

TEST REPORT

Report No.: 8328EU012102W1

Applicant: Shenzhen Kuxiu Communication Co., Ltd.

Address: Room 301, Bldg. 8, Minle Ind. Zone, Minle Community, Minzhi Str., Longhua Dist., Shenzhen Guangdong, China

Product Name: Magnetic Solid-State Power Bank

Model No.: S2 (refer to clause 2.4)

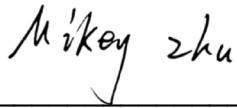
Trademark: KU XIU

FCC ID: 2A698-S2

Test Standard(s): 47 CFR Part 15 Subpart C

Date of Receipt: Mar. 21, 2025

Test Date: Mar. 21, 2025 – Mar. 31, 2025


Date of Issue: May 21, 2025

ISSUED BY:

SHENZHEN EU TESTING LABORATORY LIMITED

Prepared by:

Mikey Zhu/ Engineer

Reviewed and Approved by:

Sally Zhang/ Manager

Revision Record

Report Version	Issued Date	Description	Status
V0	May 21, 2025	Original	Valid

Table of Contents

1	COVER PAGE.....	1
2	GENERAL INFORMATION	4
2.1	APPLICANT INFORMATION	4
2.2	MANUFACTURER INFORMATION	4
2.3	FACTORY INFORMATION.....	4
2.4	GENERAL DESCRIPTION OF E.U.T.....	4
2.5	TECHNICAL INFORMATION OF E.U.T.....	5
3	TEST SUMMARY.....	6
3.1	TEST STANDARD	6
3.2	TEST VERDICT.....	6
3.3	TEST LABORATORY	6
4	TEST CONFIGURATION.....	7
4.1	TEST ENVIRONMENT	7
4.2	TEST EQUIPMENT	7
4.3	DESCRIPTION OF SUPPORT UNIT	8
4.4	TEST MODE	8
4.5	DESCRIPTION OF CALCULATION	8
4.6	MEASUREMENT UNCERTAINTY	9
4.7	DEVIATION FROM STANDARDS	9
4.8	ABNORMALITIES FROM STANDARD CONDITION	9
5	TEST ITEMS	10
5.1	ANTENNA REQUIREMENT.....	10
5.1.1	Test Requirement.....	10
5.1.2	Antenna Anti-Replacement Construction	10
5.1.3	Antenna Gain	10
5.2	CONDUCTED EMISSION AT AC POWER LINE	11
5.2.1	Test Requirement.....	11
5.2.2	Test Setup Diagram	11
5.2.3	Test Procedure.....	11
5.2.4	Test Data	11
5.3	EMISSIONS BANDWIDTH.....	14
5.3.1	Test Requirement.....	14
5.3.2	Test Setup Diagram	14
5.3.3	Test Procedure.....	15
5.3.4	Test Data	15
5.4	FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND RADIATED EMISSION.....	17
5.4.1	Test Requirement.....	17
5.4.2	Test Setup Diagram	18
5.4.3	Test Procedure.....	19
5.4.4	Test Data	19
ANNEX A	TEST SETUP PHOTOS	30
ANNEX B	EXTERNAL PHOTOS.....	30
ANNEX C	INTERNAL PHOTOS	30

2 General Information

2.1 Applicant Information

Applicant	Shenzhen Kuxiu Communication Co., Ltd.
Address	Room 301, Bldg. 8, Minle Ind. Zone, Minle Community, Minzhi Str., Longhua Dist., Shenzhen Guangdong, China

2.2 Manufacturer Information

Manufacturer	Shenzhen Kuxiu Communication Co., Ltd.
Address	Room 301, Bldg. 8, Minle Ind. Zone, Minle Community, Minzhi Str., Longhua Dist., Shenzhen Guangdong, China

2.3 Factory Information

Factory	Shenzhen Mofhie Wireless Charging Technology Co.,Ltd
Address	Room 1202, Building 4, Bangyan Green Valley Factory, No. 98, Zhihe Road, Dakang Community, Yuanshan Street, Longgang District, Shenzhen, China

2.4 General Description of E.U.T.

Product Name	Magnetic Solid-State Power Bank
Model No. Under Test	S2
List Model No.	S1, S3, S4, S5, S6
Description of Model differentiation	All models are same with electrical parameters and internal circuit structure, but only differ in appearance colors and model name. (this information provided by the customer)
Rating(s)	Type-C Input: 5V---3A/9V---2A Type-C Output: 5V---3A/9V---2.2A Total output: 5V---2.1A Wireless Charging Output: 5W/7.5W/10W/15W Capacity: 3.8VDC, 5000mAh, 19Wh Rated capacity: 3000mAh(5V---2.1A)
Product Type	<input type="checkbox"/> Mobile <input checked="" type="checkbox"/> Portable <input type="checkbox"/> Fix Location
Test Sample No.	-1/2(Normal Sample), -2/2(Engineering Sample)
Hardware Version	N/A
Software Version	N/A
Remark	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.5 Technical Information of E.U.T.

Network and Wireless Connectivity	Wireless Power Transfer
-----------------------------------	-------------------------

The requirement for the following technical information of the EUT was tested in this report:

Technology	WPT
Operating Frequency	110.1-205KHz 360KHz
Modulation Type	110.1-205KHz: FSK 360KHz: ASK
Antenna Type	Inductive Loop Coil Antenna
Antenna Gain(Peak)	0 dBi
Remark	The above information are declared by the applicant, EU-LAB is not responsible for the information accuracy provided by the applicant.

3 Test Summary

3.1 Test Standard

The tests were performed according to following standards:

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Intentional radiators of radio frequency equipment
2	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless Devices

Remark:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained.

3.2 Test Verdict

No.	Description	FCC Part No.	Verdict	Remark
1	Antenna Requirement	15.203	Pass	--
2	Conducted Emission at AC Power Line	15.207	Pass	--
3	Emissions Bandwidth	15.215	Pass	--
4	Radiated Emissions	15.209 /15.215(b)	Pass	--

Note:

(1) "N/A" denotes test is not applicable in this Test Report.

3.3 Test Laboratory

Test Laboratory	Shenzhen EU Testing Laboratory Limited
Address	101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China
Designation Number	CN1368
Test Firm Registration Number	952583

4 Test Configuration

4.1 Test Environment

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 60%		
Atmospheric Pressure	86 kPa to 106 kPa		
Temperature	NT (Normal Temperature)		+15°C to +35°C
Working Voltage of the EUT	NV (Normal Voltage)		120 VAC, 60Hz

4.2 Test Equipment

Conducted Emission at AC power line

Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	EE-004	2025/01/08	2026/01/07
EMI Test Receiver	Rohde & Schwarz	ESCI	EE-005	2025/01/08	2026/01/07
Test Software	Farad	EZ-EMC	EE-014	N.C.R	N.C.R

Radiated Emission and RF Test

Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
EMI Test Receiver	ROHDE & SCHWARZ	ESPI	EE-006	2025/01/08	2026/01/07
Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	EE-007	2023/01/14	2026/01/13
Double Ridged Horn Antenna	A-INFOMW	LB-10180-NF	EE-008	2023/01/12	2026/01/11
Pre-amplifier	Agilent	8447D	EE-009	2025/01/08	2026/01/07
Pre-amplifier	Agilent	8449B	EE-010	2025/01/08	2026/01/07
MXA Signal Analyzer	Agilent	N9020A	EE-011	2025/01/08	2026/01/07
MXG RF Vector Signal Generator	Agilent	N5182A	EE-012	2025/01/08	2026/01/07
Test Software	Farad	EZ-EMC	EE-015	N.C.R	N.C.R
MIMO Power Measurement Module	TSTPASS	TSPS 2023R	EE-016	2025/01/08	2026/01/07
RF Test Software	TSTPASS	TS32893 V2.0	EE-017	N.C.R	N.C.R
Wideband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	EE-402	2025/02/14	2026/02/13
Loop Antenna	TESEQ	HLA6121	EE-403	2025/02/14	2026/02/13
MXG RF Analog Signal Generator	Agilent	N5181A	EE-406	2025/02/14	2026/02/13
Constant Temperature Humidity Chamber	Guangxin	GXP-401	ES-002	2024/07/30	2025/07/29

4.3 Description of Support Unit

No.	Title	Manufacturer	Model No.	Serial No.
1	Adapter	MI	A232-050200U-CN2	EMC-PJ-004
2	Wireless Charging Load	YBZ	ID-ZWX	EMC-PJ-050

4.4 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned bellow was evaluated respectively.

