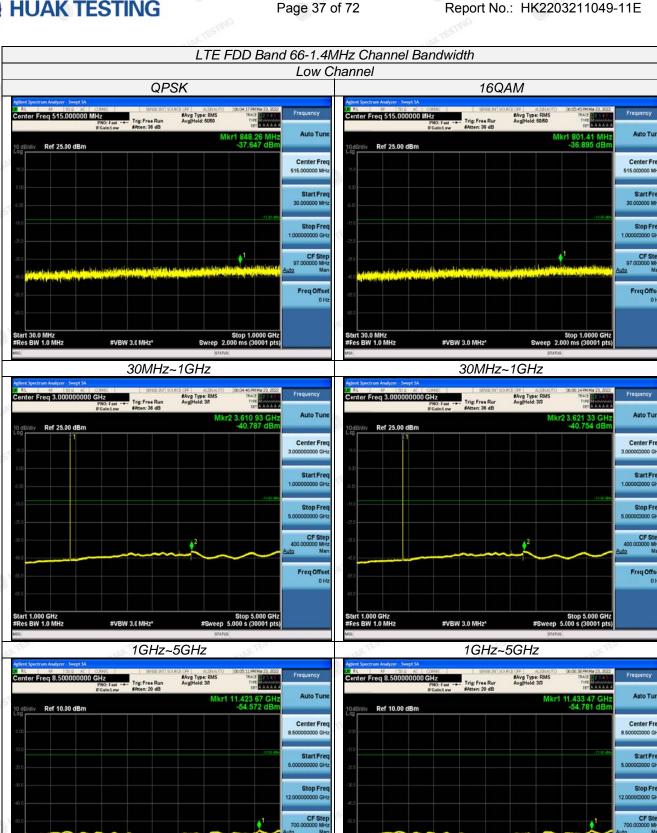
f. Please refer to following tables for test antenna conducted emissions.

| Working<br>Frequency | Sub range<br>(GHz) | RBW   | VBW   | Sweep time<br>(s) |
|----------------------|--------------------|-------|-------|-------------------|
| LTE FDD Band 66      | 0.000009~0.000015  | 1KHz  | 3KHz  | Auto              |
|                      | 0.000015~0.03      | 10KHz | 30KHz | Auto              |
|                      | 0.03~26.5          | 1 MHz | 3 MHz | Auto              |

Report No.: HK2203211049-11E

### **Radiated Spurious Measurement:**

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter.
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through  $360^{\circ}$  in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.


#### **TEST RESULTS**

#### Remark:

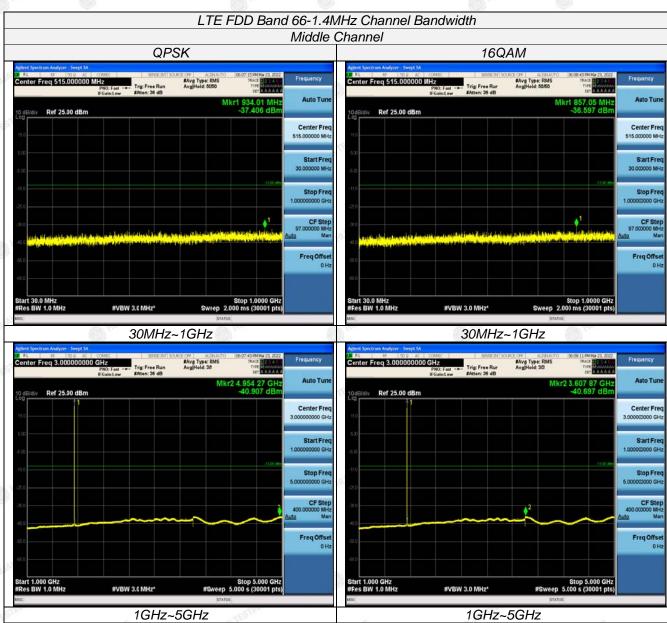
1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 66; recorded worst case for each Channel Bandwidth of LTE FDD Band 66.

#### **Conducted Measurement:**

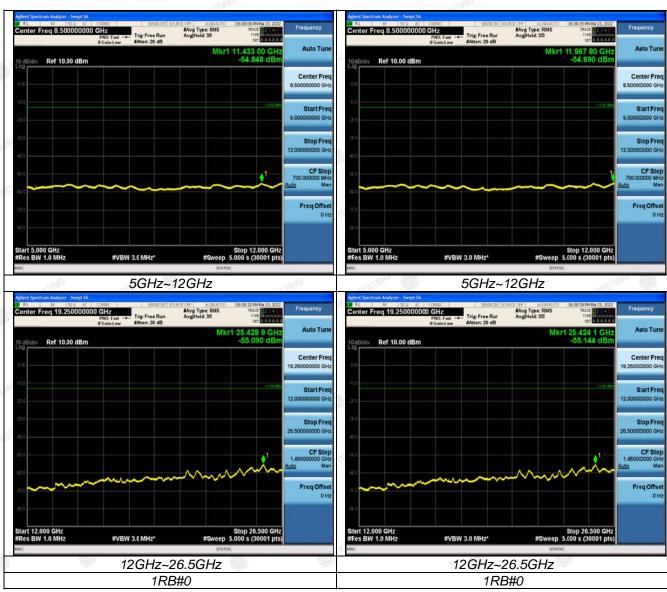


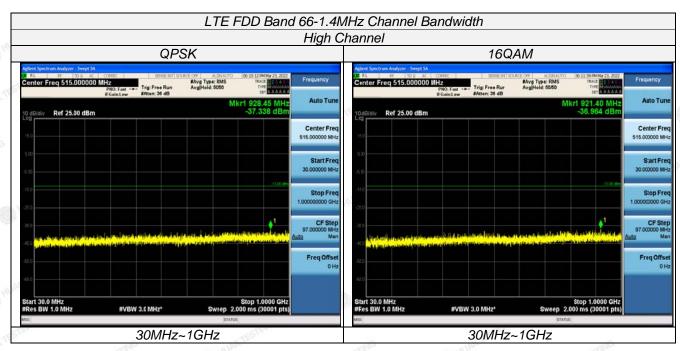


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


#VBW 3.0 MHz\*

5GHz~12GHz


#VBW 3.0 MHz\*


5GHz~12GHz













The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.