No.	Description	Remark
TM1	Wireless Output (5W)	
TM2	Wireless Output (7.5W)	
TM3	Wireless Output (10W)	
TM4	Wireless Output (15W)	
TM5	Wireless Output (5W) + (7.5W)	
TM6	Wireless Output (5W) + (10W)	
TM7	Wireless Output (5W) + (15W)	
TM8	Wireless Output (5W) + (7.5W) + (10W) + (15W)	Record
TM9	Standby	

Note:

1. EUT supports empty load, half load, full load working at the same time, so the all conditions have been tested. It is found that TM8 full load is the worst mode, and the data in the report only reflects the worst mode.

4.5 Description of Calculation

4.5.1. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS (\text{dBuV/m}) = RA (\text{dBuV}) + AF (\text{dB/m}) + CL (\text{dB}) - AG (\text{dB})$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

4.5.2. Disturbance Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$CD (\text{dBuV}) = RA (\text{dBuV}) + PL (\text{dB}) + CL (\text{dB})$$

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

4.6 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test Item	Measurement Uncertainty
Conducted Emission	2.64 dB
Occupied Channel Bandwidth	2.8 %
RF output power, conducted	0.68 dB
Power Spectral Density, conducted	1.37 dB
Unwanted Emissions, conducted	1.84 dB
Radiated Emission (9kHz- 30MHz)	Ur = 2.50 dB
Radiated Emission (30MHz- 1GHz)	Ur = 2.70 dB (Horizontal) Ur = 2.70 dB (Vertical)
Radiated Emission (1GHz- 18GHz)	Ur = 3.50 dB (Horizontal) Ur = 3.50 dB (Vertical)
Radiated Emission (18GHz- 40GHz)	Ur = 5.15 dB (Horizontal) Ur = 5.24 dB (Vertical)
Temperature	0.8°C
Humidity	4%

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Condition

None.

5 Test Items

5.1 Antenna requirement

5.1.1 Test Requirement

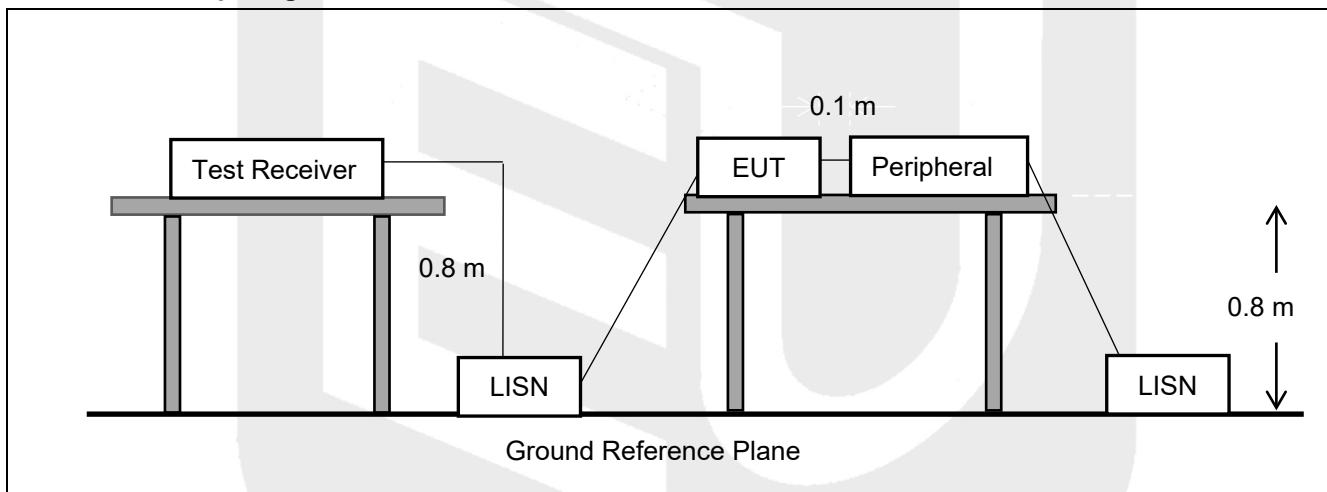
Test Requirement	<p>According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.</p> <p>If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.</p>
------------------	---

5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	The EUT has a permanently and irreplaceable inductive loop antenna.

5.1.3 Antenna Gain


The antenna peak gain of EUT is less than 6 dBi.

5.2 Conducted Emission at AC Power Line

5.2.1 Test Requirement

Test Requirement:	Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).		
Test Limit	Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
*Decreases with the logarithm of the frequency.			
Test Method	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices.		

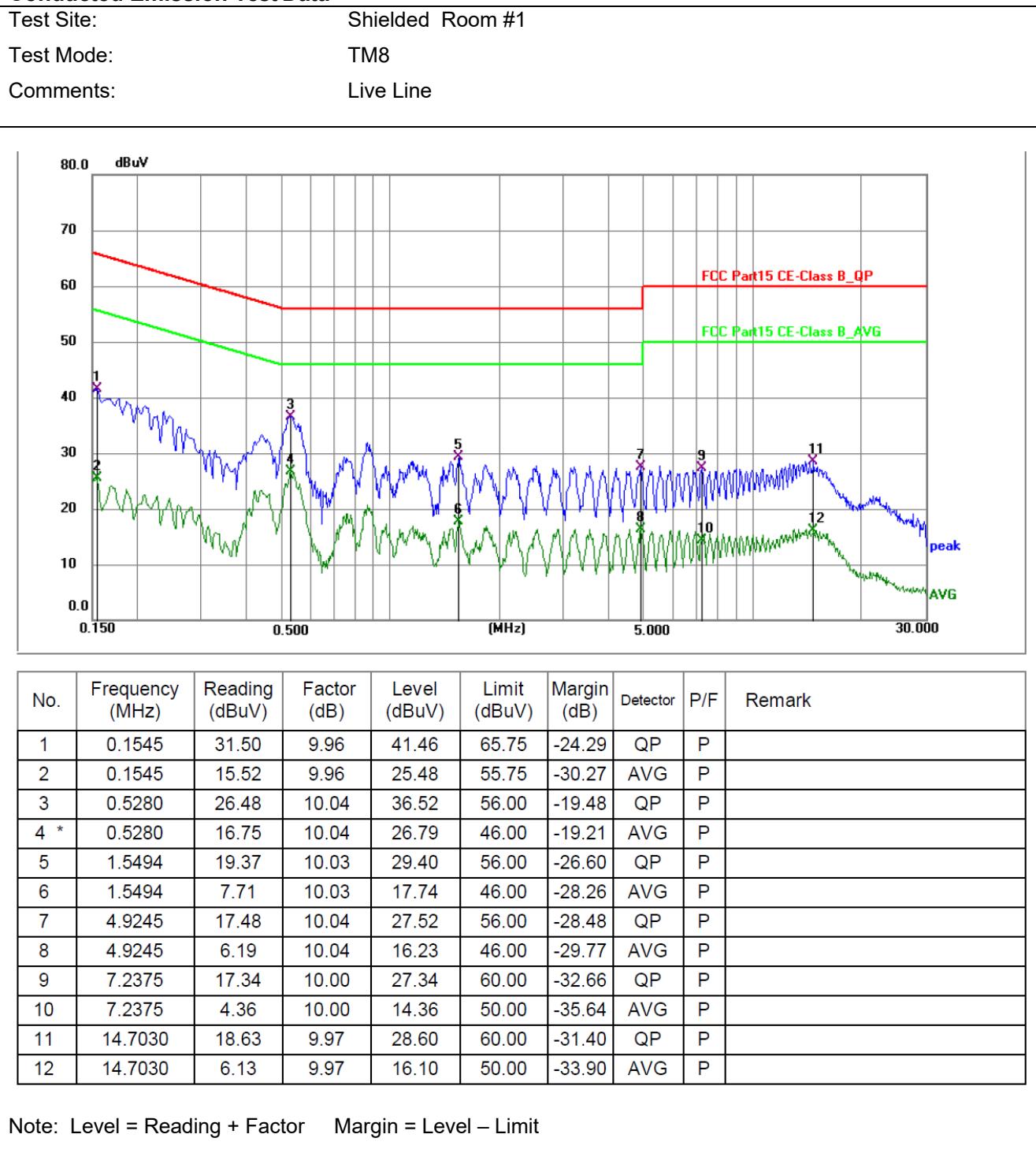
5.2.2 Test Setup Diagram

5.2.3 Test Procedure

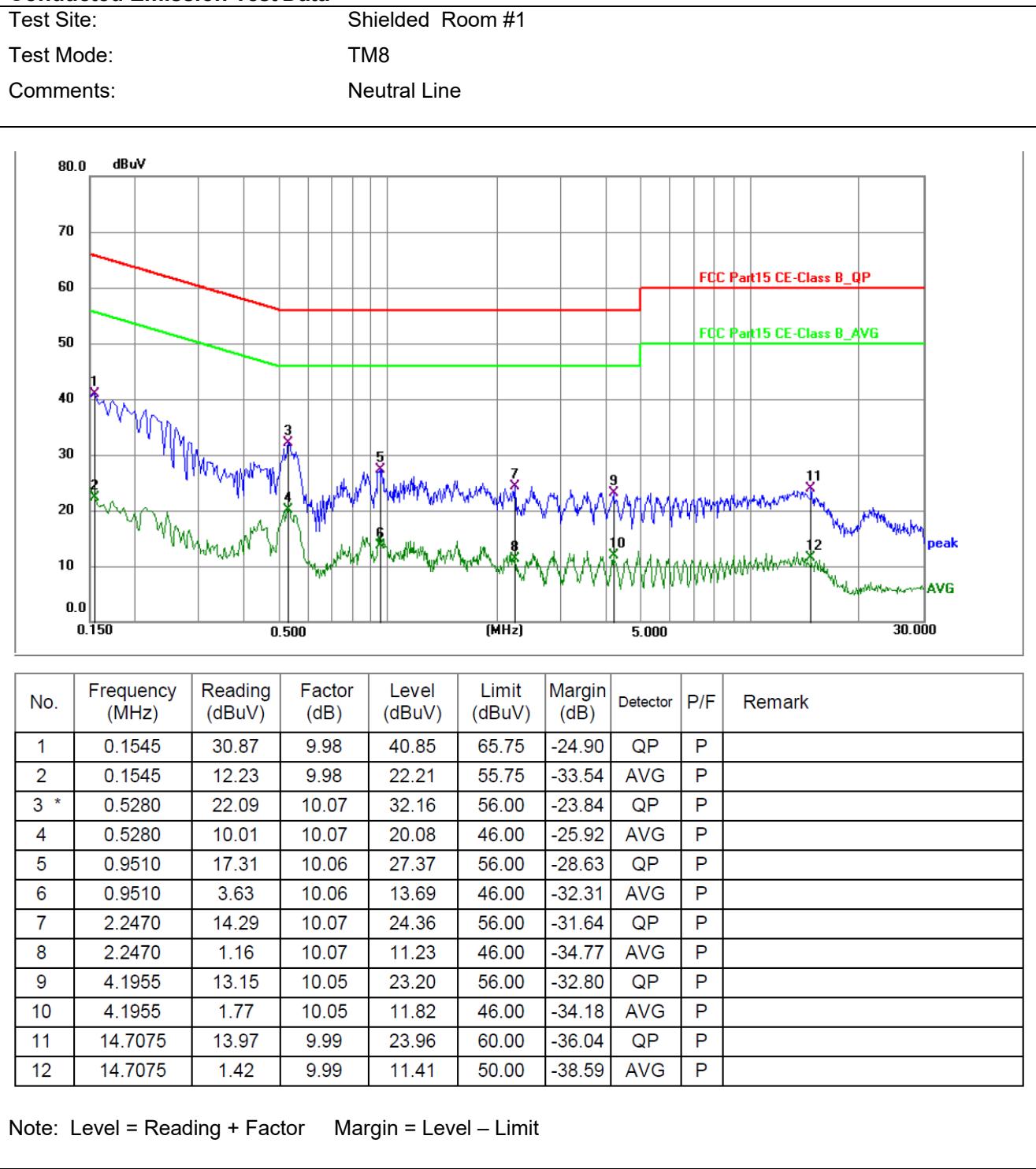
The EUT is put on the plane 0.8 m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipment. Both sides of AC line are investigated to find out the maximum conducted emission according to the test standard regulations during conducted emission measurement.

The bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 9kHz in 150kHz~30MHz.

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

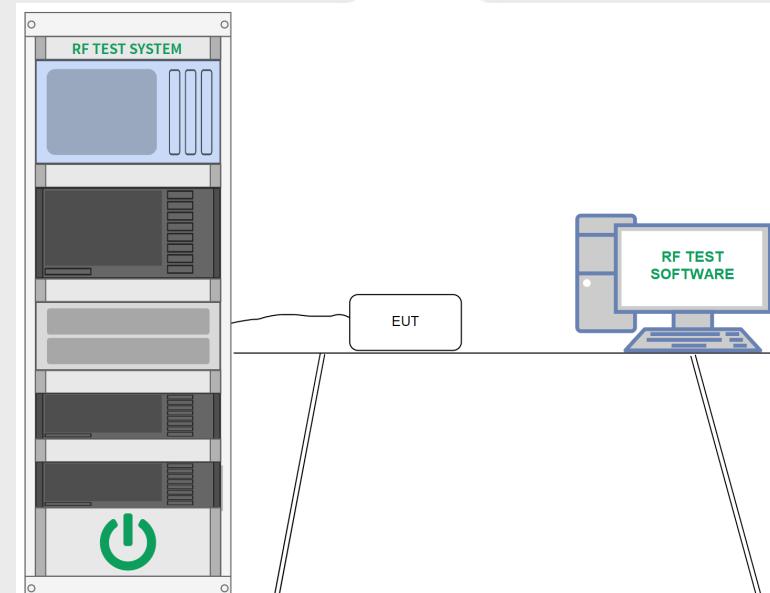
5.2.4 Test Data


PASS.

Only the worst case data was showed in the report, please to see the following pages.

Conducted Emission Test Data

Conducted Emission Test Data



5.3 Emissions Bandwidth

5.3.1 Test Requirement

Test Requirement	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method	ANSI C63.10-2020, section 6.9.2 Occupied bandwidth—relative measurement procedure

5.3.2 Test Setup Diagram

5.3.3 Test Procedure

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.5.2.
- d) Steps a) through c) might require iteration to adjust within the specified tolerances.
- e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target “-xx dB down” requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
- f) Set detection mode to peak and trace mode to max hold.
- g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the “-xx dB down amplitude” using $[(\text{reference value}) - \text{xx}]$. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
- i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
- j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the “-xx dB down amplitude” determined in step h). If a marker is below this “-xx dB down amplitude” value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the “-xx dB down amplitude” determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.
- k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

5.3.4 Test Data

PASS.

Please refer to the following pages.

Frequency (KHz)	20dB bandwidth (Hz)	99% bandwidth (Hz)	Result
145	248	210	Pass
360	247	209	Pass

Test Graph:

5.4 Field Strength of Fundamental Emissions and Radiated Emission

5.4.1 Test Requirement

Test Requirement	FCC §15.215; FCC §15.209;																								
	<p>FCC §15.215(b): In most unwanted emissions outside of the frequency bands shown in these alternative provisions must be attenuated to the emission limits shown in §15.209. In no case shall the level of the unwanted emissions from an intentional radiator operating under these additional provisions exceed the field strength of the fundamental emission.</p> <p>FCC §15.209: According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:</p> <table border="1"> <thead> <tr> <th>Frequency (MHz)</th> <th>Field strength (microvolts/meter)</th> <th>Measurement distance (meters)</th> </tr> </thead> <tbody> <tr> <td>0.009-0.490</td> <td>2400/F(kHz)</td> <td>300</td> </tr> <tr> <td>0.490-1.705</td> <td>24000/F(kHz)</td> <td>30</td> </tr> <tr> <td>1.705-30.0</td> <td>30</td> <td>30</td> </tr> <tr> <td>30-88</td> <td>100 **</td> <td>3</td> </tr> <tr> <td>88-216</td> <td>150 **</td> <td>3</td> </tr> <tr> <td>216-960</td> <td>200 **</td> <td>3</td> </tr> <tr> <td>Above 960</td> <td>500</td> <td>3</td> </tr> </tbody> </table>	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	0.009-0.490	2400/F(kHz)	300	0.490-1.705	24000/F(kHz)	30	1.705-30.0	30	30	30-88	100 **	3	88-216	150 **	3	216-960	200 **	3	Above 960	500	3
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)																							
0.009-0.490	2400/F(kHz)	300																							
0.490-1.705	24000/F(kHz)	30																							
1.705-30.0	30	30																							
30-88	100 **	3																							
88-216	150 **	3																							
216-960	200 **	3																							
Above 960	500	3																							
Test Limit	<p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p> <p>NOTE:</p> <ol style="list-style-type: none"> 1. Field Strength (dBμV/m) = 20*log[Field Strength (μV/m)]. 2. In the emission tables above, the tighter limit applies at the band edges. 3. At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). For example, at the frequency 9 kHz, limit @3m = 20*log (2400/f) + 40log (dlimit/dmeasure) where limit = 300m, dmeasure=3m. limit @3m = 20*log (2400/9) + 40log (300/3) = 128.52 (dBμV/m). 4. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 																								
Test Method	ANSI C63.10-2020 section 6.4, 6.5 Radiated emissions tests																								

5.4.2 Test Setup Diagram

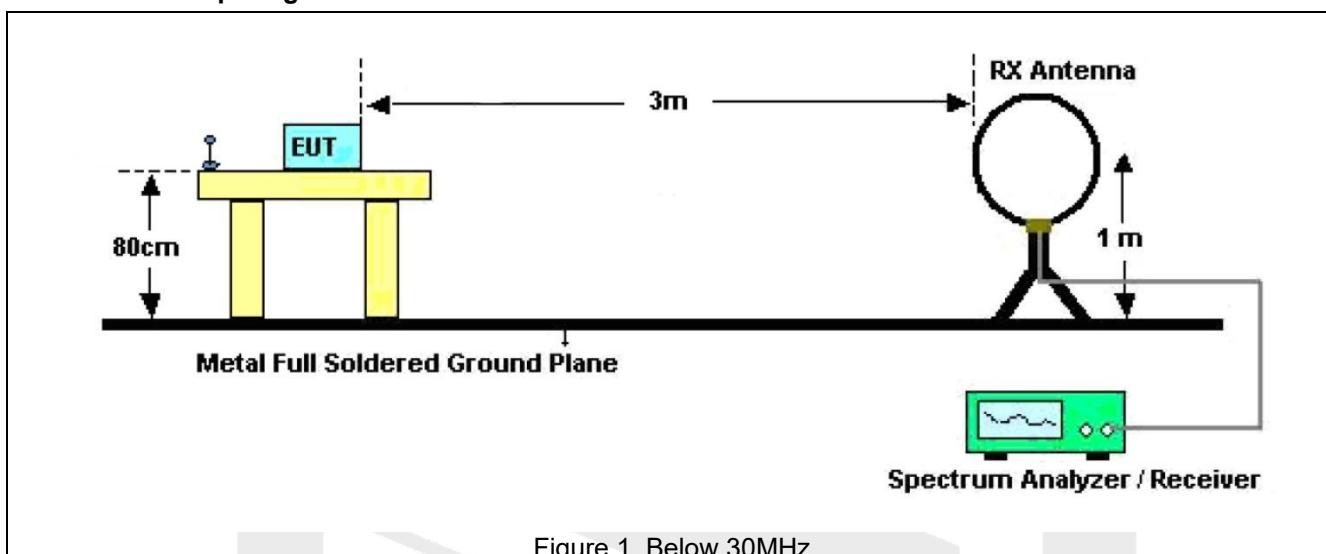


Figure 1. Below 30MHz

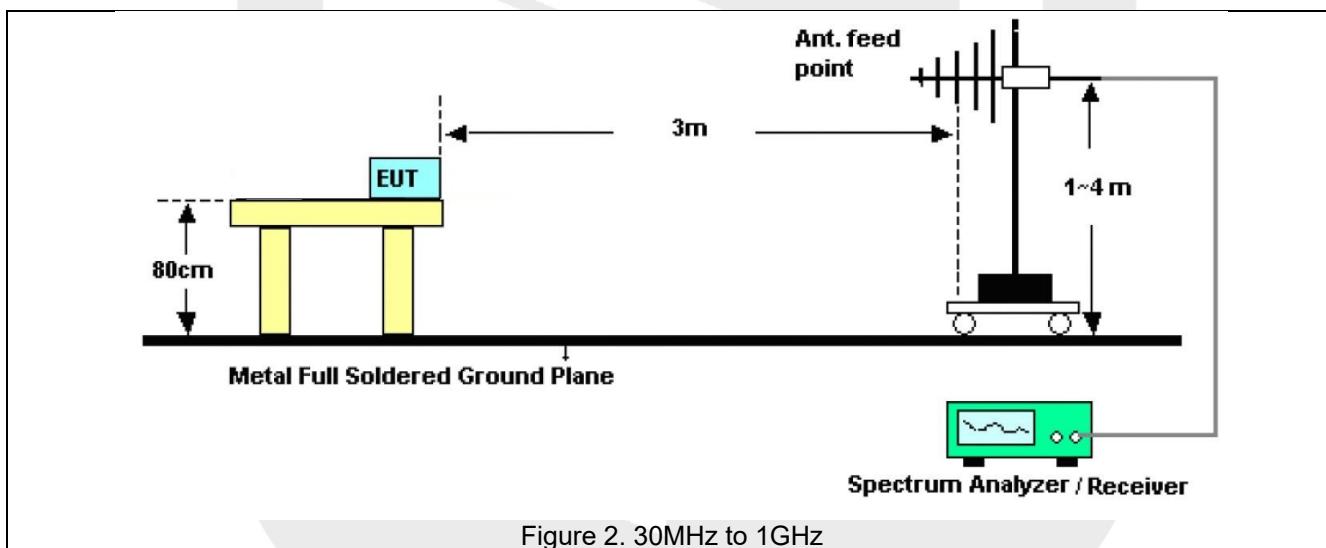


Figure 2. 30MHz to 1GHz

5.4.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

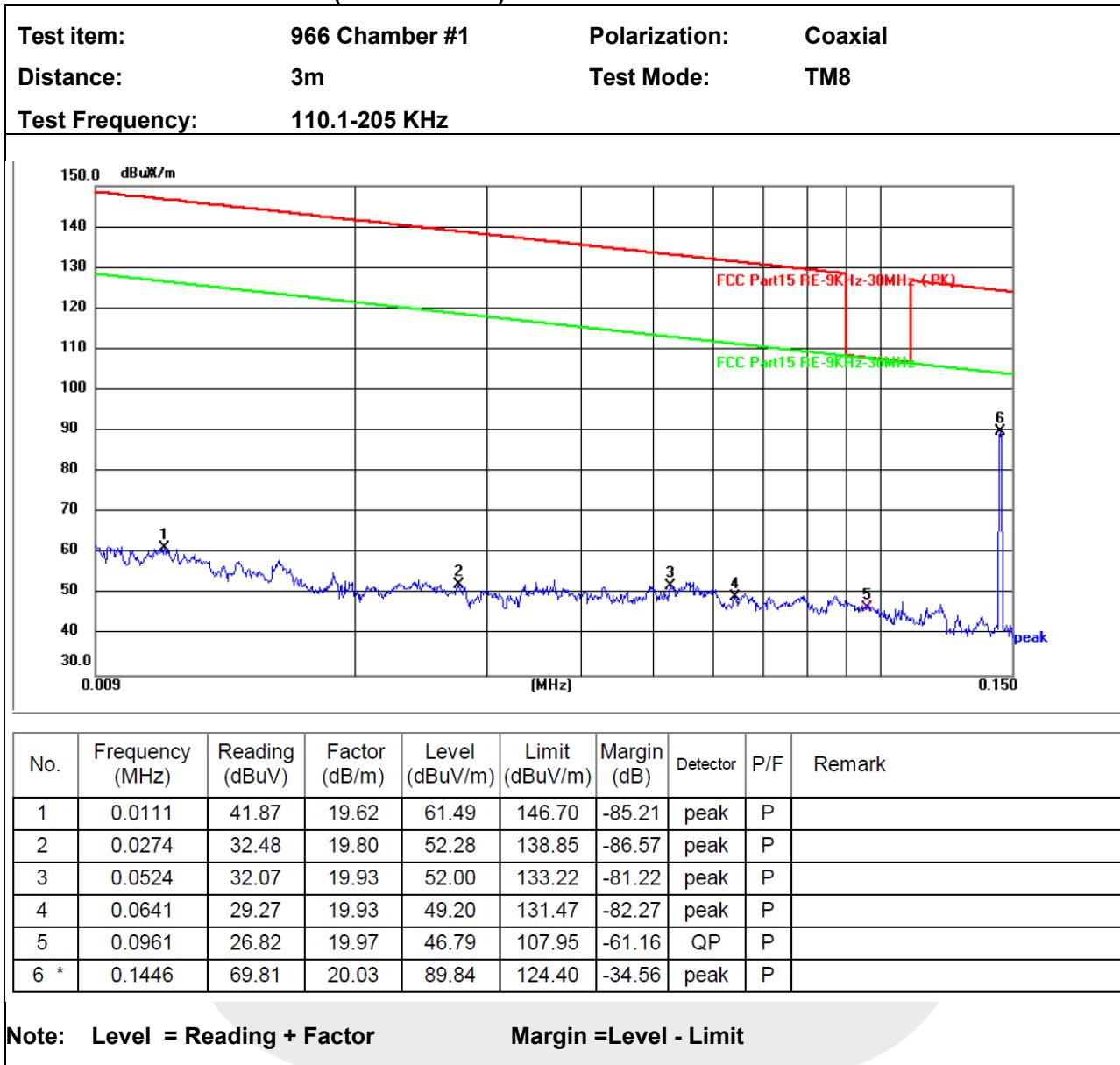
RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.4.4 Test Data

PASS.

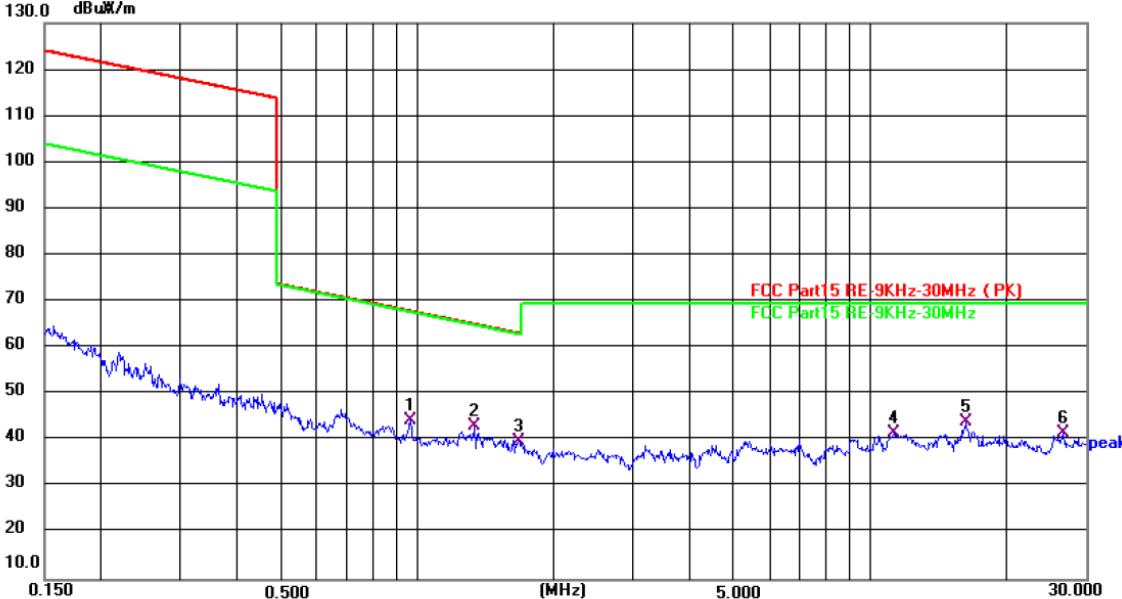

Please refer to the following pages.

The frequency range from 9KHz to 1000MHz is checked.

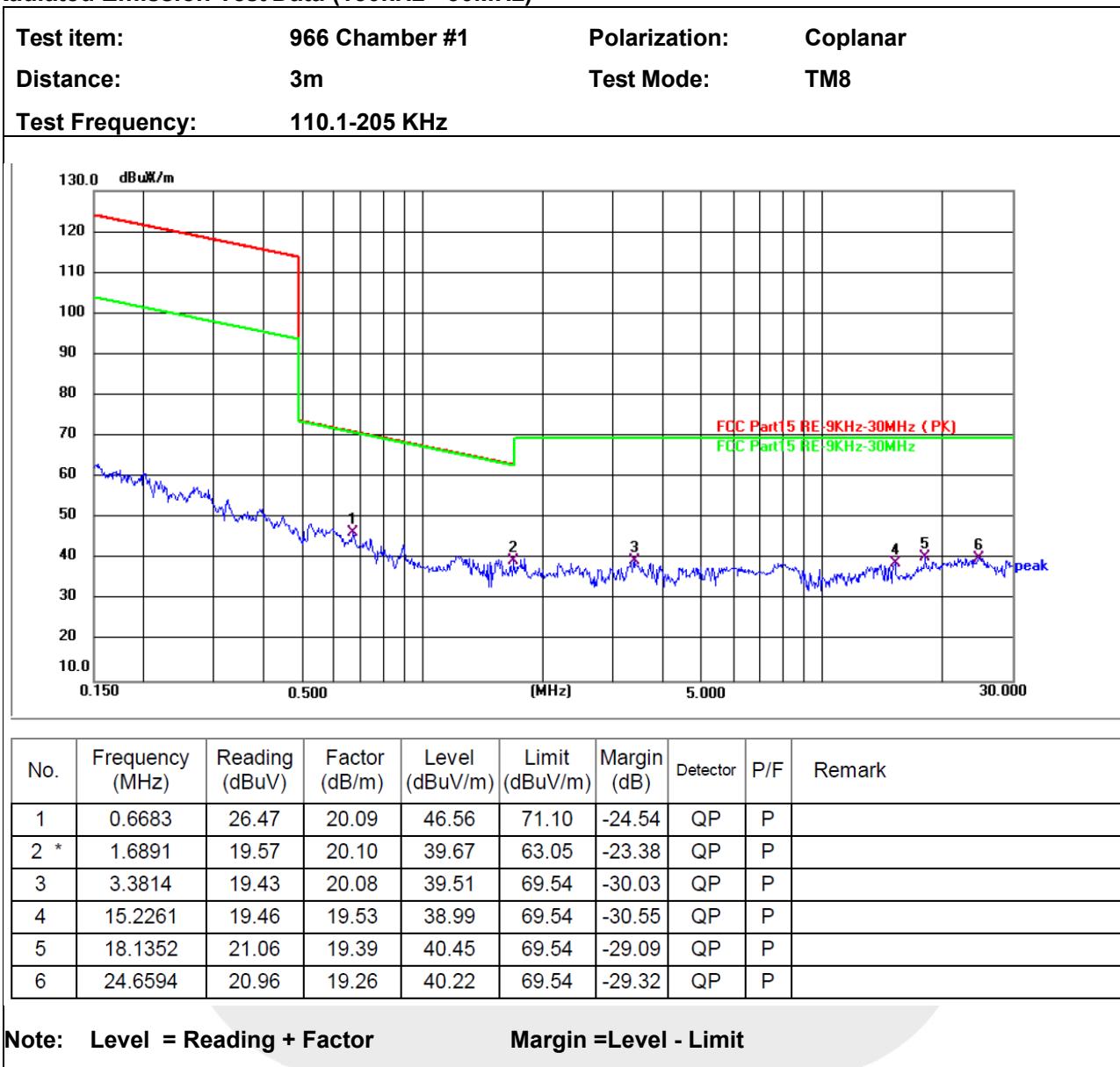
Only the worst case data was showed in the report, please to see the following pages.

For test of 30MHz-1GHz, during the test, pre-scan all test operating frequency, and found the 360KHz is worse case, the report only record this mode.

Radiated Emission Test Data (9kHz -150kHz)



Radiated Emission Test Data (9kHz -150kHz)


Test item:	966 Chamber #1		Polarization:	Coplanar																																																																							
Distance:	3m		Test Mode:	TM8																																																																							
Test Frequency:	110.1-205 KHz																																																																										
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Level (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th><th>P/F</th><th>Remark</th></tr> </thead> <tbody> <tr> <td>1</td><td>0.0160</td><td>34.60</td><td>19.67</td><td>54.27</td><td>143.52</td><td>-89.25</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>2</td><td>0.0376</td><td>32.28</td><td>19.87</td><td>52.15</td><td>136.10</td><td>-83.95</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>3</td><td>0.0534</td><td>31.37</td><td>19.93</td><td>51.30</td><td>133.05</td><td>-81.75</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>4</td><td>0.0710</td><td>31.45</td><td>19.94</td><td>51.39</td><td>130.58</td><td>-79.19</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>5</td><td>0.1000</td><td>27.93</td><td>19.99</td><td>47.92</td><td>107.61</td><td>-59.69</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>6 *</td><td>0.1450</td><td>68.31</td><td>20.04</td><td>88.35</td><td>124.38</td><td>-36.03</td><td>peak</td><td>P</td><td></td></tr> </tbody> </table>						No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	1	0.0160	34.60	19.67	54.27	143.52	-89.25	peak	P		2	0.0376	32.28	19.87	52.15	136.10	-83.95	peak	P		3	0.0534	31.37	19.93	51.30	133.05	-81.75	peak	P		4	0.0710	31.45	19.94	51.39	130.58	-79.19	peak	P		5	0.1000	27.93	19.99	47.92	107.61	-59.69	QP	P		6 *	0.1450	68.31	20.04	88.35	124.38	-36.03	peak	P	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark																																																																		
1	0.0160	34.60	19.67	54.27	143.52	-89.25	peak	P																																																																			
2	0.0376	32.28	19.87	52.15	136.10	-83.95	peak	P																																																																			
3	0.0534	31.37	19.93	51.30	133.05	-81.75	peak	P																																																																			
4	0.0710	31.45	19.94	51.39	130.58	-79.19	peak	P																																																																			
5	0.1000	27.93	19.99	47.92	107.61	-59.69	QP	P																																																																			
6 *	0.1450	68.31	20.04	88.35	124.38	-36.03	peak	P																																																																			
Note: Level = Reading + Factor			Margin =Level - Limit																																																																								

Radiated Emission Test Data (150kHz - 30MHz)

Test item:	966 Chamber #1		Polarization:	Coaxial					
Distance:	3m		Test Mode:	TM8					
Test Frequency:	110.1-205 KHz								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.9630	24.24	20.11	44.35	67.93	-23.58	QP	P	
2 *	1.3378	22.94	20.11	43.05	65.08	-22.03	QP	P	
3	1.6713	19.77	20.10	39.87	63.14	-23.27	QP	P	
4	11.2570	21.80	19.71	41.51	69.54	-28.03	QP	P	
5	16.2256	24.46	19.46	43.92	69.54	-25.62	QP	P	
6	26.6992	22.31	19.26	41.57	69.54	-27.97	QP	P	
Note: Level = Reading + Factor					Margin =Level - Limit				

Radiated Emission Test Data (150kHz - 30MHz)

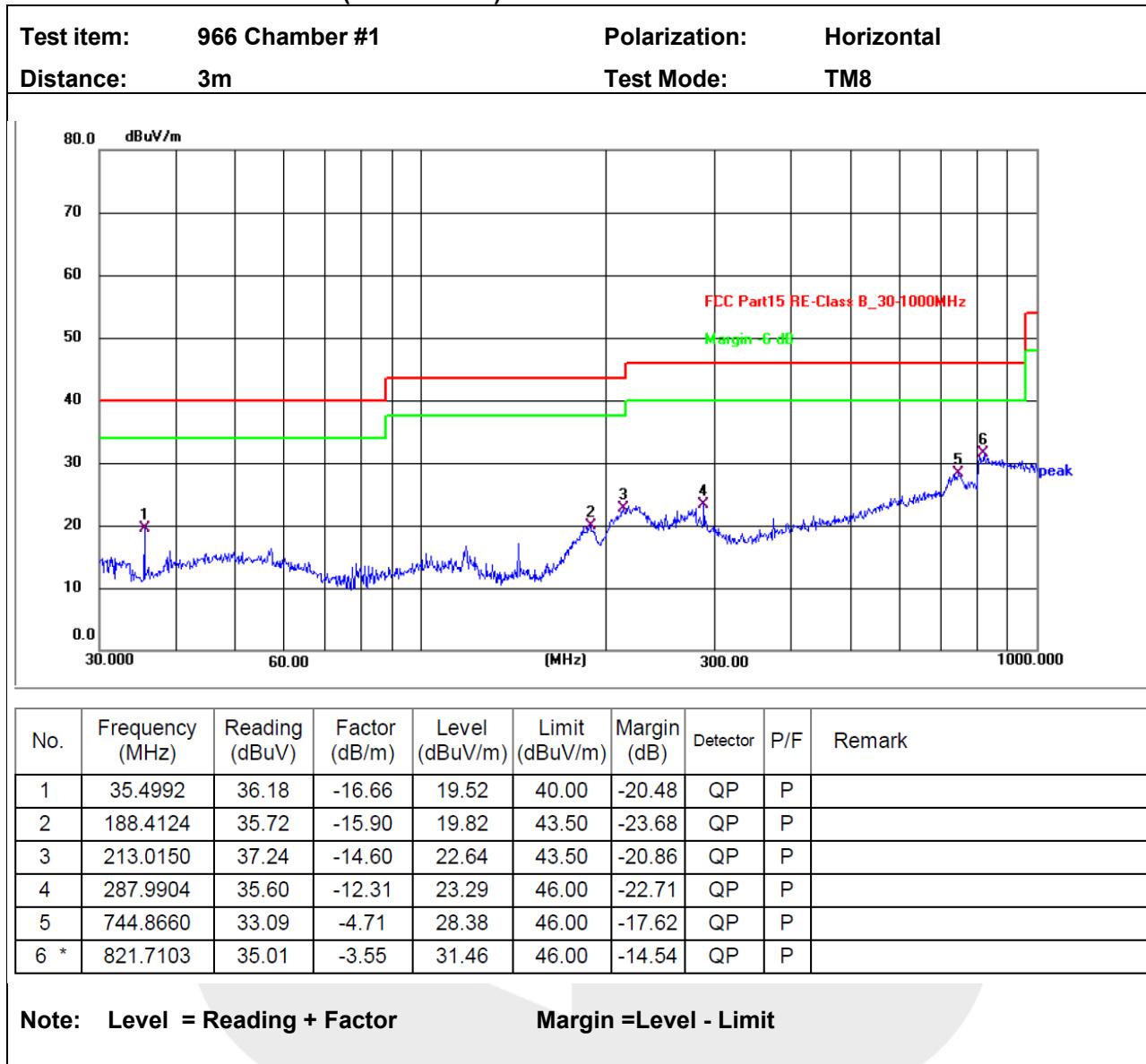
Radiated Emission Test Data (9kHz -150kHz)

Test item:	966 Chamber #1	Polarization:	Coaxial																																																																						
Distance:	3m	Test Mode:	TM8																																																																						
Test Frequency:	360 KHz																																																																								
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Level (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th><th>P/F</th><th>Remark</th></tr> </thead> <tbody> <tr> <td>1 *</td><td>0.3613</td><td>70.92</td><td>20.09</td><td>91.01</td><td>116.45</td><td>-25.44</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>2</td><td>0.5792</td><td>18.56</td><td>20.09</td><td>38.65</td><td>72.35</td><td>-33.70</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>3</td><td>0.7751</td><td>17.36</td><td>20.10</td><td>37.46</td><td>69.82</td><td>-32.36</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>4</td><td>1.6270</td><td>12.04</td><td>20.10</td><td>32.14</td><td>63.38</td><td>-31.24</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>5</td><td>4.4775</td><td>12.89</td><td>20.07</td><td>32.96</td><td>69.54</td><td>-36.58</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>6</td><td>7.8101</td><td>12.43</td><td>19.85</td><td>32.28</td><td>69.54</td><td>-37.26</td><td>QP</td><td>P</td><td></td></tr> </tbody> </table>				No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	1 *	0.3613	70.92	20.09	91.01	116.45	-25.44	peak	P		2	0.5792	18.56	20.09	38.65	72.35	-33.70	QP	P		3	0.7751	17.36	20.10	37.46	69.82	-32.36	QP	P		4	1.6270	12.04	20.10	32.14	63.38	-31.24	QP	P		5	4.4775	12.89	20.07	32.96	69.54	-36.58	QP	P		6	7.8101	12.43	19.85	32.28	69.54	-37.26	QP	P	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark																																																																
1 *	0.3613	70.92	20.09	91.01	116.45	-25.44	peak	P																																																																	
2	0.5792	18.56	20.09	38.65	72.35	-33.70	QP	P																																																																	
3	0.7751	17.36	20.10	37.46	69.82	-32.36	QP	P																																																																	
4	1.6270	12.04	20.10	32.14	63.38	-31.24	QP	P																																																																	
5	4.4775	12.89	20.07	32.96	69.54	-36.58	QP	P																																																																	
6	7.8101	12.43	19.85	32.28	69.54	-37.26	QP	P																																																																	
Note: Level = Reading + Factor		Margin =Level - Limit																																																																							

Radiated Emission Test Data (9kHz -150kHz)

Test item:	966 Chamber #1		Polarization:	Coplanar																																																																							
Distance:	3m		Test Mode:	TM8																																																																							
Test Frequency:	360 KHz																																																																										
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Level (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th><th>P/F</th><th>Remark</th></tr> </thead> <tbody> <tr> <td>1 *</td><td>0.3613</td><td>71.09</td><td>20.09</td><td>91.18</td><td>116.45</td><td>-25.27</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>2</td><td>0.5581</td><td>17.74</td><td>20.08</td><td>37.82</td><td>72.67</td><td>-34.85</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>3</td><td>0.8304</td><td>14.24</td><td>20.11</td><td>34.35</td><td>69.22</td><td>-34.87</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>4</td><td>1.5518</td><td>10.61</td><td>20.10</td><td>30.71</td><td>63.79</td><td>-33.08</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>5</td><td>3.3993</td><td>12.56</td><td>20.08</td><td>32.64</td><td>69.54</td><td>-36.90</td><td>QP</td><td>P</td><td></td></tr> <tr> <td>6</td><td>12.8513</td><td>12.56</td><td>19.60</td><td>32.16</td><td>69.54</td><td>-37.38</td><td>QP</td><td>P</td><td></td></tr> </tbody> </table>						No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	1 *	0.3613	71.09	20.09	91.18	116.45	-25.27	peak	P		2	0.5581	17.74	20.08	37.82	72.67	-34.85	QP	P		3	0.8304	14.24	20.11	34.35	69.22	-34.87	QP	P		4	1.5518	10.61	20.10	30.71	63.79	-33.08	QP	P		5	3.3993	12.56	20.08	32.64	69.54	-36.90	QP	P		6	12.8513	12.56	19.60	32.16	69.54	-37.38	QP	P	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark																																																																		
1 *	0.3613	71.09	20.09	91.18	116.45	-25.27	peak	P																																																																			
2	0.5581	17.74	20.08	37.82	72.67	-34.85	QP	P																																																																			
3	0.8304	14.24	20.11	34.35	69.22	-34.87	QP	P																																																																			
4	1.5518	10.61	20.10	30.71	63.79	-33.08	QP	P																																																																			
5	3.3993	12.56	20.08	32.64	69.54	-36.90	QP	P																																																																			
6	12.8513	12.56	19.60	32.16	69.54	-37.38	QP	P																																																																			
Note: Level = Reading + Factor			Margin =Level - Limit																																																																								

Radiated Emission Test Data (150kHz - 30MHz)


Test item:	966 Chamber #1		Polarization:	Coaxial																																																																						
Distance:	3m		Test Mode:	TM8																																																																						
Test Frequency:	360 KHz																																																																									
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Level (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th><th>P/F</th><th>Remark</th></tr> </thead> <tbody> <tr> <td>1</td><td>0.0148</td><td>38.56</td><td>19.65</td><td>58.21</td><td>144.20</td><td>-85.99</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>2</td><td>0.0297</td><td>35.28</td><td>19.83</td><td>55.11</td><td>138.15</td><td>-83.04</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>3</td><td>0.0367</td><td>35.12</td><td>19.86</td><td>54.98</td><td>136.31</td><td>-81.33</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>4</td><td>0.0517</td><td>32.55</td><td>19.93</td><td>52.48</td><td>133.34</td><td>-80.86</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>5</td><td>0.0777</td><td>30.11</td><td>19.94</td><td>50.05</td><td>129.80</td><td>-79.75</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>6 *</td><td>0.0990</td><td>26.54</td><td>19.99</td><td>46.53</td><td>107.69</td><td>-61.16</td><td>QP</td><td>P</td><td></td></tr> </tbody> </table>					No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	1	0.0148	38.56	19.65	58.21	144.20	-85.99	peak	P		2	0.0297	35.28	19.83	55.11	138.15	-83.04	peak	P		3	0.0367	35.12	19.86	54.98	136.31	-81.33	peak	P		4	0.0517	32.55	19.93	52.48	133.34	-80.86	peak	P		5	0.0777	30.11	19.94	50.05	129.80	-79.75	peak	P		6 *	0.0990	26.54	19.99	46.53	107.69	-61.16	QP	P	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark																																																																	
1	0.0148	38.56	19.65	58.21	144.20	-85.99	peak	P																																																																		
2	0.0297	35.28	19.83	55.11	138.15	-83.04	peak	P																																																																		
3	0.0367	35.12	19.86	54.98	136.31	-81.33	peak	P																																																																		
4	0.0517	32.55	19.93	52.48	133.34	-80.86	peak	P																																																																		
5	0.0777	30.11	19.94	50.05	129.80	-79.75	peak	P																																																																		
6 *	0.0990	26.54	19.99	46.53	107.69	-61.16	QP	P																																																																		
Note: Level = Reading + Factor			Margin =Level - Limit																																																																							

Radiated Emission Test Data (150kHz - 30MHz)

Test item:	966 Chamber #1		Polarization:	Coplanar																																																																						
Distance:	3m		Test Mode:	TM8																																																																						
Test Frequency:	360 KHz																																																																									
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBuV)</th><th>Factor (dB/m)</th><th>Level (dBuV/m)</th><th>Limit (dBuV/m)</th><th>Margin (dB)</th><th>Detector</th><th>P/F</th><th>Remark</th></tr> </thead> <tbody> <tr> <td>1</td><td>0.0200</td><td>36.39</td><td>19.71</td><td>56.10</td><td>141.58</td><td>-85.48</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>2</td><td>0.0376</td><td>31.78</td><td>19.87</td><td>51.65</td><td>136.10</td><td>-84.45</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>3</td><td>0.0520</td><td>28.10</td><td>19.93</td><td>48.03</td><td>133.28</td><td>-85.25</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>4</td><td>0.0590</td><td>29.55</td><td>19.93</td><td>49.48</td><td>132.19</td><td>-82.71</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>5</td><td>0.0694</td><td>27.42</td><td>19.94</td><td>47.36</td><td>130.78</td><td>-83.42</td><td>peak</td><td>P</td><td></td></tr> <tr> <td>6 *</td><td>0.1000</td><td>24.93</td><td>19.99</td><td>44.92</td><td>107.61</td><td>-62.69</td><td>QP</td><td>P</td><td></td></tr> </tbody> </table>					No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	1	0.0200	36.39	19.71	56.10	141.58	-85.48	peak	P		2	0.0376	31.78	19.87	51.65	136.10	-84.45	peak	P		3	0.0520	28.10	19.93	48.03	133.28	-85.25	peak	P		4	0.0590	29.55	19.93	49.48	132.19	-82.71	peak	P		5	0.0694	27.42	19.94	47.36	130.78	-83.42	peak	P		6 *	0.1000	24.93	19.99	44.92	107.61	-62.69	QP	P	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark																																																																	
1	0.0200	36.39	19.71	56.10	141.58	-85.48	peak	P																																																																		
2	0.0376	31.78	19.87	51.65	136.10	-84.45	peak	P																																																																		
3	0.0520	28.10	19.93	48.03	133.28	-85.25	peak	P																																																																		
4	0.0590	29.55	19.93	49.48	132.19	-82.71	peak	P																																																																		
5	0.0694	27.42	19.94	47.36	130.78	-83.42	peak	P																																																																		
6 *	0.1000	24.93	19.99	44.92	107.61	-62.69	QP	P																																																																		
Note: Level = Reading + Factor			Margin =Level - Limit																																																																							

Radiated Emission Test Data (30-1000MHz)

Radiated Emission Test Data (30-1000MHz)

Test item: 966 Chamber #1

Polarization: Vertical

Distance: 3m

Test Mode: TM8

80.0 dBuV/m

70

60

50

40

30

20

10

0.0

30.000 60.000 90.000 120.000 150.000 180.000 210.000 240.000 270.000 300.000 330.000 360.000 390.000 420.000 450.000 480.000 510.000 540.000 570.000 600.000 630.000 660.000 690.000 720.000 750.000 780.000 810.000 840.000 870.000 900.000 930.000 960.000 990.000 1000.000

(MHz)

FCC Part15 RE-Class B_30-1000MHz

Margin -6 dB

1 2 3 4 5 6

peak

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	44.5867	31.61	-14.32	17.29	40.00	-22.71	QP	P	
2	143.8293	39.94	-18.33	21.61	43.50	-21.89	QP	P	
3	215.2676	36.61	-14.59	22.02	43.50	-21.48	QP	P	
4	457.5072	32.11	-9.01	23.10	46.00	-22.90	QP	P	
5	582.7423	30.09	-6.58	23.51	46.00	-22.49	QP	P	
6 *	818.8340	33.73	-3.67	30.06	46.00	-15.94	QP	P	

Note: Level = Reading + Factor

Margin =Level - Limit

ANNEX A TEST SETUP PHOTOS

Please refer to the document "8328EU012102W-AA.PDF"

ANNEX B EXTERNAL PHOTOS

Please refer to the document "8328EU012102W-AB.PDF"

ANNEX C INTERNAL PHOTOS

Please refer to the document "8328EU012102W-AC.PDF"

STATEMENT

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--- End of Report ---